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1.  Abstract

Ultimate widespread use of CGF entities in tactical
simulations will depend on how easy it will be to
develop, refine and maintain models of the behaviors
to be represented.  However, proper vehicle behavior
model development for CGF applications can be
difficult as well as expensive.  Means to quickly and
effectively create models for new vehicles and/or
behaviors must be developed to permit CGF models
to be widely used in the future.  One realistic
approach to overcoming this model generation
bottleneck is to create and refine vehicle models
through automated observation of the behavior of an
entity being controlled by a human expert in a
simulation.  This is a learning paradigm quite
commonly used by humans.   This paper describes an
on-going research effort that introduces some new
ideas on how to accomplish autonomous model
development through observation.

2.   Introduction

Behavior modeling has been extensively researched
in the past several years, mostly as part of the
Computer Generated Forces (CGF) effort sponsored
mainly by DoD.  Several approaches have been
devised and implemented to control simulated enemy
as well as friendly forces in a training simulation.
ModSAF and CCTT-SAF have been the major efforts
undertaken, but several others have been active in the
recent past.  ModSAF and CCTT-SAF model
reactive behavior by representing SME rules through
control statements in a conventional programming
language.  While successful in many ways, the
knowledge engineering effort involved in developing
these models is quite extensive.  Therefore, a difficult
and long model development (or modification)
process would ensue if their modeling paradigms
were to be used in other applications of intelligent
simulated entities.  One way to overcome this model
generation bottleneck is to develop and implement a
way to automatically (or at least quasi-automatically)
create and refine these models.

The knowledge necessary to build an accurate
cognitive model of the decision-maker in a fighting
vehicle can be said to be composed of two different
elements:

• General a-priori explicit knowledge about the
mission, the battle, the enemy and the capability
of the decision maker’s own vehicle, and

• Tactical knowledge (both explicit and implicit)
used to determine the desired course of action as
a result of the current situation.

In the long term, we believe that the explicit a-priori
knowledge will be best acquired through a question
and answer session between the expert decision-
maker and an automated knowledge acquisition tool.
On the other hand, we believe that the tactical
knowledge, as well as possibly the implicit general
knowledge, can be best learned through automated
observation of an expert decision-maker executing
the task(s) on a simulated environment.  Our
approach will be to minimize the former and develop
the means to do the latter.  However, before entering
in a discussion of these techniques, it is important to
describe the modeling infrastructure that we believe
can support the techniques to automate the model
generation and refinement process.

3.   Automated Model Creation

In confronting real-world computing problems, it is
frequently advantageous to use several computing
techniques synergistically rather than exclusively,
resulting in construction of complementary hybrid
intelligent systems.  With this in mind, we propose to
address the current problem using a combination of
modeling paradigms.  The basic model structure will
be founded upon a modeling paradigm referred to as
Context-based Representation (CxBR) [Gonzalez
95].  This approach equates the situation being faced
by the decision-maker to a context which carries with
it a set of predetermined procedures that are typical
of that entity’s expected behavior under those
conditions.



Briefly, life for a modeled vehicle under the CxBR
paradigm is being under the control of a sequence of
contexts, which at any one point in time represent the
expected behavior of that vehicle.  Which context is
in control of the modeled vehicle is dependent on the
situation faced.  The context in control (the active
context) not only defines the vehicle’s behavior, but
also what to expect from the environment.  Since
only a limited number of things can be expected to
happen under any one context, the search space for a
situational awareness module is neatly trimmed to
only those that are realistic under the presently-active
context.  Thus, the modeled vehicle goes through a
simulation transitioning from one context to another,
depending on which ones best address the situation at
hand.

Contexts are defined as a hierarchy of increasingly
less abstract ones.  At the top of the hierarchy is the
Mission Context, which defines the mission to be
undertaken by the vehicle to be modeled.  This
broadly defines the objectives, the constraints and the
opportunities of which to take advantage during the
execution of the mission.  It may also define which
lower level contexts are applicable to this mission.
At the next lower level are the Major Contexts, which
form the backbone of the CxBR technique.  These
contexts contain the high-level maneuvers and
actions that are expected to be executed by the
vehicle when under the applicable situation.  It also
defines what criteria indicate that a transition to
another major context is necessary because of
changes in the situation.  At the lowest level of the
hierarchy are the sub-contexts.  These are low-level
operations that may be required as part of the major
context, but that may be reusable by another major
context.  CxBR operates by determining the
appropriate major context and making it active.  This
context will control the behavior of the vehicle by
executing behaviors that are required and/or typical
for that entity under those circumstances.
Furthermore, it will also look for changes in the
situation that may warrant a transition to another
context.  If changes in the situation warrant it, the
current context will deactivate itself and activate the
one selected for transition, thus maintaining
appropriate control of the vehicle.

We should briefly mention that successful prototypes
based on the CxBR approach have been implemented
in the domain of submarine warfare for NAWC-TSD
[Gonzalez 95], as well as for automobile driving
[Henninger 96; Brown 94].   This concept has
received some interest from other researchers as
indicated in the published technical literature [Turner
93; 95; Bass 96].

3.1   A-Priori Knowledge Acquisition

Explicit knowledge has traditionally been relatively
easy to elicit from experts through interview sessions.
However, these sessions have also been long, drawn
out processes that have taxed the patience of many a
system developer as well as experts.  Furthermore,
the long times typically taken to carry out this
process has always resulted in high development
costs.  One way to facilitate the acquisition of explicit
knowledge has been to develop tools that can interact
with an expert and elicit the requisite knowledge
from him/her through a question and answer
dialogue.  This has been a relatively successful field
of research, with several systems having emerged
from the laboratories.

We believe that the use of CxBR as the base
paradigm in our work will further facilitate this
process.  This is largely due to the highly structured
nature of the context-based representation and
reasoning approach.  A Q&A session with the experts
will allow a automated knowledge acquisition tool
based on CxBR to define the various contexts
applicable to the mission being undertaken.  This will
include definition of the goals and constraints of the
mission, as well as of the various contexts potentially
being experienced by decision-maker.  The feasibility
of this approach to model development for CGF’s
was shown by Henninger [Henninger 96; 97] in her
work to develop an automated knowledge acquisition
system to gather exactly this type of knowledge.  We
therefore believe that this method could be used to
automatically gather the explicit knowledge needed
to be known a-priori by the vehicle.  We will use
Henninger’s work as the basis for this phase of the
research.

3.2  Learning Through Observation

Knowing what transitions to make and when to make
them is the essence of tactical behavioral knowledge.
These transitions from one context to another are a
key element of context-based behavioral
representation.  However, these cannot be easily
obtained through a question and answer session.  We
believe that this knowledge is best learned through
the process of observation.

By observation we refer to the concept of learning
about a behavior to be emulated by observing a
manned (simulated) vehicle as it performs that
behavior in battlefield situations similar to that to be
seen by the model.  This has the additional advantage
of being able to capture the subtle behaviors not
clearly articulated by experts in the field.



While learning through observation is a relatively
new concept, there is some precedent in the literature.
Pomerleau, using a neural network, designed an
autonomous vehicle system that was able to drive an
automobile throughout the Carnegie-Mellon
University campus [Pomerleau 92].  The neural
network was trained by observation, and it was able
to generalize after its training was completed.  In
particular, although the neural network was trained to
drive the vehicle through a one-lane road under ideal
environmental conditions, it was able to perform
satisfactorily in two-lane as well as in dirt roads, and
under adverse environmental conditions (rain, snow,
etc.).

More recently, Sidani [Sidani 94; 95] captured the
behavior of an expert automobile driver by observing
his/her actions in a simulated task.  He built a hybrid
system based upon neural networks and symbolic
reasoning which learned and then emulated the expert
driver’s behavior.  The system was successful in
operating a car in a traffic signal situation as well as
in the presence of a pedestrian crossing the street in
front of the vehicle.  The interesting aspect of this
work was that the model was trained in the traffic
light and in the pedestrian situations separately.  Yet,
when combined in a complex situation that it had not
seen before, it was able to carry out the correct
actions (i.e., stop for the pedestrian crossing in spite
of the light being green).

This work provides an excellent starting point for our
proposed task of partially developing a model
through observation.  However, additional work must
be done to make this idea a useful reality.  First of all,
Sidani’s prior work identified a-priori all the
parameters to be employed in the neural network
training.  This is often not realistic.  On the other
hand, to employ all possible parameters in the
simulation will make for highly complex and
probably untrainable neural networks.  A means to
determine the applicable variables in the simulation
needs to be investigated in order to make the
technique useful.  Furthermore, the use of neural
networks as the main modeling paradigm may not be
adequate by itself due to the weaknesses normally
associated with neural nets: difficulty to train and
review the logic behind its actions.  This last issue
becomes important when validating the model’s
performance.  Lastly, the domain of ground warfare
is many times more complex than that of driving an
automobile, and thus will likely require a more
complex modeling paradigm than the latter domain.
There will likely be a need for a certain amount of a-
priori knowledge before the observation process can
become effective.

In order to do this, we propose a supervisory system
that observes an expert decision-maker in action
performing a simulated task within a vehicle.  This
system will look for “interesting” occurrences in the
actions of this vehicle.  Such interesting occurrences
are likely to be the cause or the result of a context
shift.  Thus, by correlating these observed context
shifts with an interpretation of the context to which
the decision-maker is shifting to, the transition
criteria between contexts can be learned.

One approach for interpreting to what context the
decision-maker is transitioning to is a new technique
called Template-based Interpretation (TBI).  TBI is
an experimental technique developed by Drewes and
Gonzalez [Drewes 95] to interpret the intent of
actions by a human-controlled entity in a training
simulation.  Templates are expectations of behavior
by a human performing a specific task.  Observations
of an expert’s actions in a simulation and applying
these observations dynamically to competing
partially-filled-in templates will result in the
identification of the one most likely to be
representative of the intended actions.  This
technique is similar to case-based reasoning except
that the comparisons of attributes will be time-
dependent as well as potentially sequenced.
Furthermore, a competing template will be declared
the successful one when sufficient evidence exists to
uniquely identify it as the “winner.”

The second approach is to use neuro-fuzzy
computing, composed of the integration of neural
networks and fuzzy logic.  Fuzzy set theory provides
a systematic calculus to deal with imprecise and
incomplete information linguistically (i.e., the kind of
information that humans contend with in their every
day lives, including the battlefield environment), and
it performs numerical computation by using linguistic
labels stipulated by membership functions. Moreover,
a selection of “fuzzy-if-then” rules forms the key
component of a Fuzzy Inference System (FIS) that can
effectively model human expertise in a specific
application. Hence, fuzzy logic should be an integral
part of the technology vying to automatically and
realistically emulate the behavior of certain military
forces in the battlefield.  But fuzzy logic alone cannot
accomplish the task.  One of the requirements of an
effective FIS that emulates human behavior should be
its capability to adapt to changing environments, and
its ability to learn real-time (on-line), both of which
are inherent capabilities of a human being. This is
where neural network technology comes to the help
of fuzzy logic, in the form of intelligent systems that
are referred to as Fuzzy Neural Networks (FNNs).  A
fuzzy neural network emulates human behavior by



training with an appropriate collection of “fuzzy
data” and/or “crisp data”, but it is also adaptive in the
sense that it can learn new data (crisp or fuzzy), and
forget if necessary, old data, through a retraining
process.

A number of interesting approaches to design fuzzy
neural networks have been proposed in the literature
[Keller, 92(a), 92(b); Ishibuchi 93; Ishibuchi 94;
Harashi 93; Chen 96].  Some of these approaches,
though, learn the data rules through learning
techniques that are slow to converge, and they require
extensive retraining when new data are added to the
repertoire, or old data are eliminated. A class of fuzzy
neural network architectures that do not suffer from
this slow convergence problem is the class of ART
neural network architectures developed by Carpenter
and Grossberg at Boston University.  Furthermore,
ART architectures have the additional advantage that
their output responses to input excitation can be
logically explained.  Prominent members of this class
of architectures are: Fuzzy ART [Carpenter 91a] and
Fuzzy ARTMAP [Carpenter 91b].  The theoretical
properties of the Fuzzy ART and Fuzzy ARTMAP
fuzzy neural networks have been extensively
investigated by Huang [Huang 95], and
Georgiopoulos [Georgiopoulos 96].

Furthermore, the sub-contexts involved in the CxBR
paradigm typically represent low level actions, such
as steering, braking and accelerating the vehicle.  It is
in such actions that the implicit knowledge referred
to by Sidani [94] can be typically found.  Neural
networks may be the best means to represent the
implicit nature of such low-level actions.  This is re-
inforced by work done by Crowe [90] in which he
uses neural networks to learn air combat decision-
making skills.  Our work goes beyond that of Sidani
and Crowe by learning how to make high level
decisions without the use of neural networks.

4.   Learning by Observation – The Process

Creating a CGF model automatically by observing an
expert exhibiting a behavior in a simulation is a
complicated process.  The ideas discussed above are
only discussed generally. This section describes the
steps and the more detailed issues involved in this
difficult undertaking.

4.1   Framework Development

One of the most important aspects of doing learning
through observation is the development of a suitable
and efficient cognitive modeling framework or
infrastructure.  This modeling framework should

allow for a model that will easily accommodate the
learned knowledge.  It is anticipated that this
framework will be based upon the Context-based
Representation paradigm described above.  However,
to convert a conceptual paradigm into a framework,
with defined procedures, reasoning mechanism, and
representational syntax, merits significant attention.
Several issues involved with the conventional CxBR
paradigm may have to be reconsidered as it applies to
learning through observation.

Also important is the definition and development of
an observational environment that will permit the
observation to be done easily and effectively.  This
environment is the simulation in which the expert
exhibits the appropriate behavior to be observed.  It
must provide easy access to the variables that are
being observed.  ModSAF is the environment being
used for this task.

4.2 Observational Techniques

The second most important issue is the development
of techniques that facilitate the development of model
instances from the defined framework. Capture of
implicit knowledge represents a challenge that can
best be overcome through observational techniques.
This is one of the most difficult aspects of this
undertaking and the one with the greatest technical
risk.  It is composed of the following issues:

• Definition and discovery of "interesting
occurrences": This is very important, as these
will serve as indications that the human has
shifted contexts.  These interesting occurrences
represent indication of potential transitions
between contexts in the model.  They, moreover,
represent implicit knowledge, and are best
captured through observation.

• Interpretation of expert's action: It is
important that the system know what tactic the
expert is currently carrying out without asking
questions of the expert.  When an interesting
occurrence is detected, it is likely that the context
has shifted for the vehicle being modeled.  If so,
it must be able to determine to what context the
vehicle shifted to, so it can learn what the
transition was.  This is done through Template-
based Reasoning, but other techniques will be
investigated as well.

• Development of the observational technique
itself: There are two candidate technologies to
accomplish this: 1) Fuzzy neural networks, and
2) similarity and difference-based learning



techniques [Winston 92].  Fuzzy neural networks
can be used to decide when to transition from
one major context to another in our CxBR
modeling paradigm.  Fuzzy neural networks have
the capability to acquire the aforementioned
knowledge through training with data collected
through observation,  or through training with
rules obtained from subject matter experts.

5.  Summary and Conclusion

A means to quickly and effectively create models
new vehicles and/or new behaviors must be
developed if CGF models are to be extensively used
in military simulations.  In this paper we propose a
solution to this problem by describing an automated
technique that can generate these CGF models in a
quick and effective way.  This technique is based
upon the Context-based reasoning paradigm (CxBR).
The success of this model relies upon knowledge
acquisition via non-intrusive interaction with an
expert, primarily through observation of the behavior
of the simulated entity controlled directly by an
human expert.  The various steps to be carried out in
this investigation are carefully outlined.
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