
A Data Parititioning Approach to speed up the
Fuzzy ARTMAP algorithm using the Hilbert

space-filling Curve
Jose Castro Michael Georgiopoulos Ronald Demara

Department of Computer Engineering Department of Electrical and
University of Central Florida Computer Engineering University of Central Florida

Orlando, FL 328162786 University of Central Florida Orlando, FL 328162786
e-mail: jcastro@pegasus.cc.ucf.edu Orlando, FL 32816-2786 e-mail: demara@pegasus.cc.ucf.edu

e-mail: michaelg@mail.ucf.edu

Ronald Demara
Department of Computer Engineering

University of Central Florida
Orlando, FL 32816-2786

e-mail: demara@pegasus.cc.ucf.edu

Department of Computer Engineering

Abstract-One of the properties of FAM, which is a mixed
blessing, is its capacity to produce new neurons (templates)
on demand to represent classification categories. This property
allows FAM to automatically adapt to the database without
having to arbitrarily specify network structure, hut it also
has the undesirable side effect that on large databases it can
produce a large nehvork size that can dramatically slow down the
algorithms training time. To address this problem we propose the
use of the Hilbert space-filling curve. Our results indicate that the
Hilbert spacefilling curve can reduce the training time of FAM
hy partitioning the learning set without a significant effect on
the classification performance or network size. Given that there
is full data partitioning with the HSFC we implement and test
a parallel implementation on a Beowulf cluster of workstations
that'further speeds up the training and classification time on
large databases.

I. INTRODUCTION

Neural Networks have been used extensively and success-
fully to attack a wide variety of problems, As computing
capacity and electronic databases grow, there is an increasing
need to process considerably larger databases. In this context,
the algorithms of choice tend to be ad-hoc algorithms or tree
based algorithms such as CART and C4.5 [9]. Variations of
these tree learning algorithms, such as SPRINT (Shafer, et al.,
[IO]) and SLIQ (Mehta, et al., [7]) have been successfully
adapted to handle very large data sets.

Neural network algorithms have a higher computational
complexity and for some applications have prohibitive con-
vergence times. Even one of the fastest training time neural
network algorithms, the Fuzzy ARTMAP (FAM) algorithm,
tends to lag in convergence time as the size of the network
grows.

The FAM algorithm corresponds to a family of neural

0-7803-8359-1/04/$20.00 02004 IEEE 23t

network architectures introduced by Carpenter, et al., 1991-
1992 [3], [2] and has proven to be one of the premier neural
network architectures for classification problems. Some of the
advantages that FAM has, compared to other neural network
classifiers, are that it learns the required task fast, it has the
capability to do on-line learning, and its learning structure
allows the explanation of the answers that the neural network
produces.

One of it's properties which is a mixed blessing, is its capac-
ity to produce new neurons (templates) on demand to represent
classification categories. This property allows FAM to auto-
matically adapt to the database without having to arbitrarily
specify network structure, but it also has the undesirable side
effect that on large databases it can produce a large network
size that can dramatically slow down the algorithms training
time. It would be desirable to have a method capable of
keeping the training set on a manageable size without seriously
affecting FAMs convergence, classification and generalization
properties.

In this paper we propose the use of the Hilbert space-
filling curves for processing the training set to he used with
FAM classification (hFAM). Our research on Hilbert space-
filling curves has shown that they can dramatically reduce the
training time of FAM by partitioning the training set without a
significant effect on the classification performance or network
size. Skopal et al. [4] analyze different space-filling curves,
amongst them the Peano curve, Z curve and the Hilbert curve,
and also provide measures for their appropriateness. Moon et
al. [8] argue and prove that the Hilbelt space-filling curve
is the mapping that provides the least number of splits of
compact sets from [0,1]" to [0,1]. This can be interpreted as
stating that points that are close on the mapping will also be

57

mailto:jcastro@pegasus.cc.ucf.edu
mailto:demara@pegasus.cc.ucf.edu
mailto:michaelg@mail.ucf.edu
mailto:demara@pegasus.cc.ucf.edu

close on the n-dimensional hypercube. Lawder 161 has taken
advantage of this and used the Hilbert space-filling curve to
develop a multMimensional indexing technique.

This paper is organized as follows: First we review the
Fuzzy ARTMAP architecture and parameters, then we ex-
amine the computational complexity of FAM and analyze
how and why a partitioning approach can considerably reduce
the algorithms training time. After that we discuss space-
filling curves in general and the Hilbert space-filling curve
in particular and why this curve can be instrumental in im-
proving the FAM algorithm's convergence time. Furthermore,
experimental results are presented on a sequential machine and
on a Beowulf cluster of workstations that illustrate the merit
of our approach. We close the paper with a summary of the
findings and suggestions for further research.

11. THE FUZZY ARTMAP ARCHITECTURE

The Fuzzy ARTMAP architecture consists of four layers or
fields of nodes (see Figure I) . The layers that are worth de-
scribing are the input layer (Fp), the category representarion
layer (I?;), and the output layer (F .) . The input layer of Fuzzy
ARTMAP is the layer where an input vector of dimensionality
2M, of the following form is applied

e c 1 = (a, 4 = (al, az , . . . , aM., a l , a z , . . . ,a&.)

a: = 1 - a , ; Vi E {1,2,. _ _ , M a }

(1)

(2)
where:

The assumption here is that the input vector a is such that
each one of its components lies in the interval [O, I]. The
layer F . of Fuzzy ARTMAP is referred to as the category
representation layer, because this is where categories (or
groups) of input pattems are formed. Finally, the output layer
is the layer that produces the outputs of the network. An output
of the network represents the output to which the input applied
at the input layer of FAM is supposed to be mapped to.

There are two sets of weights worth mentioning in FAM.
The first set of weights are weights from F; to Ff, des-
ignated as w;,,(1 < j < N,,1 < i < 2M,), and
referred to as top-down weights. The vector of weights w; =
(w ; ~ , wyz,. . . , is called a template. Its functionality is
to represent the group of input pattems that chose node j in the
category representation layer of Fuzzy ARTMAP as their rep-
resentative node. The second set of weights, worth mentioning,
are weights that emanate from every node j in the category
representation layer to every node k in the output layer. These
weights are designated as W$ (called inter-ART weights).
The vector of inter-ART weights emanating from every node
j in Fuzzy ARTMAP (i.e.,WTb = [W$, W$, . . . ,W&])
corresponds to the output pattern that this node j is mapped
to.

Fuzzy ARTMAP can operate in two distinct phases:
the training phose and the performance phose. The
training phase of Fuzzy ARTMAP can be described
as follows: Given a list of inpudoutput. pairs,
{(11,0'), . . . , (Ip,Op), . . . , (IPT, OPT)}, we want to

Field F i

t j

Fig. 1. Fuzzy ARTMAP Diagram

train Fuzzy ARTMAP to map every input pattem of the
training list to its corresponding output pattern. To achieve
the aforementioned goal we present the training list to Fuzzy
ARTMAP architecture repeatedly. That is, we present I' to
Fp, 0' to F., I' to Fp, 0' to Fi , and finally IPT to Fp, and
OPT to F i . We present the training list to Fuzzy ARTMAP
as many times as it is necessary for Fuzzy ARTMAP
to correctly classify all these input pattems. The task is
considered accomplished (i.e., the learning is complete) when
the weights do not change during a list presentation. The
aforementioned training scenario is called off-line learning.
The performance phase of Fuzzy ARTMAP works as follows:
Given a list of input patterns, such as il,iz,. . . ,ips, we
want to find the Fuzzy ARTMAP output produced when each
one of the aforementioned test pattems is presented at its F p
layer. In order to achieve the aforementioned goal we present
the test list to the trained Fuzzy ARTMAP architecture and
we observe the network's output.

The operation of Fuzzy ARTMAP is affected by two net-
work parameters, the choice parameter pa, and the baseline
vigilance parameter p.. The choice parameter takes values
in the interval (0 , ~) . while the baseline vigilance parameter
assumes values in the interval [O,I]. Both of these parameters
affect the number of nodes created in the category represen-
tation layer of Fuzzy ARTMAP. Higher values of p,, and
pa create more nodes in the category representation layer of
Fuzzy ARTMAP, and consequently produce less compression
of the input patterns. There are two other network parameter
values in Fuzzy ARTMAP that are worth mentioning. The
vigilance parameter pa, and the number of nodes N, in
the category representation layer of Fuzzy ARTMAP. The

2368

vigilance parameter pa takes value in the interval [pa , 11 and
its initial value is set to be equal to pa . The number of nodes
N, in the category representation layer of Fuzzy ARTMAP
increases while training the network and corresponds to the
number of committed nodes in Fuzzy ARTMAP plus one
uncommitted node.

Before training the topdown weights (the w,4's) of Fuzzy
ARTMAP are set equal to 1, and the inter-ART weights (the
W$s) are chosen equal to 0. One of the specific operands
involved in all of these operations is the f u u y min operand,
designated by the symbol A. Actually, the fuzzy min operation
of two vectors z, and y, designated as zAy, is a vector whose
components are equal to the minimum of components of x
and y. Another specific operand involved in these equations is
designated by the symbol I 1. In particular, 1x1 is the size of
a vector x and is defined to be the sum of its components.

A. The Fuzzy ARTMAP Learning Algorithm

j in F;, as follows:
Operation 1: Calculation of bottom up inputs to every node

(3)

after calculation of the bottom up inputs the node j,,, with
the maximum bottom up input is chosen.

Operation 2: The node j,,, with the maximum bottom up
input is examined to determine whether it passes the vigilance
criterion. A node passes the vigilance criterion if the following
condition is met:

11' A w;l
2 Pa (4)

11'1
if the vigilance criterion is satisfied we proceed with operation
3 otherwise node j,,, is disqualified and we find the next
node in sequence in F; that maximizes the bottom up input.
Eventually we will end up with a node j,,, that maximizes
the bottom up input and passes the vigilance criterion.

Operation 3: This operation is implemented only after we
have found a node j,,, that maximizes the bottom-up input
of the remaining nodes in competition and that passes the
vigilance criterion. Operation 3 determines whether this node
j,,, passes the prediction test. The prediction test checks
if the inter-ART weight vector emanating from node j,,,
(i.e.,Wj:"= = [W;:azl, Wf;"=,, . . . ,Wf;am,.6]) matches
exactly the desired output vector 0' (if it does this is referred
to as passing the prediction test). If the node does not pass the
prediction test, the vigilance parameter p. is increased to the
level of * + E where E is a very small number, node j,,,
is disqualified, and the next in sequence node that maximizes
the bottom-up input and passes the vigilance is chosen. If, on
the other hand, node j,,, passes the predictability test, the
weights in Fuzzy ARTMAP are modified as follows:

IliAw"l

W,"max e W;naaz A I', + 0' (5)

Fuzzy ARTMAP training is considered complete if and only
if after repeated presentations of all training inputloutput pairs

to the network no weight changes are produced. In some
databases noise in the data may create over-fitting so a single
pass over the training set may be preferable.

In the performance phase of Fuzzy ARTMAP only Opera-
tions 1 and 2 are implemented for every input pattem presented
to Fuzzy ARTMAP.

E. Fuzzy ARTMAP pseudocode
We will be interested in classification problems where we

associate input patterns to category labels. The following
pseudo code algorithm makes use of these assumptions and
simplifies accordintly the FAM algorithm.
FAM-TRAINING-PHASE(Patte?-ns, p , pa, €)

1 templates e { }
2 for each I in Patterns
3 d o p t p
4 rrpeat
5 T,,, + &
6 status + Foundiione
7
8 do if p (I , w j) 2 p

for each w j in templates

9 and T (I , wj , pa) > T,,,
10 then
1 1 T,,, t V I , wj, 0,)
12 %" + j
13 status t FoundOne
14 if status = FoundOne
15
16 then status t This I s IT
17 else status t TryAgain
18
19 until status # TryAgain
20 if status = ThisIsIT
21 then
22
23 else
24
25
26 return templates

then if class(1) = class(wjnm=)

P + P (I , Wjm.,=) + E

Wiwaem t Wj,.= A I

templates t templates U { I }

Where T (I , w , p) is defined by equation 3 and p (I , w) is
defined by the left hand side of inequality 4.

C. FAM time complexity analysis
If we call r the average number of times that the repeat

loop is executed for each input pattern. Then the number of
times that a given input pattern I passes through the code will
be:

Time(1) = O(r x ITemplatesl) (6)

Also, under the artificial condition that the number of
templates does not change during training it is easy to see
that the time complexity of the algorithm is:

T i m e (F A M) = O(r x PT x ITemplatesl) (7)

2369

.Usually for a fixed type of database the FAM algorithm
achieves a certain compression ratio. This means that the
number of templates is actually a fraction of the number of
patterns PT in the training set:

ITemplatesl = KPT (8)

and
O (F A M) = 0 (rPTKcPT) = O(nrPT2) (9)

Dividing the training set into p partitions will reduce the
number of patterns in each partition to f and the number of
templates in each partition to

On a sequential machine the speedup obtained by partition-
ing the training set into p subsets will be proportional to:

on average.

and on a parallel machine with p processors the speedup
will be proportional to:

111. SPACE-FILLING CURVES
We will talk about a space filling curve SAf- as an mth-

order approximation of the space-filling curve S in the Ma-
dimensional space. An Madimensional space-filling curve
with grid size N connects Nu" points and has Nu" - 1
segments. Figure 2 shows the Sweep and Peano space-filling
curves respectively. The grid size in these examples is 4, the
number of dimensions Ma = 2 the number of points that they
connect is 4' = 16 and the number of segments is 15.

A curve S is space-filling iff

Fig. 2. Sweep and Peano space-fi lling curves

A. The Hilbert space-filling Curve
We will denote the mth+xder approximation of the Ma-

dimensional Hilbert space-filling curve as E$. Examples of
the first 4 approximations of the 2dimensional Hilbert space-
filling curve can be seen in figures 3 and 4. A 34imensional
Hilbert space-filling curve approximation can be seen in figure
5. The mth+rder approximation H 2 of the HSFC has a

I

I

1
Fig. 3. Fist 2 approximations of HSFC

Fig. 4. Hilben space-fi lling Curve

grid size of N = Zm, in practice divides and the MO-
dimensional space into amMS boxes and orders them in a
contiguous sequence. For a more detailed exposition of the
clustering properties of this curve we refer the reader to [8].

B. The Hilbert space-filling for FAM partitioning
Our approach is the following: we take the set of training

pairs (Ir,O'), apply the Hilbert index T = X?(a), where
a is the non complement coded part of I = (a,l - a).
The resulting values are added to an index file and sorted.
Once sorted the index is split into p contiguous and equal
sized partitions, each partition is processed independently.
The complexity of the partitioning operation is equal to the
complexity of the sorting algorithm used, for any reasonable
sort this is O(PTlog(PT)) and therefore does not add to
the complexity of the FAM learning process itself (at least
O(PT2)) .

IV. EXPERIMENT DESIGN
Experiments where conducted on 3 databases: I real dataset

and 2 artificial Gaussian data sets. All data sets where tested
with training set sizes of 1000 x 2',z E { O , 1,. . . ,9}, that is
1,000 to 5 12,OOO patterns. The test set size was fixed at 20.000
patterns. The number of partitions varied from p = 1 (vanilla
FAM) to p = 32, partition sizes also increased in powers of
2. The tests where conducted 32 independent times for each
different (p , PT) = (partition, training set size) pair.

A. Forest CoverType Database
The first database used for testing was the Forest CoverType

database provided by Blackard [I] , and donated to the UCI

2370

Fig. 5. Hilben 3D

Machine Learning Repository. The number of attributes of
each pattern is 54. There are no missing values on this data.

V. EXPERIMENTAL RESULTS

In figure 7 we can see a bar graph of the number of
templates on the Y axis, the training set size on the X axis
(in thousands of patterns), and on the Z axis the number of
partitions. Differences on the Z indicate that the number of
partitions do not affect considerably the compression ratio.
This is also confirmed in figures 8.

Fig. 7. Number of Templates on Covertype Data

The classification of the partitioned data is very similar
from the classification of the non-partitioned (I partition) data
figure 9. The Tree Covertype database classification continues
to improve up t o 512,000 patterns, clearly indicating that the
database is sufficiently complex as to need a large training set
size. This behavior is not observed on the Gaussian artificial
data (5% or 15% data), which peaks performance at 32,000
patterns and makes the classification performance graph flat
and uninteresting.

Fig. 6. Wsualimtion of Forest GverType data

Patterns 1 through 512,000 where used for training, The
testing set for all trials where patterns 561,001 to 581,000. A
visualization of the first 3 dimensions of the Forest Covertype
can be seen in figure 6, different tones correspond to differ-
ent classes. Classification performance for different machine
learning algorithms for this database usually hovers around
75%.

B. Gaussian Databases

The Gaussian data was artificially generated using the polar
form of the Box-Muller transform with the R250 random
number generator by Kirkpatrick and Scholl [5] . We generated
2 class 16 dimensional data. 532,000 patterns where generated
for each Gaussian database. 512,000 pattems where used for
training, the last 20.000 where used for testing. One Gaussian
database had a 15% overlap while the other had a 5% overlap.

Fig. 8. Number of Templates on S% Overlap Gaussian Data

Figure 10 shows the speedup of the partitioned FAM with
p partitions running in parallel using equation ??. The best
speedups obtained where in the order of 100.

231 1

,

t ’

Fig. 9. Classification Performance of Forest Cover database

The speedup for the same data using a sequential processing
machine can be seen in figure 1 I , we can see that the speedup
for an single processor is in the order of p (17 for 32
processors) as indicated by equation I O and the speedup of
the parallel implementation is in the order of p 2 (100 for 32
processors) as indicated by equation 11.

Fig. IO. Hilbert Parallel Partitioning Speedup on Covertype Data

VI. CONCLUSIONS

We presented the FAM algorithm applied to classification
tasks on large databases and saw that it’s training time tends
to slow considerably when the size of the database grows. By
analyzing the algorithm we proposed the use of Hilbert space-
filling curves to attack this problems. experimental results on 3
databases confirm our projections: classification performance
is not affected, in fact, it is improved for the real database
results, although this was not an objective in our study. Com-
pression ratio is only slightly affected, and convergence time is
improved linearly on the sequential machine and quadratically
on the parallel machine. Nevertheless there is still room for
improvement, in this study we applied a network partitioning
approach to the training set. We believe that combining this

with a network partitioning approach is the next step to achieve
optimal workload balance in the parallel implementation, this
is one of the directions of our current research.

. .

Fig, 11. Hilbert Sequential Partitioning Speedup on Covertype Data

ACKNOWLEDGMENT
The authors would like to thank the Institute of Simulation

and Training and the Link Foundation Fellowship program for
partially funding this project. This work was also supported
in part by the National Science Foundation under grant no.
0203446.

REFERENCES
[I] J. A. Blackard, “Comparison of neural networks and discriminant

analysis in predicting forest cover types,” Ph.D. disselfation. Department
of Forest Sciences, Colorado State University. 1999.

[2] G. A. Carpenter. S. Gmssberg, N. Markuzon. 1. H. Reynolds. and D. B.
Rose”. “Fuzzy ARTMAP A neural network architecture for incremental
learning of analog multidimensional maps,” IEEE Tranrncrionr on
Neural Nerworks, vol. 3, no. 5, pp. 698-713, September 1992.

[3l G. A. Carpenter. S. Grossberg, and J. H. Reynolds, “Furzy ART:
An adaptive resonance algorithm far rapid, stable classification of
analog patterns:’ in Internnrionnl Joint Conference on Neural Neworks,
IJCNNYI, vol. II. Seattle. Washington: LEEEIINNS Inc. 1991. pp.
411-416.

[41 Pmpenies ofSpoce Fiiling Cunes and Usage Witk UB-Trees. High
Fatra, Slovakia: [TAT 2002. 2002.

[5] S. Kirkpatrick and E. Stoll, “A very fast shift-register sequence random
number generator,” J o u m l ofCompufotiona1 Physics. vol. 40, pp. 517-
526. 1981.

[6] I. K. Lawder and P. J. H. King, “Using spat-fi lling curves for multi-
dimensional indexing:’ Lecrure Notes in Computer Science, vol. 1832.
2m.

171 M. Mehta, R. Agrawal. and J. Rissanen, “SLIQ: A fast scalable
classifier for data mining,” in Extending Dolahose Technology, 1996.
pp. 18-32. [Online]. Available: citeseer.nj.nec.comehta%sliq.hunl

[8] B. Moon, H. Jagadiah, C. Faloutsos, and 1. H. Saltz, “Analysis of the
clustering properties of the hilben space-fi lling curve,” IEEE Tansac-
lions on Knowledge ond Dalo Engineering, vol. 13, no. 1. JANUARY
2001.

San Mateo.
Califomia: Morgan Kaufmann, 1993.

[IO] 1. C. Shafer, R. Agrawal, and M. Mehla, ‘SPRINT A scalable
parallel classifier for data mining,” in Pmc. 22nd Inl. Con$ Very h lge
Dalaboses, VLDB, T. M. Vijaymman, A. P. Buchmann, C. Mohan,
and N. L. Sarda. Eds. Morgan Kaufmann. 3-6 1996. pp. 544-555.
[Online]. Available: citeseer.nj.nec.corshafe~6spri”t.html

[9] J. R. Quinlan. C4.5: Program for Machine Learning.

2372

