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L Introduction. Today's wireless systems are requred to satisfy an increasing demand for 
coverage, capacity, and service quality. Advanced signal processing techniques are combined 
with antenna atrays collcepts to produce some promising innovative solutions. Existing wireless 
systems cannot effectively address problems such as cochannel interference (CCr). Cochannel 
interference is the most serious limiting capacity fktor in any mobile communication system. 
As the number of users increase, within a certain region, the likelihood of lnterfenng witb one 
another increases. In order to solve the CCI problem, first a superresohaion Direction Of 
Arrival @OA) algorithm is utilized to locate the desired as well as the whannel mobile 
users. Next, an adaptive array antenna can be used to steer its radiation beam towad the 
mobilesofinterest[1]audnullstowardthe othersourcesofinterfereace inthesamefirequency 
slot. 

Currently, several algorithms can be used to w o r m  the direction admg or angle of arrival 
of signals from mobile users. One drawback of these algorithms is their difficulty of their 
implementation in d- t ime  because oftheir intensive computational complexity. Neural 
networks, on the other hand, due to their high-speed computational capability, can yield results 
in real-time. Moreover, conventional beamformers require highly calibrated autennas with 
identical element pmpedes. Performance degradation often occurs due to the fact that these 
algorithms poorly adapt to element failure or other sources of erron. Neural network-based 
anay antennas do not suffer from this shortcoming. 

II Neural-network based Direction of Arrival Estimation. Both problems, DOA and 
null steer& @cam Steering), are approached as a mapping which can be modeled using a 
suitable artificial neutal network trained with input output pairs. The network is then capable of 
estimating or predicting outputs not included in the learning phase through generalization. Here, 
the neural network of choice is the radial basis function neural netwok (RBF") [2], shown in 
Figure 1 with its input preprocessing and output post -processing sections. For the DOA 
problem, the anay performs the mapping G R' +CM fium the space of DO& 
{e= [e, ,e2 ,- . . ,e,] 1 to thespace of sensor output IS = [ S, , s,, . . -4 1 namely: 

k=l 
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Figure 1. Neural nehvork4ased adaptive array processing 

That is for each incident signal (Sm) an angle (em) is associated with it. K is the number of 
signals, U is the number of elements of a linear array, &represents the complex amplitude of 
the k%@, %the initial phase and (DO isthe center frequency. A neural network is used to 
perfom the inverse mapping F: CM 3 RK. The netsvorkis traiued by N that associate the 

Input vectors s are mapped through the hidden layer of the neural network, then each output 
node computa a weghted sum of the hidden layer outputs. 

The cstimation phase consists of tmn&mmg ' h sensor output vector into an input vedor and 
producing the DOA Wtimate. We can, thus, rewrite the spatial wrrekion matrix R as: 

output s (11, ~(2). ..., s (N) with the m m d h g  DOA vectors e(i), q2), .. ., e@). 

wherep deaotesthepowerofthe~sSignal.Thelasttermofthen~handsideofthis 
@OR Coatains all the cross- teams between signals. Since for m', L does not 

The dimension ofthe hidden layer is equal to the number ofthe Gaussian f~~~ctions L that can 
be chosen to be equal to N if perfect recall is desired. Obviously, the number of output node is 
equal to the number of signals K. The input vector is ben normalized by its norm in the 
mining,testiagandeslimationphases. 

ID. Adaptive beamforming. Consider a hear array composed of M elements. Let K 
( K O  be the number of narrow%and plane waves, centered at frequency 00 impinging on the 
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array firom directions (e, e, 
the Mdimensianai vector 

e, ).  he elements' output ofthe anay have the form of 

x=[x, x* e.. XJ (4) 

w=[w, w2 . * a  WJ (5)  

y(t) = CW,'X,(t) = W"X(t) 

and the weights of the element outputs can be represented in the Mdimensiod vector: 

'Ihese weights are also the excitations required to feed the array elements in order to perform 
the appropriate beam steering. The array output can be wittea as: 

M 
(6) 

Z=l 

It can be shown that the optimum weight vector is given by the following equation 131: 

wqt = R-IS, [SdH~-ls, 1-1. (7) 

Since the above equation is not practical for real time implementation, neural networks can be 
used to determine the appropriate weights for the desired beam steering and nulling [4]. 

IV. Results. Figure 2 shows a linear anay of 8 elements (d=U2) tracking 4 sources of 2' 
angular Separation in the sector [-30° -117. The input layer consisted of 72 nodes and the 
sources were assumed to be of equal power, 5 dB higher than the noise power. The estimated 
and the theoretical augles of arrivals were very dose. 

10 20 30 40 50 60 70 
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Figure 2. Response of an 8 element linear array (d=W) tricking 4 sources of2' angular 
separatim 
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The example io Figure 3 demonstrates tis RBF” implementaton of an adaptive anay for 
and null steering. A 6 element hear array, of Mz spacing between the elements, 

3 signals, two of which are desired and the third is a jammer. The signals are 20’ 
apartio space with equal SNRof20 dB abovethe noise level. The neural network has 42 input 
nodes, 42 hidden nodes and 12 output nodes. The adapted pattern obtained from the network is 
shown (dotted curve) and compared to the optimum pattern obtained from the Wiener solution 
(solid w e )  as the array tracks the mobile signals at Werent spabal locations. 
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Figure 3 Pattern for ao adaptive anay antenaatracki og two desired Signals and a jammer 

V. Condusion.. One 01 more neural networks cao be used trackog multiple users while 
simultaneously nulling inter€erence caused by cochannel users. Both the aagles, for the angles 
of anid pmbIem, and the weights, for the appropriate null or beam steering, were computed 
UsiOgRBFNNs 
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