
Multiple Mobile User Tracking With Neural Network-based
Adaptive Array Antennas

A.H.EL Zooghby*, C. G. Christodoulou**, and M. Georgiopoulos*

* Electrical and Computer Engineering Department, University of Central Florida, Orlando,
FL. 32816

** Electrical and Computer Engineering Department, University ofNew Mexico,
Albuquerque, NM. 87131

ABSTRACT

The problem of multiple source tracking with neural network-based adaptive array antennas for wireless terrestrial and
satellite mobile communications is considered in this paper. The Neural Multiple Source Tracking (N-MUST) algorithm
which is based on an architecture of a family of radial basis function neural networks (RBFNN) is introduced. In the first
stage a number of RBFNNs are trained to perform the detection phase, while in the second stage another set of networks is
trained for the direction of arrival estimation phase. The field of view of the antenna array is divided into separate angular
sectors, which are in turn assigned to a different pair of RBFNN's. When a network detects one or more sources in the first
stage, the corresponding second stage networks are activated to perform the direction of arrival (DOA) estimation step. No
prior knowledge of the number of present sources is required. Simulation results are performed to investigate the validity of
the algorithm for various angular separations, with sources of random relative SNR and when the system suffers from
frequency errors. The aforementioned approach results in substantial reduction of the computational complexity associated
with the network training.
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1. INTRODUCTION

New wireless systems such as cellular, personal communication systems (PCS) and personal communication networks
(PCN) must satisfy an increasing demand for coverage, capacity, and service quality. For this purpose the need for more
powerful tools to improve different aspects of modem communications systems has become increasingly important. In recent
years, it has become clear that the area of smart antennas will provide a key technological boom for the wireless
communications industry. This paper presents the development of a neural network based smart antenna capable of
performing detection and direction finding of multiple sources in various modem cellular communication systems. The
developed algorithms are able to implement Space Division Multiple Access (SDMA) 1,2 which will improve the coverage as
well as increase the system capacity of existing cellular and mobile communications systems. On the other hand, as a
growing number of mobile satellite communication systems are being introduced, and as GPS systems become more widely
used, smart antennas capable of separating signals from multiple sources can substantially improve the performance of those
systems as well. Hence a direction fmding algorithm that can operate in real-time is an integral part of any Spatial Division
Multiple Access (SDMA) scheme for terrestrial as well as satellite mobile communication systems. Other applications of
direction finding include target tracking and telemetry.

Superresolution algorithms3 have been successfully applied to the problem of Direction Of Arrival (DOA) estimation to
locate radiating sources with additive noise, uncorrelated and correlated signals. One of the main disadvantages of the
superresolution algorithms is that they require extensive computation and as a result they are difficult to implement in real-
time. Recently, neural networks-based direction finding algorithms have been proposed for single and multiple source
direction finding 4,5,6 has been shown that neural networks have the capability to track sources in real-time. In ,a radial
basis function neural network has been used to track the locations of mobile users. However a different network had to be
used for different number of users with fixed angular separation. This paper presents a generalization of the algorithm
introduced in ' in such a way that the system would be able to track an arbitrary number of sources with any angular
separation without prior knowledge of the number of sources. The Neural Multiple Source Tracking (N-MUST) algorithm is
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based on architecture of a family of radial basis function neural networks that perform both detection and DOA estimation.
The new approach is based on dividing the field of view of the antenna array into angular spatial sectors, then train each
network in the first stage of the architecture to detect signals emanating from sources in that sector. Once this first step is
performed, one or more networks of the second stage (DOA estimation stage) can be activated so as to estimate the exact
location of the sources. The main advantage of this new approach is a dramatic reduction in the size of the training set
required to train each smaller neural network. Results for the DOA estimation of multiple sources using this new approach
are presented and discussed. The organization of this paper is as follows: Section 2 presents the problem formulation and
elaborates on the use of neural networks for direction finding. In section 3, the new approach labeled N-MUST is detailed as
well as the different detection and DOA estimation steps. The simulations results are presented in section 4 and in section 5
some conclusive remarks summarizes the performance ofthe algorithm.

2. NEURAL NETWORK-BASED DIRECTION FINDING

Consider a linear array composed of M elements. Let K (K<M) be the number of narrowband plane waves, centered at

frequency impinging on the array from directions {O 2 9K } Using complex signal representation, the
received signal at the th array element can be written as,

xi (t) = Sm (t)efm + n (t) ; I = 1,2, . . . M (1)

where Sm(t) 5 the signal ofthe mth wave, n1(t) is the noise signal received at the ith sensor and

w0d.km =—sin(em) (2)
C

where d is the spacing between the elements of the array, and c is the speed of light in free space. Using vector notation we
can write the array output in a matrix form:

x (t) — A S(t) + N(t) (3)

Where, X (t), N(t) and S(t) are given by:

X(t) = [x1 (t) x2 (t) . . . XM (t)]T (4)

N(t) = [n1 (t) n2 (t) . . . M (t)]T (5)

S(t) = [s1 (t) 2 (t) . . .
SK(t)]T (6)

In (4) and (5) and (6) the superscript "T" indicates the transpose ofthe matrix. Also in (3) A is the MxK steering matrix of the
array towards the direction ofthe incoming signals defmed as:

A=[a(01) ... a(6m) ... a(9K)] (7)
where a(Om) corresponds to

a(Gm ) [i e_jkfh e2' . . . e_1(M_fh j (8)
Assuming that the noise signals {n1(t), i 1 :M)}, received at the different sensors, are statistically independent, white
noise signals, of zero mean and variance c2 and also independent of S(t) , then the received spatial correlation matrix, R, of
the received noisy signals can be expressed as:

R = E{X(t)X(t)H } A E[S(t)S'' (t)]A' + E[N(t)NH (t)] (9)
In the above equation, "H" denotes the conjugate transpose. The antenna array can be thought of as performing a mapping G:
R K CM from the space of the DOA, {E [e '°2 ' ,OKI T} to the space of sensor output
{ X(t) = [x1 (t) x2 (t) . . . XM (0]T A neural network is used to perform the inverse mapping F: M R K The
algorithm described in this paper for the problem of direction finding is based on using radial basis function neural networks
to approximate this inverse mapping F. Note that a Radial Basis Function Neural Network can approximate an arbitrary
function from an input space of arbitrary dimensionality to an output space of arbitrary dimensionality 8, 9, 10 The block
diagram of a RBFNN is shown in Figure 1. In between the blocks designated "sample data processing" and
Postprocessing", as can be seen from Figure 1, the RBFNN consists of three layers of nodes, the input layer, the output layer
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and the hidden layer. The input layer is the layer where the inputs are applied, the output layer is the layer where the outputs
are produced. The RBFNN is designed to perform an input-output mapping trained with examples. The purpose of the hidden
layer in a RBFNN is to transform the input data from an input space of some dimensionality to a space of higher
dimensionality L (see Figure 1). The rationale behind this transformation is based on Cover's theorem" which states that an
input/output mapping problem cast in a high-dimensionality space nonlinearly is easier to solve. The nonlinear functions (the
h's in Figure 1) that perform this transformation are usually taken to be Gaussian functions of appropriately chosen means
and variances. There are a lot of learning strategies that have appeared in the literature to train a RBFNN. The one used in
this paper was introduced in 12, where an unsupervised learning algorithm, such as the K-Means'3, is initially used to identify
the centers of the Gaussian functions used in the hidden layer. Then, an ad-hoc procedure is used to determine the widths
(standard deviations) of these Gaussian functions. According to this procedure the standard deviation of a Gaussian function
of a certain mean is the average distance to the first few nearest neighbors of the means of the other Gaussian functions. The
aforementioned unsupervised learning procedure allows you to identify the weights (means and standard deviations of the
Gaussian functions) from the input layer to the hidden layer. The weights from the hidden layer to the output layer are
identified by following a supervised learning procedure, applied to a single layer network (the network from hidden to output
layer). This supervised rule is referred to as the delta rule. The delta rule is essentially a gradient decent procedure applied to
an appropriately defined optimization problem. For more details about the delta rule, and how it is applied to single layer
networks see9 . Once training of the RBFNN is accomplished, the training phase is complete, and the trained neural network
can operate in the performance mode (phase). In the performance (testing) phase, the neural network is expected to
generalize, that is respond to inputs that it has never seen before, but drawn from the same distribution as the inputs used in
the training set. One way of explaining the generalization exhibited by the network during the performance phase is by
remembering that after the training phase is complete the RBFNN has established an approximation of the desired
input/output mapping. Hence, during the performance phase the RBFNN produces outputs to previously unseen inputs by
interpolating between the inputs used (seen) in the training phase.

2.1 Sample Data Preprocessing

The input vector to the input layer of the network (see Figure 1) is the upper triangular half of the spatial correlation matrix
R that can be organized as an M(M+l) dimensional vector of real and imaginary parts denoted b. This procedure is
illustrated in Table 1 . The dimension of the hidden layer is equal to the number of the Gaussian functions L, which can be
chosen to be equal to the number of total input/output pairs in the training set if perfect recall is desired. The input vector b is
normalized by its norm prior to being applied at the input layer ofthe neural network, i.e.

b

z=jj (10)

r11 r12 r13

R = r21 r22 r23
b =

r11 r12 r13 r22 r23 r33

r3, r32 r33

Table 1. Correlation matrix reduction

It should be noted here that training a single neural network to detect the angle of arrival of multiple sources is not an easy
task. To get an idea of how much training is required, consider the problem of tracking two sources only. First, we start with
training the network with a 2° angular separation from 9Ø0to 900. That means you set the first source at 0= -90° and the
next source at 0 -88°, next you set the first source at 890 and the second to -87°, and so on until you cover the region of
interest (assuming 9Ø0 to 900) Next you repeat the same training procedure with 30 difference between the two sources (-
90 and -87, -89 and -86, -88 and -85 .. . 87 and 90). Then 5° (-90 and -85, -89 and —84, -88 and —83, etc.), then 10 degrees
apart, 1 5, 20, 30, 40, 50, and 60. Thus, the training set consists of sources with angle of arrivals that cover a wide range of
possibilities. The testing is done by presenting to the network data corresponding to two sources with angles of separation
that it has not seen before. For example, if two sources that are separated by 12° apart are presented, the network can detect
these two sources accurately by quickly interpolating between the responses it was trained to produce during the training
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phase. This kind of exhaustive training becomes prohibitive for more than three or four sources, since the number of
possible training data combinations is enormous. To circumvent this problem multiple, but smaller, neural networks are
employed. Each network then tracks a smaller number of sources within a smaller angular sector.

3. THE NEURAL MULTIPLE SOURCE TRACKING (N-MUST) ALGORITBM

The Neural Multiple Source Tracking (N-MUST) algorithm is also based on the radial basis function neural networks
(RBFNN), but it is composed of two stages, the detection stage and the estimation stage, as shown in Figure 2. In the first
stage, a number of RBFNNs are trained to perform the detection phase, while in the second stage another set of networks is
trained for the direction of arrival estimation phase. When networks detect one or more sources in the first stage, the
corresponding second stage networks are activated to perform the direction of arrival (DOA) estimation step. No prior
knowledge of the number of sources present is required.

3.1 Detection Stage

In this approach, labeled the Neural Multiple Source Tracking (N-MUST) algorithm, an arbitrary number of mobile users
(sources) can be tracked and no prior knowledge of the number of mobile users is required. As shown in Figure 2, there are
two stages of RBFNN's. The first stage is the "detection stage" which consists of P RBFNNs, each focusing on a sector of
width e. The entire angular spectrum (field of view of the antenna array) is divided in P sectors. The th (1< < P) RBFNN
is trained to determine if one or more signals exist within the [(p-i) w, pew)] sector. If there are any signals present in the
corresponding sector, the neural network will give the value 1 for an answer. Otherwise, the network will register a zero as its
output value. This information is then passed to the second stage, the "direction of arrival" stage, which estimates the angles
of these signals. Each one of the P neural networks of the detection stage, has M (M+l) input nodes representing the
correlation matrix R and one output node. The number of hidden nodes in the second layer is also M (M+l). The training
procedure for a network in the detection stage is outlined in Table 2. To illustrate how a network is trained in the detection
stage, let us consider a case where the network is required to track N sources in the [1 O 200] sector with some angular
separation O. We start the training with sources at 9Ø0, -90°+i\e,. . ., -9O°+(N-l)AO. We use this vector of DOA to generate
the correlation matrix R and the normalized vector z. Since the sources are outside the sector of interest, the target output is
"O" in this case. We then select the subsequent DOA vectors as -88°, -88°+LO,. .., -88°+(N-l)AO, -86°, -86°+Ae
l)A8 and so on. The target output of the network is set to 1 only when one or more of the angles in the DOAvector lies in
the [1 0° 20°] range. In the simulations performed, a network was tested with number of sources and angular separations
different than it had seen in the training. The network was able to detect the presence of the sources correctly. This suggests
that considering all possible combinations of number of sources and separations need not be considered for the detection
phase.

3.2. DOA Estimation Stage

The second stage of neural networks is trained to perform the actual direction of arrival estimation. The P networks of the
DOA estimation stage are assigned to the same spatial sectors as in the detection stage (see Figure 2). When the output of one
or more networks from the first stage is 1 , the corresponding second stage network(s) are activated. The input information to
each second stage network is the correlation matrix R, while the output is the actual DOA of the sources. The number of
hidden nodes is the same as the number of input nodes given by M(M+1). Consider a system with minimum source
resolution of 2°, a single neural network trained to track sources over the antenna's field of view (e.g. 1 800 wide) could be
trained for angular separations te of 2°,4°,6°, .. .up to some e. This results in such a huge training set that the single neural
network approach becomes impractical. However, by assigning different networks for different angular spatial sectors,
smaller training sets are sufficient since the network is only required to track sources in a limited spatial region. For sectors
lO02O0 wide, it follows that the number of distinct locations of possible sources as well as the size of the training set are
significantly reduced. Whereas most direction finding algorithms require the knowledge of the number of sources, in our
approach we only need to specify the minimum angular resolution that the system is required to achieve. Rather than
designing the network with number of output nodes equal to K (number of sources), for a sector of width O and minimum
angular resolution of Aemin, the number of output nodes is given by
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5. CONCLUSION

A new algorithm is presented for locating and tracking the angles of arrival of multiple sources. This algorithm is based on a
family of neural networks operating in 2 distinct stages. The new approach is based on dividing the field of view of the
antenna array into spatial sectors, then each network is trained in the first stage to detect signals emanating from sources in
that sector. According to the outputs of the first stage, one or more networks of the second stage can be activated so as to
estimate the exact location of the sources. No a priori knowledge is required about the number of sources, and the networks
can be designed to arbitrary angular resolution. The results demonstrated the high accuracy of the algorithm. The main
advantage ofthis new technique is a dramatical reduction in the size ofthe training set since much fewer training possibilities
need to be considered by sectoring the antenna field of view. It was also demonstrated that neural networks can achieve ultra
resolution by locating sources greater than the number ofthe array elements.
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Figure 2 The Neural Multiple Source Tracking architecture.
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Figure 3 Comparison between the desired and actual response of a 10 element array trained with 2 equipower sources of 2° angular
separation and tested with 3 sources of 30 angular separation and different SNRs.
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Figure 4 RBFNN trained with 2 sources and various angular separations and tested with 6 sources, M=1 2.
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Figure 5 Response of an 8 element linear array (d=AJ2) tracking 4 sources of 20 angular separation in the sector [3O0 110]. The sources
are of equal power, 5 dB higher than the noise power.
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Figure 6 Response of an 8 element linear array (d=X/2) tracking 4 sources of different angular separation in the sector {3O0 lloI The
sources are of equal power, 5 dB higher than the noise power.
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Figure 7 Response of a 12 element array which was trained with d/A. ranging from 0.4 to 0.6 and with 3 sources 4°,45°,5°,. .,7° of angular
separation in the sector [100 29°].
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