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Abstract 

This paper describes an approach to classification of 
textured grayscale images using a technique based on 
image jiftering and the fractal dimension (FD) and the 
Fuuy ARTMAP neural network (FAMNN). Twelve FD 
features are computed based on twelve filtered versions of 
the original i m g e  using directional Gabor .filters. 
Features are computed in a window and mapped to the 
central pixel of this window. We implemented a variation 
of the testing phase of Fuzzy ARTMAP that exhibited 
superior pe8ormance than the standard Fuzzy ARTMAP 
and the I-nearest neighbor (I-NN) in the presence of 
noise. Training was performed using patterns that were 
extracted from twenty different textures. The performance 
of classijlcation is also studied with respect to a testing 
set. Segmentation results are also presented to illustrate 
that the classification algorithm and its specijied 
parameters are adequate so that more than one texture 
can be identijied in the same image. 

1. Introduction 

Classification is an important component of texture 
analysis. For the purpose of classification, textures must 
be described by parameters, usually denoted as features. 
The features that are selected must be sufficient to 
characterize texture. Usually, a feature set needs to 
contain more than one feature to successfully characterize 
a textural region. Gabor energy ([1]-[3]) and fractal 
dimension (FD) ([4]-[6]) are two features that are tested 
here. Neural networks (NN) are often used for 
classification purposes. Here, the Fuzzy ARTMAP neural 
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network (FAMNN) [7] is examined. Another 
classification method, the l-Nearest Neighbor (I-") 
technique is also examined. 

A common problem in texture analysis is corruption of 
textures by noise. In many cases the assumption that the 
noise is white is a valid one. In this work we implemented 
a variation of FAMNN that exhibits superior performance 
than the standard FAMMN and 1-NN when the textures 
are corrupted by white noise. FAMNN is used because of 
its fast training phase and its interesting geometric 
interpretation. Results with respect to a testing set are 
important since in most cases the textures that will be 
tested are similar but not exactly the same as the ones that 
have been used for training. Noisy versions of the training 
set can also be thought as testing set. The objective here is 
to improve the performance of classification when the 
textures are affected by noise while preserving good 
classification performance for a different testing set. 
Segmentation results are also presented to illustrate that 
the classification algorithm and its specified parameters 
are adequate so that more than one texture can be 
identified in the same image. 

2. Background 

FAMNN has been introduced and discussed 
extensively in [7]. In this section we only present some 
important points of FAMMN that will make clearer the 
effect of our modification. The FAMNN [73 maps the 
input patterns, which in our case are the feature vectors of 
size M, to a label. This operation is performed through the 
creation of weight vectors wj = { w,,, . . ., wjZM} , j = 1, . 
.N, which are called templates. N is the number of 
necessary templates so that all the training input patterns 
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are correctly labeled. Each template is associated to a 
label. Different templates can be associated to the same 
label. The templates w, that are formed during training are 
compressed representations of the training input patterns. 
A template w, has an interesting geometrical 
interpretation. It can be represented by a hyper-box in the 
Ma-dimensional space. This hyper-box includes within its 
boundaries all the training input patterns that were coded 
by the template. A hyper-box can be defined by its lower 
and upper endpoints; the lower endpoint is the hyperbox 
point with the smaller coordinates while the upper 
endpoint is the point with the largest coordinates. 

F A M "  operates in two distinct phases: the training 
phase and the testing phase. For the training phase, pivfn 
a list of training inputflabel pairs, such as {I ,O 1, 
{12,02) ,..., {IMp,@'}, we want to train FAMNN to map 
every input pattern of the training list to its corresponding 
label. In order to achieve this goal, the training set is 
presented repeatedly to the architecture until the desired 
mappings are established. 

For the testing phase, initialize the values of the 
templates to the values that they had at the end of the 
training phase. Then a test pattern will choose to be 
represented by a template that best matches it according 
to the FAMNN rules (for more details see [7]). The 
chosen template will map this input pattern to a distinct 
label. 

modified FAMNN as FAMNN-m. The block diagram of 
the classification technique is shown in Figure 1, 
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Figure 1. Block diagram of classification method 

3.1 Important Observations 

The approach we follow takes into account the fact 
that the FD of an image tends to increase as the variance 
of the noise that it is affected by, increases. This fact has 
been shown experimentally, and one representative 
example is shown in Figure 2 for Gaussian and Uniform 
white noises. In our experiments we do not use noise of 
standard deviation more than 24.5. 

-...-.. Gaussian Noise 3. Classification Method 

The classification method includes two stages. The 
first stage is feature extraction. Feature extraction consists 
of two phases: The first phase is fitering using directional 
symmetric and real-valued Gabor filters with three 
different center frequencies (0, 0.05 and 0.1) and four 
orientations (00, 4 5 O ,  go", 135"). The second phase is 
computation of the FD space for all filtered versions of 
the image. The FD values that are computed over a 
window W centered at the pixel with coordinates (x, y) 
for all the twelve filtered versions of the image, are 
mapped to pixel with coordinates (x, y) of the original 
image. These twelve FD values comprise the feature set. 
In our previous work 181, this feature set has shown good 
performance for texture segmentation. In the second stage 
the neural network is used for training or testing. The 
training phase is exactly the same as the training phase of 
FAMNN. The testing phase is a modification of the 
testing phase of FAMNN that exhibits superior 
performance than the standard F A M "  if the textures are 
affected by noise. Also, we examine the case where an 
image can contain more than one textures. For this reason, 
the testing phase is iteratively applied so that areas of the 
image that are considered to be boundaries between 
different textures are further examined. We denote the 

- Uniiorm Noise 
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Figure 2. FD versus standard deviation of noise 

In Figure 2, even though the FD has changed only 0.05 as 
the standard deviation of noise has increased to 24.5, this 
change is significant since the minimum and maximum 
values of FD for a two dimensional surface are 2 and 3 
respectively. 

The classification approach is based on the assumption 
that smaller FD values tend to increase more than larger 
FD values. This assumption seems reasonable since small 
FD means that the surface of the image is smooth. If this 
image is affected by additive white noise, then it will be 
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rougher. If FD has a large value, then the surface of the 
image is already rough so that additive noise will not 
affect it so much in that respect. 

The FAMNN is used because it is a fast algorithm that 
converges in a small number of iterations. The training 
process is less time consuming than the training process 
of other common neural networks. The testing phase of 
FAMNN is less time consuming than nearest neighbor 
techniques since only a compressed version of the original 
training data information is used. 

3.2 Training 

The networks were trained using 5 120 feature vectors. 
These have been extracted from 20 images of size 256 x 
256. The first step is smoothing of the features by 
averaging their values over a window so that their 
robustness to describe texture is increased. The smoothing 
window has size 33 x 33. The feature vector that 
corresponds to pixel with coordinates x, y is the smoothed 
feature vector over the window which is centered at x, y. 

The second step is to select the feature vector that is 
mapped to the pixel that is located at the center of a 
window of size 16 x 16. If all non-overlapping windows 
are considered, then we have a total of 256 feature vectors 
selected from each image. This sampling of the set of the 
feature vectors is necessary so that the size of the training 
set is decreased without loosing important information 
since the values of the features that correspond to pixels 
that are close, are similar especially after smoothing of the 
features has taken place. 

3.3 Testing 

We have implemented a variation of the testing phase 
of FAMNN, referred to as FAMNN-m. The template 
chosen in FAMNN to represent a test input pattern is the 
one that maximizes the bottom-up input function and 
satisfies the vigilance criterion (more details about the 
bottom-up input function and the vigilance criterion can 
be found in [7]). The bottom-up input for every template 
in FAMNN-m is modified so that preference is given to 
templates whose corresponding hyper-boxes have upper 
endpoints with smaller coordinates, since the input 
patterns that were encoded by them have smaller elements 
so they are expected to increase more in the presence of 
noise, tending to be mapped to hyper-boxes with larger 
coordinates. 

The modification of the bottom-up input function in 
FAMNN-m is expressed as multiplication of the bottom- 
up input function of FAMNN by 

M 
M +aF 

G ( F )  =- 

where M is equal to the number of elements of the feature 
vectors. Also, F is the summation of the coordinates of 
the upper corner of the hyper-box that is defined by the 
template, and it is equal to: 

2M 

and c1 is a constant that has the largest possible value, so 
that the correct classification of the training set will not be 
less than 99.5%. This value was experimentally found to 
be equal to 0.3. The function G(F) is a non-linear function 
of F and does not change very rapidly if F is large. This is 
desired since the FD for the pure noise surface might be 
large but not larger than a certain value. 

It has been shown [8] that a method that uses variable 
window width for smoothing and feature extraction, gives 
very good segmentation results since there is more 
accurate identification of textures at the inner regions, 
while the boundaries between textures are not blurred 
significantly. A similar approach is also used here for all 
classification methods, since we also consider that an 
image may contain more than one textures. The steps of 
the algorithm are the following: 

Step 1. Smoothing of the features by averaging their 
values in a square window of size 33 x 33 and map the 
result to its central pixel. 

Step 2. Apply the testing phase of the classification 
system for an initial estimation of classes. 

Step 3. A sliding window of size 33 x 33 merges small 
regions to large regions. This window classifies the 
feature vector that is mapped to its central pixel to 
class j, if the number of feature vectors that are 
associated to class j, is larger than the number of 
features that are associated to any other class. 

Step 4. Classification remains unchanged for the feature 
vectors that correspond to pixels that are further away 
from the boundaries for a distance D that is equal to 
half the width of the smoothing window. The reason is 
that the smoothing window will not blur the 
boundaries for more than D on one and D on the other 
side. The rest of the pixels are considered as an 
ambiguous class and they will be further examined. 

Step 5. Apply the procedure to the ambiguous class 
iteratively, by reducing the size of the smoothing and 
merging windows, so that the new ambiguous class is 
estimated. 

For the experiments four iterations were used. The 
smoothing and merging window sizes were 33 x 33, 25 x 
25, 17 x 17 and 9 x 9. 
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4. Experimental Results 

94.1 

91.5 

93.3 

98.3 

FAMNN-m is compared with the standard F A M "  
with total number of templates equal to 357 and 746. 
FAMNN-m is also compared to the 1-NN algorithm. The 
described iterative classification is applied in all 
classification methods. All four methods are compared 
with respect to classification of a testing set and the 
classification of the training set when it is affected by 
uniform white noise. F A M "  and 1-NN are compared 
with respect to the segmentation of images that consist of 
textures selected from the training set. The set that is 
referred as training set is the twenty textures &om which 
the feature vectors that were used to train the networks are 
created. 

The testing set consists of twenty textures. Each 
texture of the testing set is a different realization of the 
corresponding texture of the training set. The percentage 
of correct classification (PCC) for the testing set is given 
in Table 1. 

. 

,R) ~~~~~2 
tern lates te lates te h e s  

96.2 95.1 96.2 94.7 
PCC 

Table 1. Percentage of correct classification 
for all methods, for noisy free textures that 
are a diffeaent realization of training textures 

85.2 67.4 

77.9 52.5 

78.3 57.9 

89.1 72.1 

The four algorithms are compared with respect to the 
classification performance in the case where the textures 
are affected by additive uniform noise. The results are 
presented in Table 2 and in Figure 4. In the absence of 
hoke and when the standard deviation of the noise is 7.2 
the PCC is similar for all methods and it is close to 100%. 
The PCC is larger for FAM"-m if the standard 
deviation is 13, 18.8 and 24.5. The PCC of FAMNN-m is 
larger than the PCC of the 1-NN and the difference is 
almost constant and close to 4.5% for these cases. The 
difference between the PCC FAMNN-m and the other 
two methods is even larger and it increases as the standard 
deviation of the noise increases. 

746 
templates 

I noise I st.dev 

99.6 99.7 

100.0 100.0 
FAMNN 

tern lates 
FAMNN 

100.0 
te lates 2k-l-t- 

st.dev sfdev stdev 

Table 2. Percentage of correct classification of 
the 20 textures that were used for training 
when they are affected by white noise 

In this case all algorithms perform well with PCC 
close to 95%. The difference between the best and the 
worst PCC is 1.5 %. This difference is not significant 
especially because the selection of the testing set was 
based on visual estimation of similarity with the training 
set. In Figure 3 three of the textures of the training set and 
the corresponding ones from the testing set are presented. \\i--Fm 746 nodes 

\ 

Figure 3. Textures used for training 
set (above) and testing set (below) 

-. 
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standard W i  of ntise 

Figure 4. Percentage of correct classification of 
the 20 textures that were used for training 
when they are affected by white noise 

The segmentation performance was also tested for the 
1-NN and for the proposed method. One result is 
presented in Figure 5. The purpose of this experiment is 
to show that the smoothing window and the window that 
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is used for feature extraction are sufficiently large, so that 
more than one texture in the same image can be 
identified. It has been shown experimentally that iterative 
algorithms that use different sizes of smoothing window 
can help to avoid blurring at the regions close to the 
boundaries between textures. Here it is shown that there is 
about 2-396 misclassification at the boundaries because of 
the existence of more than one different texture in the 
same image. 

adapt so that the classification results are further 
improved. 

Also, the segmentation results show that the different 
parameters such as the size of the smoothing window and 
the size of the window where the feature vectors are 
computed are sufficient with the help of the iterative 
algorithm, so that different textures can be identified in 
the same image. 

6. References 

Figure 5. Segmentation of an image consisting 
of 4 textures from the training Set. (a) Original 
image, (b) Segmented image using 1 - NN, 
(c) Segmented image using the FAMNN - m 

Only the effect of uniform white noise was tested since 
FD values are almost identical when the images are 
affected by uniform or Gaussian white noise as it is 
shown in Figure 3. This result is due to the fact since FD 
is related to frequency as it is shown in Figure 2. White 
noise, independently of its exact form, has a flat power 
spectrum. Even though FD does not depend only on 
frequency it is very much related to it, especially when we 
are dealing with completely random textures. 

5. Conclusions 

In this paper a FAMNN variation is proposed. A 
modification of the input that defines the cluster, in which 
an input feature vector belongs, improves the PCC in the 
case where the textures are affected by noise. This 
modification is feature dependent since it takes advantage 
of the characteristic that the FD feature values increase in 
the presence of noise. The PCC of FAMNN-m is larger 
than the original FAMNN and the 1-NN in a noisy 
environment. In the absence of noise the performance of 
FAMNN-m is similar to the performance of the standard 
FAMNN. If the variance of the noise that contaminates 
the textures could be estimated, then the FAMNN could 
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