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Abstract 

A neural network approacR to the problem of finding the weights of one and two-dimensional 
adaptive arrays is presented. In modem cellular, satellite mobile communications systems, and in 
GPS systems, both desired and interfering signals change their directions continuously. 
Therefore, a fast tracking system is needed to constantly track the users, and then adapt the 
radiation pattern of the antenna to direct multiple narrow beams to desired users and nulls to 
sources of interference. In the approach suggested in this paper, the computation of the optimum 
weights is viewed as a mapping problem which can be modeled using a suitable artificial neural 
network trained with input output pairs. A three-layer Radial Basis Function Neural Networks 
(RBFNN) are used in the design of one and two-dimensional array antennas. The results obtained 
from this network are in excellent agreement with the Wiener solution. It was found that networks 
implementing these fimctions are successful in tracking mobile users as they move across the 
antenna's field of view. 

1.Introduction 

Interference rejection often represents an inexpensive way to increase the system capacity by 
allowing closer proximity of cofiequency cells or beams providing additional frequency reuse [I] 
in a cellular system. This paper presents the development of a neural network-based algorithm to 
compute the weights of an adaptive array antenna. In this new approach, the adaptive array can 
detect and estimate mobile users' locations( [2],[3]), track these mobiles as they move within or 
between cells, and allocate narrow beams in the directions of the desired users while 
simultaneously nulling unwanted sources of interference. This adaptive antenna results in an 
increased system capacity for the existing cellular and mobile communications systems as well as 
improved interference rejection capabilities for satellite-based Personal Communication Systems 
(PCS), geosynchronous satellites ,Low Earth Orbit satellites, and Global Positioning Systems 
(GPS). The organization of the paper is as follows: In section I1 a brief derivation of the optimum 
array weights in 1-D adaptive beamforming is presented. The RBFNN approach for the 
computation of the adaptive array weights is introduced in section 111. Finally, Section lV 
presents the simulation results and Section V offers conclusive remarks. 

11. I-D Adaptive beamforming 

Using vector notation we can write the output of an M-element linear array or an M x N planar 
array on the matrix form: 

And the received spatial correlation matrix, R, of the received noisy signals can be expressed as: 
X (t) = A S(t) + N(t) (1) 
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R = E k ( t ) X ( t ) " } =  AE[S(t)SH (&" + E [ N ( t ) N H  (t)] 
M (2) 

= APA" +o21 = Chi eiey 
i=l 

To derive the optimal weight vector, the array output is minimized so that the desired signals are 
received with specific gain, while the contributions due to noise and interference are minimized 
[4]. In other words: 

In the above equation, W is the vector of the weights of the array element outputs, r is the V x 1 
constraint vector, where V is the number of desired signals, and S d  is the steering vector 
associated with the look direction. It can be shown that the optimum weight vector is given by the 
following equation: 

Since the above equation is not practical for real time implementation, an adaptive algorithm 
must be used to adapt the weights of the array in order to track the desired signal and to place 
nulls in the direction of the interfering signals. 

minWHRW subject to WHSd = r (3) 

wept = R-'Sd [SdHR-'Sd]-lr (4) 

1II.Neural Network -based interference cancellation: 

This section describes a new implementation for the problem of beamforming using neural 
networks. The optimum weight vector is a nonlinear function of the correlation matrix and the 
constraint matrix. Therefore it can be approximated using a suitable architecture such as a Radial 
Basis Function Neural Network. Note that a Radial Basis Function Neural Network can 
approximate an arbitrary function from an input space of arbitrary dimensionality to an output 
space of arbitrary dimensionality. The REF" consists of three layers of nodes; the input layer, 
the output layer and the hidden layer as shown in figure 1. The input layer is the Payer where the 
inputs are applied; the output layer is the layer where the outputs are produced. In our application 
the input layer consists of J=2M nodes for an M element linear array, to accommodate both the 
real and the imaginary part of the input vector (i.e., X(t)). The output layer consists of 2M nodes 
to accommodate the output vector (i.e., Wept). As it is the case, with most neural networks the 
REF" is designed to perform an input-output mapping trained with examples (X'(t); Wzopt) ;I  = 

1,2,. . .,A$, where NT stands for the number of examples contained in the training set. The purpose 
of the hidden layer in a R B F "  is to transform the input data X(t) from an input space of 
dimensionality J t o  a space of higher dimensionality L. The rationale behind this transformation is 
based on Cover's theorem which states that an input/output mapping problem cast in a high- 
dimensionality space nonlinearly is easier to solve. The nonlinear functions that perform this 
transformation are usually taken to be Gaussian functions of appropriately chosen means and 
variances. 

Generation of Training Data 

1. Generate array output vectors {X'(t); w'~,,) ;I = 42,. . . ,N~] using equation (1). 
2. Normalize each one of the above array output vectors by its norm. For simplicity of notation 

we still refer to these vectors by X(t)'s. 
3. Evaluate the correlation matrix R' (1 = 1,2,..., NT) for each of the array output vectors 

generated in Step 1; to do so use equation (2). Using the calculated R' 's calculate the vectors 
{Wzopt; I = 1~2,. . ., NT )from equation (4). 
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4. Produce the required training inputloutput pairs of the training set, that is ((X'(t); WlOpt) ;I = 
~ 7 2 7 . . . J r }  

As we have emphasized before, once the REG" is trained with a representative set of 
training inputloutput pairs it is ready to function in the performance phase. In the performance 
phase, the R B F "  produces estimates of the optimum weights for the array outputs, through a 
simple, computationally inexpensive, two-step process, described below. 

Performance Phase of the RBFNN 

1. Generate the array output vector k(t) . Normalize this array output vector by its norm. 
2. Present the normalized array output vector at the input layer of the trained RBFNN. The 

output layer of the trained RBFNN will produce as an output the estimates of optimum 
weights for the array outputs (i.e., Wept). 

A 

V. Simulation results 

Figures 2 shows the adapted pattem of a 10 element linear array obtained from the RBFNN 
and how it compares with the optimum Wiener solution for angular signal separations of 15' and 
lo', respectively. It can be concluded from these figures that the RJ3FNN produced a solution for 
the beamforming weight vector that is very close to the optimum solution. 

VI. Conclusion 

A new approach to the problem of adaptive beamforming was introduced. The weights were 
computed using an RBFNN that approximates the Wiener solution. The network was successful 
in tracking multiple users while simultaneously nulling interference caused by cochannel users. 
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Figure 1 RBFNN architecture 
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Figure 2 10 element linear array with four sources 
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