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L Introduction. Today's wireless systems are required to satisfy an increasing demand for
coverage, capacity, and service quality. Advanced signal processing techniques arc combined
with antenna arrays concépts to produce some promising innovative solutions. Existing wireless
systems cannot effectively address problems such as cochannel interference (CCI). Cochannel
interference is the most serious limiting capacity factor in any mobile communication system.
As the number of users increase, within a certain region, the likelihood of interfering with one
another increases. In order to solve the CCI problem, first a superresolution Direction Of
Arrival (DOA) algorithm is utilized to locate the desired as well as the cochanne! mobile
users. Next, an adaptive amay antenna can be used to steer its radiation beam towards the
mobiles of interest {1] and nulls toward the other sources of interference in the same frequency
slot.

Currently, several algorithms can be used to perform the direction finding or angle of arrival
of signals from mobile users. One drawback of these algorithms is their difficulty of their
implementation in real-time because of their intensive computational complexity. Neural
networks, on the other hand, due to their high-speed computational capability, can yield results
in realtime. Moreover, conventional beamformers require highly calibrated antennas with
identical element properties. Performance degradation often occurs due to the fact that these
algorithms poorly adapt to element failure or other sources of errors. Neural network-based
array antennas do not suffer from this shortcoming.

II. Neural-network based Direction of Arrival Estimation. Both problems, DOA and
null steering (beam steering), are approached as a mapping which can be modeled using a
suitable artificial neural network trained with input output pairs. The network is then capable of
estimating or predicting outputs not included in the learning phase through generalization. Here,
the neural network of choice is the radial basts function neural network (RBFNN) [2], shown in
Figure 1 with its input preprocessing and output post —processing sections. For the DOA
problem, the array performs the mapping G: R* - C¥ from the space of DOA,

{0= [91,9,,---,9K] } to the-space of sensor output {s = [s,,s,,---sM] } namely:

_ i K2 sin ox,)
Sm = 238 o
k=1

0-7803-5639-X/99/$10.00 ©1999 IEEE.
2584



Y Y Y ¥

SAMPLE DATA PREPROCESSING

Figure 1. Neural network-based adaptive array processing

That is for each incident signal (Sm) an angle (6m) is associated with it. K is the number of
signals, M is the number of elements of a linear array, a, represents the complex amplitude of
the k% signal, o, the initial phase and @, isthe center frequency. A neural network is used to
perform the inverse mapping F: C¥ —» R¥ . The network is trained by N that associate the
output vectors s (1), 8(2), ..., s (N) with the corresponding DOA vectors 6(1), 8(2), ..., 6(N).
Input vectors s are mapped through the hidden layer of the neural network, then each output
node computes a weighted sum of the hidden layer outputs.

The estimation phase consists of transforming the sensor output vector into an input vector and
producing the DOA estimate. We can, thus, rewrite the spatial correlation matrix R as:

R Hm-m")mgdsin6,
Rop =21 °©  +3R,y @
k=t

where pc  denotes the power of the kth signal. The last term of the right hand side of this
equation contains all the cross-correlated terms between signals. Since for m=m’, Ry does not
K

carty any information on the DOA (R, = Y P, ), we can rearrange the rest of the elements
=
into a new input vector, b, which can be defined as:

b=[Rﬂ"":RuzsRm'":Ruz’km'"sRM(M-n]T 3)
The dimension of the hidden layer is equal to the mumber of the Gaussian functions L that can
be chosen to be equal to N if perfect recall is desired. Obviously, the number of output node is

equal to the number of signals K. The input vector is then normalized by its norm in the
training, testing and estimation phases.

HI. Adaptive beamforming. Consider a linear array eomposéd of M elements. Let K
(K<M) be the number of narrowband plane waves, centered at frequency @, impinging on the
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ammay from directions {9, 0, -+ ©,}. The clements’ output of the array have the form of
the M-dimensional vector:

X=[x, x, - )’ @
and the weights of the element outputs can be represented in the M-dimensional vector:
W=[w, w, - w,] A o)

These weights are also the excitations required to feed the array elements in order to perform
the appropriate beam steering. The array output can be written as:

M
¥ =2 W, x, ()= WiX(®) ©)
i=1 .
It can be shown that the optimum weight vector is given by the following equation [3}:

W, =RS,[8,"RS, |'r )

Since the above equation is not practical for real time implementation, neural networks can be
used to determine the appropriate weights for the desired beam steering and nulling {4].

IV. Results. Figure 2 shows a linear armay of 8 elements (d=A/2) tracking 4 sources of 2°
angular separation in the sector [-30° -11°]. The input layer consisted of 72 nodes and the
sources were assumed to be of equal power, 5 dB higher than the noise power. The estimated
and the theoretical angles of arrivals were very close.
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Figure 2. Response of an 8 element linear array (d=A/2) tracking 4 sources of 2° angular
separation
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The example in Figure 3 demonstrates the RBFNN implementation of an adaptive array for
beamforming and mull steering. A 6 element linear array, of M2 spacing between the elemensé
is used to track 3 signals, two of which are desired and the third is a jammer. The signals are 20

apart in space with equal SNR of 20 dB above the noise level. The neural network has 42 input
nodes, 42 hidden nodes and 12 output nodes. The adapted pattern obtained from the network is
shown (dotted curve) and compared to the optimum pattern obtained from the Wiener solution
(solid curve) as the array tracks the mobile signals at different spatial locations.
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Figure 3 Pattern for an adaptive array antenna tracki ng two desired signals and a jammer

V. Conclusion.. One or more neural networks can be used tracking multiple users while
simultaneously nulling interference caused by cochannel users. Both the angles, for the angles

of arrival problem, and the weights, for the appropriate null or beam steering, were computed
using RBFNNs
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