
Boosted ARTMAP 

Stephen J. Verzi t , Gregory L. Heilemanj, Michael Georgiopoulos*, Michael J. Healy”” 

t Department of Computer Science 
verzi@cs.unm.edu * Department of Electrical and Computer Engineering 

University of New Mexico, Albuquerque, NM 87131 
heileman9eece.unm.edu 

* Department of Electrical and Computer Engineering 
University of Central Florida, Orlando, FL 32816 

mng9ece.engr.ucf.edu 

** The Boeing Company 
P.O. Box 3707 MS 7L-66, Seattle, WA 98124 

mjhealy@boeing.com 

Abstract 
We present a modification to the Fuzzy ARTMAP 

neural network architecture for conducting boosted learn- 
ing in a probabilistic setting. We call this new architecture 
boosted ARTMAP (BARTMAP). Performance compari- 
son with Fuzzy ARTMAP, PROBART and ART-EMAP 
on some simple two-class problems is discussed. Experi- 
mental results indicate that BARTMAP gives better gen- 
eralization results on some problems involving classifica- 
tion overlap. In addition BARTMAP requires fewer re- 
sources, i.e., network nodes, to achieve performance levels 
comparable to those in fizzy ARTMAP. 

1. Introduction 
An important performance measure of a machine 

learning algorithm is its generalization capability. Gen- 
eralization is characterized by the number of unseen ex- 
amples correctly predicted by a learning algorithm given 
sample training data from which to learn. One way of in- 
creasing a learning algorithm’s generalization ability is to 
reduce its error on training data while providing it train- 
ing data highly representative of the unknown target func- 
tion. Boosting is a technique designed to improve a learn- 
ing algorithm’s performance and generalization across the 
distribution of examples, especially in areas where the par- 
ticular algorithm is having difficulty [ 11. 

Fuzzy ARTMAP is a neural network architecture for 
conducting supervised learning in a multidimensional set- 
ting [2, 31. When F’uzzy ARTMAP is used on a learning 
problem, it is trained to the point that it correctly clas- 
sifies all training data. This feature causes ARTMAP to 
“overfit” some data sets, especially those with overlap. To 

avoid the problem of “overfitting”, we must allow for er- 
ror in the training process. One solution for allowing error 
during the training is to use a statistical approach. 

A number of other architectures have been proposed 
that introduce a stochastic element to Fuzzy ArtMap 
training. For example, PROBART is a specialization 
of Fuzzy ARTMAP with probabilistic learning capabili- 
ties useful in regression learning [4], and ART-EMAP is 
an extension of ARTMAP that includes evidence accu- 
mulation [5]. Modified FAM is another extension of the 
Fuzzy ARTMAP category formation and selection pro- 
cesses aimed at minimizing misclassification rates [6] .  

In this paper, we will present a modification to Fuzzy 
ARTMAP which also employs statistical techniques. The 
design of our architecture, called BARTMAP, was mo- 
tivated by the theory of boosting. Kearns and Man- 
sour demonstrate the boosting capabilities of CART and 
C4.5 [7]. In their paper, computational complexity bounds 
as well as generalization capabilities for decision tree al- 
gorithms are detailed. The promise of theoretical bounds 
on computational complexity as well as generalization ca- 
pabilities for ART-based architectures motivates the re- 
search described in this paper. 

In section 2, we describe Fuzzy ART and Fuzzy 
ARTMAP. In section 3, we describe BARTMAP. Empiri- 
cal results are presented in section 4, and conclusions are 
discussed in section 5 .  

2. Fuzzy ART and Fuzzy ARTMAP 
The Fuzzy ART neural network architecture was de- 

signed to cluster data into categories. Fuzzy ART is struc- 
tured into three layers of interacting neural nodes, labeled 
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Figure 1: The Fuzzy ARTMAP Architecture. 

Fo, Fl and Fz, where the output of FQ is connected to 
Fl ,  and F1 and F2 are mutually connected. At Fo, in- 
put is received from the environment in the form of an 
M-length vector. At this point, the input is complement 
coded producing a 2M-length vector, I, which is passed 
on to F1. 

The F1 and F2 layers interact to choose an Fz template 
that best matches the complement coded input vector ac- 
cording to: 

This choice is confirmed if the vigilance criterion is not 
violated, i.e., 

The parameter a is called the choice parameter and is 
usually a positive but small quantity, and p is a user in- 
put between 0 and 1 where a value closer to 1 indicates 
desired tighter coupling within clustered patterns and a 
value closer to 0 allows less coupling within clustered pat- 
terns. 

The process of complement coding a pattern vector, 
a,  produces a new vector A = (a ,  ac) ,  where uc is the com- 
plement of a. There are two stages in ART cluster forma- 
tion. A winner-take-all strategy is employed in choosing 
the best matching cluster template in the F2 layer given 
a complement coded input vector according to (1). Next, 
a vigilance check is performed to  ensure that learning the 
input pattern in the chosen cluster will not degrade the 
template below the vigilance as in (2). Initially all tem- 
plate weights are set to 1, and learning proceeds as follows 

where p is the learning parameter. In this paper we will 
set /3 = 1 which is a special case called fast learning. 

An important feature of ART is that the F2 layer is al- 
lowed to grow as needed for a particular problem. A pool 
of templates is maintained, where a committed template 
has, at some point, learned at least one input pattern. A 
committed template is always preferred in the choice stage 
of clustering, but if a particular input pattern fails the 
vigilance test for all committed templates, then a new un- 
committed template is chosen to learn this pattern. Once 
a template learns a pattern it becomes committed. 

The Fuzzy ARTMAP architecture consists of two 
fizzy ART modules connected through a MAP field. The 
ARTA module is given pattern data and the ARTB mod- 
ule is given label data for a given supervised learning task. 
The MAP field links pattern clusters with associated la- 
bel clusters. Supervised learning is performed in Fuzzy 
ARTMAP by ensuring that each ARTA template asso- 
ciates with only one ARTB template. Thus, a many-to- 
one mapping from patterns to labels will be formed. 

During supervised learning with Fuzzy ARTMAP, 
each (pattern, label) pair, presented to the network, rep- 
resents a correctly labeled pattern. If a pattern presented 
to the ARTA module chooses a template associated with 
a different label than presented to  the ARTB module, 
ARTMAP will perform a lateral reset. The lateral reset 
forces the ARTA module to choose a different template, 
by raising the vigilance. The vigilance value will remain 
high during the presentation of this data pair. Initially 
uncommitted templates in both ARTA and ARTB have 
no association in the MAP field. 

In this paper, we are interested in concept learning, 
specifically 0-1 concept learning. Here, a 0 label indicates 
that the pattern is a negative example of the concept, and 
a 1 label means that the pattern is a positive example of 
the concept. Thus, for the purposes of this paper, the 
ARTB module will contain only two templates, one for 0 
and one for 1. 

3. Boosted ARTMAP (BARTMAP) 
Similar to Fuzzy ARTMAP, BARTMAP is composed 

of two BART modules, defined below, connected by a 
MAP field. The BART module is an extension of the 
Fuzzy ART module, and BARTMAP is an extension of 
PROBART which is a modification of Fuzzy ARTMAP. 

The BART module is exactly the same as an Fuzzy 
ART module except that instead of having a single vigi- 
lance parameter, each F2 node has its own vigilance. Since 
each cluster template has its own vigilance parameter, the 

2 2 

pi, instead of a single p for the entire module 
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Figure 2: The BART Module. 

as in ARTMAP. 
The change to Fuzzy ART was motivated by a desire 

to allow the categories formed during learning to define 
their own sizes. In Fuzzy ARTMAP, the vigilance param- 
eter is the major factor controlling the sizes of clusters 
formed. 

The clustering metric for Fuzzy ART actually includes 
two separate competing functions. The choice portion of 
the metric favors adding a new instance to a more tightly 
coupled category, and within the same degree of coupling, 
it favors those categories with highest magnitude. The 
vigilance portion of the metric tests to make sure that 
inclusion of the new instance into the chosen category does 
not violate the spatial extent constraints. In other words, 
the new instance is not allowed to degrade or lower the 
magnitude of the category template below the vigilance. 

The modification to fizzy ART proposed in 
BARTMAP allows each cluster to develop according to 
its own vigilance instead of a common vigilance as in 
Fuzzy ARTMAP. The idea here is to allow each category 
to "cover" its portion of the data according to the under- 
lying distribution. 

BARTMAP is designed to conduct supervised con- 
cept learning in a probabilistic setting. The MAP field 
in fizzy ARTMAP is used to ensure that each tem- 
plate on the A side is associated with only one template 
on the B side, a many-to-one mapping. In BARTMAP, 
the MAP field is used to track the frequency of asso- 
ciations between BARTA and BARTB templates, as is 
done in PROBART. In PROBART, however, there is no 
way of controlling which ARTA templates are linked with 
particular ARTB templates. During supervised learn- 
ing in BARTMAP, the vigilance parameter for a specific 
BARTA template is increased in order to decrease the 
number of different associations between this template and 
BART templates. 

The map field weight vector is modified during learn- 
ing to directly count the number of associations between 
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Figure 3: The BARTMAP Architecture. 

BARTA and BARTB templates. Initially all map field 
weights are set to 0, and during learning 

(3) 
W J K  AB = wJK AB i- 1 

where J indexes the template from the BARTA module 
chosen by the pattern, and K indexes the template from 
the BARTB module chosen by the label. 

In BARTMAP, each BARTA template can be associ- 
ated with many, even all, BARTB templates. The label 
predicted for a specific BARTA template is the BARTB 
template with the largest association. Given a randomly 
generated example, (z ,~) ,  the error of BARTMAP, ET 
will be defined as the product of the probability that x 
chooses BARTA template J and the probability that y is 
not the predicted label for BARTA template J ,  summed 
over all BARTA templates. The error is estimated using 
the frequency information obtained in wAB and the train- 
ing sample size, s. Thus, given a trained BARTMAP 
architecture, the error for a random example is calculated 
as 

IWgB I PI- {x chooses uf} = - S '  (4) 

Pr {y not predicted by uf} = 1 - 
I 

1 ( 6 )  S 
where k = l...NB and u is a BART template. 

The error of a particular BARTA template is (4) times 
(5). The research in this paper deals with concept learn- 
ing. Thus, the BARTB will have only two templates, one 
for 0 and one for 1. We initialize BARTMAP by allowing 
all input patterns to cluster into one  BART^ template. 
Note that because we use the most likely BARTB tem- 
plate to label this cluster, the error will be no greater 
than 50% after one pass through the training data. Also, 
BARTMAP is operated in batch, or off-line, mode. 

&T = 



BARTMAP then proceeds to raise the vigilance of any 
BARTA cluster template which contributes more than &d 
to  the total error, where &d denotes the desired training 
error. If no BARTA template contributes more than &d 

to the total error, and yet the total error is still greater 
than E $ ,  then the vigilance is raised for all BARTA cluster 
templates with maximum error contribution. 

In this way BARTMAP proceeds from a very error 
prone single cluster to many clusters with small overall 
total error. The idea in boosting is to improve overall 
performance through multiple passes of the training data, 
and to focus in on those training examples which are in 
error. BARTMAP focuses on those templates where error 
is highest and splits them into smaller templates with less 
error, improving overall performance. 

In BARTMAP, we want to allow some error into the 
labeled category formation during training. After seeing 
more training data this error will be reduced by boosting. 
The extra training data may just be repeated instances of 
data seen previously, and in this case BARTMAP’S per- 
formance will increase on the training data. If the training 
data is properly representative of the underlying data dis- 
tribution, then the completely boosted network will per- 
form well. 

BARTMAP will start in an “unlearned” state, as 
with ARTMAP. After one phase or epoch of learning, 
BARTMAP will have non-zero error, but it will not be 
greater than 50%. During each succeeding phase of learn- 
ing, BARTMAP will attempt to reduce the error of the 
category which has highest error. A category’s error will 
be reduced by increasing its vigilance parameter value. 
Initially all categories will be started with low vigilance 
values, meaning that each category can encompass data 
with a large spatial extent. As training proceeds, vigilance 
values for those categories with high error will be raised to 
reduce their extents designed to lower overall error. No- 
tice, however, that a category that only contains a single 
data instance will necessarily have 0 error, but a category 
that has as few as two data instances can have as much 
as 50% error. 

4. Empirical Results 
For our empirical results, we compare the generaliza- 

tion performance of BARTMAP with ARTMAP as well as 
PROBART and ART-EMAP. First, m h  of the four learn- 
ing networks were trained on data generated from three 
different 2D Gaussian distributions. These distributions 
consisted of two well-separated gaussians, two overlapping 
gaussians with the same means and different variances, 
and two overlapping gaussians with different means and 
the same variances. Next ARTMAP and BARTMAP are 
trained on steadily increasing size data sets and tested 
on many newly generated examples to estimate each net- 
work’s generalization error percentage. 

One of the 2D gaussians was labeled 0 and the other 
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1, to allow for concept learning. All data generated ac- 
cording to the distributions was normalized to fit within 
the unit square so that the f izzy ART architecture can 
be used. 

In our experiment, each network type was trained on 
two sets of paired training and testing data samples. The 
first set contained 100 pairs, each consisting of 100 training 
samples paired with 1000 test samples drawn according to 
one of the three distributions. The second set contained 
10 pairs of 1000 training samples paired with 10000 test 
samples again drawn according to one of the three distri- 
butions. The second set enabled us to see how each of the 
learning techniques scaled to larger sample sizes. 

An ARTA vigilance of 0.9 and ARTB vigilance of 1.0 
was used for ARTMAP, PROBART and ART-EMAP. A 
MAP field vigilance of 1.0 was also used for ARTMAP. 
A decision criterion (DC) value of 2.0 was used for ART- 
EMAP and p = 10 as well as q = 3 for contrast enhance- 
ment. 

BARTMAP was run using 0.1 as a starting value for 
BARTA vigilance values, and 0.1 was also used as a step 
size for increasing these values. A vigilance of 1.0 was used 
in BARTMAP for ARTB. BARTMAP was executed to 
a desired error tolerance of 0.1 for distribution 1, 0.2 for 
distribution 2, and 0.25 for distribution 3. 

Well-Separated 2D Gaussians Distribution 1 was 
designed to ensure that ARTMAP, PROBART, ART- 
EMAP and BARTMAP were executing properly on well 
separated concept classes. One gaussian had mean (5,15) 
and the other (15,5) both with a variance of (0.2,0.2). 

All four learning methods performed without error on 
the test data after learning the training data. BARTMAP 
did make a very small number of errors on test data in 
both the f i s t  and second sets. The errors did go down 
from the first set compared with the second set, however, 
indicating fewer outliers. 

Overlapping Gaussians-Case 1 Our second exper- 
iment is a difficult problem where one 2D gaussian sits on 
top of the other one. Both 2D gaussians had mean (10, lo), 
and one had a variance of (0.5,0.5) while the other had a 
variance of (2.0,2.0). 

This problem does not have an errorless solution, and 
in fact the best separator, the quadratic where the two 
gaussians intersect, has a non-zero Bayes error. 

Table 1: Distribution 2 - Set 1 

PROBART 
ART-EMAP 4.1 
BARTMAP 17.5 



In table 1, we see the learning performance of 
ARTMAP, PROBART, ART-EMAP and BARTMAP on 
the problem at hand averaged over 100 sets each consisting 
of 100 training samples and 1000 test samples. The sec- 
ond column shows the average number of passes through 
the training data, i.e., epochs, needed to reach a solution. 
Notice that PROBART executes in 1 epoch, since subse- 
quent passes through the same data do not alter the ar- 
chitecture. The third column gives the average number of 
F2 templates necessary in the ARTA or BARTA module. 
The fourth column lists the average number of no predic- 
tions reached on test data. A no prediction is output when 
an input pattern does not match, within vigilance, any of 
the F2 templates. Thus, a no prediction is indicative of 
portions of the input space not covered by any Fz tem- 
plate. Finally, the last column lists the average number of 
errors out of 1000 on the test data. 

BARTMAP requires a considerable number of passes 
through the data, but its solution has the fewest number 
of F2 templates while still maintaining nearly the same 
error percentage as ARTMAP. 

Table 2: Distribution 2 - Set 2 
technique epochs templates NP errors 
ARTMAP 135.3 80.3 1890.5 
PROBART 
ART-EM AP 120.6 5250.0 1064.2 
BARTMAP 22.9 42.5 1794.0 

In table 2, we see how the four learning techniques 
scale up to larger training/test sizes. Both ARTMAP 
and BARTMAP reduce the test set error percentage, 
and indeed both are below 20% error, but ARTMAP re- 
quires many more F2 templates than BARTMAP, while 
BARTMAP requires more passes through the data. 

Overlapping Gaussians-Case 2 The last pair of 
distributions considered again has no perfect, errorless so- 
lution. It consists of two overlapping 2D gaussians with 
different means. Thus, the two distributions overlap side- 
by-side, and a linear boundary is all that is necessary 
to properly separate them. One 2D gaussian had mean 
(8,12), and the other one had mean (12,8), while both 
had a variance of 2.0. 

Table 3: Distribution 3 - Set 1 

PROBART 

BARTMAP 
ART-EMAP 

As table 3 shows, all four learning architectures per- 
form to nearly the same degree of accuracy. However, 

ARTMAP, PROBART and ART-EMAP have a higher de- 
gree of no predictions than BARTMAP, and BARTMAP 
requires only a small number of F2 templates on average. 

Table 4: Distribution 3 - Set 2 

ARTMAP 
PROBART 153.8 

BARTMAP 43.2 
ART-EMAP 

errors 
3406.9 
5392.0 

103.3 
2670.1 

In the second set of testing, table 4, we can see that 
for an order of magnitude more training data ARTMAP 
requires nearly an order of magnitude more FZ templates 
than BARTMAP. PROBART has many more test set er- 
rors, an indication that it was not designed for classifica- 
tion. ART-EMAP has many more no predictions, indicat- 
ing less test space is covered by its FZ templates. 

We continued to compare the generalization perfor- 
mance of BARTMAP with with F'uzzy ARTMAP by test- 
ing each of these neural network models as we increase 
the number of training samples. We estimate the gener- 
alization by taking a trained network and feeding it ran- 
domly generated examples until the error percentage re- 
mains within a fixed bound, Le., 0.1%. Fuzzy ARTMAP 
and BARTMAP were tested on networks trained with 50, 
100, 1000 and 10000 training samples for both distribu- 
tion 2 and distribution 3. The numbers obtained were 
averaged over 10 networks trained using sets of each of 
the four sizes mentioned. 

We expected to see a convergence of error percentage 
for both Fuzzy ARTMAP and BARTMAP towards the 
Bayes limit as the number of training samples increased. 
The actual Bayes error values have not been calculated at 
this time, but we do know that they are below the esti- 
mated values seen in our research. Note that the error per- 
centage value, for both Fuzzy ARTMAP and BARTMAP, 
includes both wrongly classified instances as well as those 
instances that cannot be predicted. 

Overlapping Gaussians-Case 1 Each trained net- 
work was tested on at least 30,000 randomly generated 
test samples. As the reader can see, ARTMAP has a bet- 
ter error percentage for training set sizes of 50 and 100, 
but BARTMAP improves to just over 10% better than 
Fuzzy ARTMAP at 10000 training samples. 

Table 5: ARTMAP on Distribution 

1000 7.6 
10000 9.5 
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Table 6: BARTMAP on Distribution 

Overlapping Gaussians-Case 2 Each trained net- 
work was tested on at least 35,000 randomly generated 
test samples. With distribution 3, BARTMAP starts out 
slightly better than Fuzzy ARTMAP at 50 training sam- 
ples but improves to 27%, quite a bit better than 35% for 
h z z y  ARTMAP at 10000 training samples. 

Table 7: ARTMAP on Distribution 3 

1000 
9.6 

Table 8: BARTMAP on Distribution 3 

The fact that both Fuzzy ARTMAP and BARTMAP 
produce networks with smaller error percentages as the 
number of training samples increases is not surprising. 
Both of these learning techniques will increase in perfor- 
mance as the number of training samples increases. Fuzzy 
ARTMAP performance increases at a slower rate than 
BARTMAP due to “ove&tting” . The experiments pre- 
sented were designed to have a significant degree of overlap 
which induced “ove&tting” with Fuzzy ARTMAP. fizzy 
ARTMAP also requires a tremendous number of F2 tem- 
plate nodes as compared to BARTMAP when the number 
of training samples increases. 

5. Conclusions 
After conducting the experiments, we have seen that 

BARTMAP is a reasonable alternative to ARTMAP, espe- 
cially in learning situations where there is overlap between 
concept classes and no exact solution. Another benefit 
that BARTMAP provides is a reduction in the number 
of Fz templates necessary for learning, at the expense of 
many repeated passes through the data. BARTMAP can 
execute similar to Fuzzy ARTMAP by requiring that it 
achieve 0 error. One of the reasons that BARTMAP is suc- 
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cessful even at 20% desired error is that it does not over- 
fit the training data as happens with F’uzzy A R T W -  
In fact, lowering the desired error actually leads to an in- 
crease in errors for BARTMAP beyond a certain point in 
problems with non-zero Bayes error. 

At present, we are looking into ways of improving 
BARTMAP’S performance and reducing the number of 
epochs needed for learning. We are also looking into ap- 
plying BARTMAP on other concept problems as well as 
analyzing its generalization behavior theoretidy- 
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