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Abstract 

We investigate the application of Genetic Algorithms 
(GAS) to search for the face of a particular individual in a 
two-dimensional intensity image. This problem has many 
potential applications such as locating a person in a 
crowd from pictures taken by surveillance cameras. 
There are two steps in solving this problem: first, faces 
regions must be extracted from the image yhce detec- 
tion) and second, candidate faces must be compared 
against the face of interest v i c e  verijcation). Without 
any a-priori knowledge about location and size of a face 
in an image, every possible image location and face size 
must be considered, leading to a very large search space. 
In addition, face detection or verification invariant to 
lighting conditions, facial expression and pose make the 
search space even larger and more complex. In this 
paper, we propose using GAS to search the image efti- 
ciently. Specifically, we use GAS to find image sub- 
windows that contain the face of interest. Each sub- 
window is evaluated using a fitness function which con- 
tains two terms: the first term favors sub-windows con- 
taining faces while the second term favors sun-windows 
containing faces similar to the face of interest. Both 
terms have been defined using ideas from the method of 
"eigenfaces". A set of increasingly complex scenes 
demonstrate the performance of the genetic search 
approach. 

KeJwvords: face detection, face verification, genetic algo- 
rithms, cigcnfaces. 

1. Introduction 
In this paper, we consider the problem of searching 

for the face of a particular individual in a two- 
dimensional image. This problem has many potential 
applications such as locating a person in a crowd from 
pictures taken by surveillance cameras. There are two 
main sub-problems behind this problem: face detection 
and face veriJication. Specifically, given an image, the 
first step is to extract all possible regions that might con- 
tain a face. The second step is to compare the extracted 
faces against the face of interest. Both of these problems 

are very challenging. Without any a-priori knowledge 
about the location and size of a face in an image, we will 
have to consider almost every possible location and size, 
leading to a very large search space. In addition, changes 
in lighting conditions, facial expression and pose make 
search space even larger and more complex. 

For face verification, methods based on correlation 
[I31 and neural networks [I41 are quite common. For 
face detection, many methods consider color [1][2] (e.g., 
skin color distribution) or motion [3][4] information to 
find the face region(s) quickly without resorting to an 
exhaustive search. This information, however, might not 
always be available. In general, methods on face detec- 
tion can be classified into two main categories: methods 
based on facial features [7][8] or face models [5] [6]  (e.g., 
template) and methods based on face representations 
learned from a large number of examples (face images) 
using statistical approaches (e.g., eigenfaces) [SI[ IO] or 
neural networks [ 1 I][ 121. In general, methods in the sec- 
ond category are more practical since they are less time 
consuming and do not rely on special features or models. 

The method of eigenfaces uses Principal Compo- 
nents Analysis (PCA) to linearly project the image space 
to a low dimensional subspace (eigenspace). This sub- 
space is defined by the principal components (eigen- 
faces) of the distribution of face images (i.e., the most 
important eigenvectors of the covariance matrix of the set 
of faces). Each face can be represented as a linear combi- 
nation of the eigenfaces. Given an image, sub-images of 
different size are extracted at every image location. To 
classify an image as a face, its distance from the 
eigenspace space is computed. In [ 11][  121, retinally con- 
nected neural networks examine sub-windows of the 
image to decide whether they contain a face. Extensive 
training using a representative set of both face and non- 
face examples is required for the neural networks to learn 
the concept of face. 

In this paper, we investigate the idea of using 
Genetic Algorithms (GAS) [15][16] to search for the face 
of interest. GAS are search procedures which have shown 
to perform quite well when the search space is very 
large. This is the case with the problem of searching for 
the face of a particular individual in a complex scene. 
GAS operate iteratively on a population of structures, 
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each one of which represents a candidate solution to the 
problem at hand. Each structure, is modified i n  a much 
the same way that populations of individuals evolve 
under natural selection. Variations among the individuals 
in the population result in some individuals being more 
fit than others (i.e., better solutions). In the past, GAS 
have been used to solve various difficult problems such 
as target recognition [ 171, facial feature extraction [ 181, 
and object recognition [ 191. 

In this work, the CA starts by extracting random 
sub-windows from the input image. These sub-windows 
are retained in subsequent generations if they contain a 
face, especially if i t  is the face that we are looking for. To 
evaluate a sub-window, we use a fitness function which 
contains two terms. The first term favors sub-windows 
which contain faces while the second term favors sub- 
windows which contain faces similar to the face of inter- 
est. Both terms have been defined using ideas from the 
method of eigenfaces [IO].  In the original eigenface 
approach, a single eigenspace is employed, built from a 
large set of images from different individuals. Both face 
detection and recognition are then performed using the 
same eigcnspace (i.e., by computing thc "distance from 
face space" and "distance in  face space"). Here, we use 
two different eigenspaces. 

The first eigenspace is built using images from dif- 
ferent individuals, as in thc original approach, and is 
used to define the first term of the fitness function (face 
detection term). There is a difference, however, between 
the original approach and the one used here: we do not 
use the original gray-scale images but the images 
obtained after applying the Sobel operator [20] .  Our 
experiments have indicated that this preprocessing step 
enhanccs facial features (e.g., face contour, eyes, mouth, 
nose) making i t  easier to distinguish between faces and 
non-faces. The second eigenspace is built using different 
images of the face of interest obtained under some varia- 
tion in lighting conditions, facial expression, and pose. 
The second term of the fitness function (face verification 
term) is defined using the distance from this eigenspace. 
It should be mentioned that in a practical application, we 
might not be able to obtain images of the face of interest 
under different conditions. In this case, somebody might 
try to generate synthetic images from a small number of 
real images [25].  

The approach proposed here has similarities with 
the approach of Swets and Punch [21]. In their approach, 
the CA extracts sub-windows from the image as well, 
however, the sub-windows may fall outside the input 
image. To deal with this problem, they included an extra 
term to the fitness function to penalize those windows. 
This, however, adds unnecessary complexity to the fit- 
ness function and increases time. Here, we use a smart 
encoding scheme to make sure that all the sub-windows 
extracted by the GA fall inside the input image. Also, 
they evaluate the extracted sub-windows by computing 

the distance of the sub-window from the mean of the face 
of interest. Here, we employ a more powerful fitness 
function based on the method of eigenfaces. 

The rest of the paper is organized as follows: In 
Section 2, we provide brief review of the eigenface 
approach. Section 3 presents the proposed method in 
detail while Section 5 presents our experimental results. 
Finally, Section 6 contains our conclusions and discus- 
sion. 

2. The method of eigenfaces 
The method of eigenfaces is based on Principal 

Component Analysis (PCA), a standard statistical tech- 
nique for reducing the dimensionality of data while 
attempting to preserve as much of information as possi- 
ble in terms of variance. The key idea is to represent 
each data in a low dimensional space defined by the most 
important eigenvectors (i.e., "eigenfaces") of the covari- 
ance matrix of the data distribution. A complete descrip- 
tion of the eigenface approach can be found in [IO].  
Here, we just summarize the main ideas. 

Representing each image I ( x , y )  as a N x N vec- 
tor r,. first the average face 'f' is computed: 

,, where R is thc number of faces in the train- 
1 R  

R r = l  
ing set. Next, the difference Q, of each face from the 
average face is computed: Q,, = r, - 'P. Then, the covari- 
ance matrix is estimated by: 

u,=-xr 

where, A = @ I  Q z . .  . (PR . The eigenspace can then 

be defined by computing the eigenvectors U ;  of C. Since 
c is very large ( N ~  x N'),  computing its eigenvectors 
will be very expensive. Instead, we can compute v i ,  the 
eigenvectors of A T A ,  an R x R matrix. Then, U ;  can be 
computed from vi as follows (the details are given in 

[ 1 

[ 101): 
R 

;= 1 
U ;  = v$,, j = I , .  . . , R (2 )  

Usually, we only need to 'keep a smaller number of 
eigenvectors R', corresponding to the largest eigenvalues. 
Given a new image r, we subtract the mean (Q, = r - Y) 

R' 
and we compute its projection: 6 = ~ w i u i ,  where 

wi = U:@ are the coefficients of projection. 

An image is considered to be a face if the mean 
square error (called the distance from face space (dfs))  
between its representation using the most important 
eigenvectors and its normalized counterpart (e.g., the dif- 
ference of the input image and the mean image), is small. 
Also, an image is considered to be a face found in the 
data set if the error (called the distance withinface space 

i= 1 

361 



(difs)) between the coefficients of the eigenvectors used 
to represent the image and the face in the data set is 
small. 

3. Methodology 
In this section, we describe the genetic search 

approach. Figure 1 shows the main steps. The following 
sections discuss the steps in detail. 

Input image 
A W ~ Y  

edge-dctcctinn \ 

-r- 
Edgc-dctcctcd 

\ CA 

'c 
Encode il suh-window L 
within Ihc input iinigc 22 

fmm thc cdgc-dctcctcd 

Purlomm prcpnmsing: 

Computc thc Ccmputc thc 

Fitncss: 

Slopping Criterion * 
Ouput thc window h Inund and stop 

Figure 1. The main steps of the proposed approach 

3.1. Preprocessing 
To compute the eigenfaces, first the training 

images must be registered. The procedure used is similar 
to the one given in [ 111. Specifically, the eyes, tip of the 
nose, and the corners and center of the mouth of each 
face were labeled manually. These points were then used 
to normalize each face to same scale, orientation and 
position. The normalization was performed by mapping 
the facial features to some fixed locations in an N x M 
image. The mapping was assumed to be an affine trans- 
formation, computed iteratively as in [ l l ] .  Figure 2 
shows some examples of images before and after normal- 
ization. 

Each normalized image was then preprocessed to 
account for different lighting conditions and contrast. 
First, a linear function was fit to the intensity of the 
image. The result was subtracted out from the original 

image to correct lighting differences. Then, histogram 
equalization [20] was performed to correct for different 
camera gains and to improve contrast. Figure 3 shows 
some examples. 

Figure 2. Example showing images before and after nor- 
malization. 

(d) 
Figure 3. The preprocessing steps: (a) original image, (b) 
linear fit, (c) light corrected image, (d) histogram equal- 
ized image. 

3.2. Eigenface representation 
All the images in the training set were prepro- 

cessed as explained in the previous paragraph. Then, they 
were used to compute the eigenspace representation. As 
we have already discussed, we are using two different 
eigenspaces: the first eigenspace is used for face detec- 
tion and is built using images of different individuals. To 
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improve face detection, we enhance the facial features of 
each face by computing the image gradient using the 
Sobel operator [20]. A 3 x 3 mask was used in our exper- 
iments. The resulted images were then thresholded (i.e., 
if a value was below 30, it was set to zero, otherwise, i t  
remained unchanged) and used to built the first 
eigenspace. Figure 4 shows sample images and some of 
the computed eigenfaces. To built the second eigenspace, 
we used different images from the individual of interest. 
To allow for some robustness, the images were obtained 
by allowing some variation in lighting conditions, facial 
expression, and pose. 

that the aspect ratio of the input image is greater than the 
aspect ratio of the images in the training set. If the oppo- 
site is true, Scheme2 is used (the reason i n  discussed 
below). UL stands for the upper-left corner of the sub- 
window, and BR stands for the bottom-right corner of the 
defined sub-window. Let L be the length of each chromo- 
some. Then, L is given by L = 3 * ni, where 111 is the 
number of bits used to represent each point encoded in 
the chromosome. The following constraint should be sat- 
isfied: 

2"' >= max(input image's height, input image's width) 

Figure 4. The first row shows the enhanced faces while 
the second row shows the mean and the first four eigen- 
faces. 

3.3. Encoding 
In our encoding scheme, each individual (chromo- 

some) i n  the population represents a sub-window within 
the given input image. There are some constraints that 
need attention when encoding a rectangular window. 
First of all, to evaluate sub-windows of different size 
using the eigenface approach, we need to scale them 
down or up to the size of the images in the training set. 
Although we tried several different scaling techniques 
[20], we decided to use nearest neighborhood interpola- 
tion [20] since it is fast and gives satisfactory results for 
our application. Second, to avoid face distortions, we 
need to make sure that the sub-windows chosen by the 
CA have the same aspect ratio with that of the images in 
the training set [21]. While trying to maintain the aspect 
ratio, we also need to make sure that each chromosome 
defines a window that lies within the bounds of the input 
image. Finally, through our experiments we found that 
the eigenface approach does not work very well when 
using small sub-windows. Specifically, we ended up with 
a large number of false positives when the size of the 
sub-window was very small. Thus, we constrained the 
GA choose sub-windows not smaller than Minx x MinY 
(Minx = 50 and MinY = 48). These conditions are 
depicted in Figure 5. 

To define a sub-window, while at the same time 
satisfy the constraints discussed above, we encode three 
of the four points that define a window. We employed 
two different versions of encoding as shown in Figure 6. 
The selection of Scheme1 is based upon the condition 

nspecl inlio ofthr sub-window. 

= ( B R y  ~ ULy) / ( B R x  - ULx) 

= asprcl ratio of the training images. 

BRx - ULx >= Minx 

B R y  - U L y  >= MinY 

Figure 5.  The constraints that must hold truc for a sub- 
window. 

Figure 6 .  Our encoding schemes, (a) scheme], (b) 
scheme2. 

Given that the sub-window lies within the image 
and that its aspect ratio is maintained, we need to com- 
pute the fourth point that completes the definition of the 
boundaries of the sub-window. The following discussion 
is based on Figure 5 and on the assumption that we use 
encoding scheme1 (Figure 6(a)). Let A be the aspect 
ratio of the images in the training set. In order for the 
sub-window and the training images to have the same 
aspect ratio, the fourth point, BR,.,  that completes the 
definition of the window, is calculated as follows: 

BR, .  = A * ( B R ,  - U L x )  + UL,. (3) 

BR,. should satisfy the following inequality: 

MinY I BR,. c M (4) 
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Substituting (3) in (4), we have: 

MinY I A * ( B R ,  - U L , )  + UL,  < M ( 5 )  

or 

c I BR, < d (6)  

where and 
d = ( M  - UL,. + A * U L , ) / A .  BR., should also lie inside 
the image, thus, i t  should satisfy the following inequality: 

(7) 

c = ( M i i i Y  - UL,. + A * UL,)/A 

O S  B R ,  < N - M i n x  

To decode B R , ,  a linear mapping from [0,2"'- I ]  to 
[max(O,  c), niirt(N - MirtX, d ) ]  is used. The other two 
points, UL,  and UL,. ,  are decoded using a linear mapping 
from [0,2"' - I ]  to [0, N - Minx] and from [0,2"' - I ]  to 
[O, M - M i r t Y ] ,  respectively. Using (3) we can compute 
the value of RI?,.. Similar calculations are performed 
when using encoding scheme2. To see when cach 
scheme needs to be used, let us consider (6). From (6), 
we have that M i n x  I c and d < N .  Let us assume for 
simplicity that Mir7X = MinY = 0. Then, 0 5 Oc implies 
that A < MIN while d < N implies that U L ,  < N which 
is always true. Thus, if A < M / N  scheme1 is used, other- 
wise. schemc2 is used. 

3.4. Fitness Evaluation 
Each individual in the population needs to be eval- 

uated. Based on its fitness i t  will be decided if i t  will sur- 
vive in subsequent generations. As we have already dis- 
cussed, the fitness function used here contains two terms. 
The first term denotes how close the sub-window is to 
thc facc space (face detection term). The second term, 
denotes how close the sub-window resembles the face of 
interest (face verification term). To compute the face 
detection term, we compute its d'sl,elt,clj,,,, using the 
eigenspace built from different individuals. To compute 
the face verification term, we compute its d~s,,rrit,r.~rri, ,n 
using the eigenspace built from different face images 
from the individual of interest. This has yielded better 
results than including the images of the face of interest in 
the first eigenspace, using the "distance in face space" as 
the second term of the fitness function. 

The less the value of dlfsi'Sdr,rclii,,l, the morc the sub- 
window resembles a face; and the less the value of 
d~i,,rilrco,i,,n, the more i t  resembles the face of interest. 
Thus, both of these values provide a measure of error. 
Since we need to maximize the fitness but minimize the 
error, our fitness function is given as: 

Fitness = MAX - dffsdrrrcriun - dffS~wi,icotiim 

which changes the minimization problem to a maximiza- 
tion problem for the CA (MAX is a large constant value). 

4. Experimental Results 
We have used two training sets of faces in our 

experiments. The first set includes 38 images (see Figure 
7(b) and is used to compute the face detection term of the 
fitness function. As we have already discussed, we do  not 
use the original images for building the eigenspace but 
the images obtained after applying the Sobel operator, 
followed by thresholding (see Figure 7(c)). The second 
set contains 20 face images from the individual of inter- 
est. Figure 7(a) shows one of the sets we used in our 
experiments. Different lighting, facial expressions and 
slight tilts were allowed to make verification more 
robust. 

(c) 
Figure 7. (a) lighting-corrected, histogram-equalized 
training set used for face verification, (b) original images 
used for face detection (c) images processed with the 
Sobel operator, followed by thresholding. 

Our selection strategy was cross generational. 
Assuming a population of size P ,  the offspring double 
the size of the population and we select the best P indi- 
viduals from the combined parent-offspring population 
for further processing [17]. This kind of selection does 
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well with small populations and leads to quick conver- 
gence (sometimes prematurely). We also linearly scale 
fitnesses to try maintain a constant selection pressure. A 
simple two-point crossover and point mutation were 
employed in our experiments. The crossover probability 
used was 0.95, the mutation probability was 0.05 and 
thc scaling factor was 1.2. The M A X  constant in the fit- 
ness function was set to 18000. 

We havc tested our algorithm on several scenes. 
Here, we show results on seven scenes of increasing 
complexity (Scenel - Scene7) with the face of interest 
being present in all of them (SCC Figure 8). The popula- 
tion sizc was set to 100 for Scenel and Scene2 and to 
150 for all other scenes. On the average, 40 generations 
were required for the algorithm to find the face of intcr- 
est. For each scene, we tested our approach I O  times with 
different random seeds. Performance plots (not shown 
here due to lack of space) indicate that the CA gets close 
to the correct solution quickly and then spends most of 
its time making little progrcss. 

Figure 8(a). Scenel (Size: I20 x 128) 

Figure 8(b). Scene2 (Size: 240 x 320) 

Scenel is relatively simple containing only the 
face of interest. What is interesting about this imagc is 
that i t  is not a very recent picture of the person of inter- 
est. The CA was able to find the face in all cases (see 
Figure S(a)). Next, we tested CA's ability to find the face 
of interest, assuming different size. Figure 8(b) shows 
Scene2 with the face of interest being very close to the 
camera. The GA converged to the face in all experiments. 

To test CA's robustness against occlusion, we tested it on 
Scene3 where the person of interest is wearing glasses. 
As seen in Figure 8(c), the CA performed a good job 
finding the face. It should be mentioned that in all three 
cases, the fintness of the solutions found was very high. 
We have also tested images containing different faces. 
The CA converged to these faces as well, however, the 
fitness of the solutions was much lower. 

Scenes 4-7 wcrc used to test CA's performance in 
the presence of other faces. In the case of Scenes 4 and 
5, the faces present resemble the face of interest as they 
are from thc same ethnic group and all have moustache. 
In all ten experiments, the face of interest was found cor- 
rectly. Scenes 6 and 7 contain faces from other races. In 
the case of Scene 6, the CA converged to the face of 
interest 6 out of I O  times. The othcr two times it con- 
verged to thc face shown in  Figure 8(f). Our analysis 
indicated that the two solutions have close fitnesses. I n  
the case of Scene 7, the CA converged to the face of of 
intcrcst 9 out of I O  times. The face to which i t  convcrged 
one time is shown in Figure 8(g). Our analysis indicatcd 
again that the fitnesses were close (but not as close as in 
the case of Scene 6). These two cases indicate that more 
powerful litncss functions are required. We elaboratc on 
this issue in the next section. Nevertheless, we were able 
to achievc 100% accuracy by increasing the population 
size. 

Figure 8(c). Scene3 (Size: 350 x 444) 

Figure 8(d). Scene4 (Size: 240 x 320) 
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Figure 8(e) .  Scene5 (Size: 269 x 395) 

Figure Slf). Scene6 (Size: 438 x 497) 

Figure 8(g). Scene7 (Size: 288 x 464) 

Figure 8. Some of the scenes considered in our experi- 
ments. The faces found are shown in a white box. 

The total number of sub-windows that the CA 
explores is much less compared to the entire search 
space. To compute this number, we consider the product 
of population size and number of generations it took for 
the CA to converge to the correct face. To estimate the 

efficiency gained, we computed the number of all possi- 
ble sub-windows assuming that the smallest sub-window 
is of size 50 x 48 (sincc the CA docs not consider 
smaller sizes than this). Table I shows the ratio of sub- 
windows searched by the CA over the total number of 
possible sub-windows. Clearly, the CA was able to find 
the face of interest by scarching only a very small portion 
of the solution space. 

Table 1. Sutntmry of results. 

5. Conclusions 
In this paper, we have proposed using genetic algo- 

rithms to search for the face of a particular individual in 
an image. Specifically, we used GAS to search for sub- 
images that might contain the lace of interest. To cvalu- 
ate each sub-window, we proposed a fitness function 
using ideas from the eigcnface approach. Also, we pro- 
posed an encoding scheme which ensures that the sub- 
images extracted lie inside the input image and have the 
same aspect ratio with the training images. Our expcri- 
mental results demonstrate the GAS is a promising tool 
for solving this problem. 

The current work has certain limitations. First of 
all, we consider mostly frontal lace images. Second, the 
lighting conditions do  not change very much. Finally, 
facial expression and pose do not vary considerably. 
Actually, these limitations are not limitations of the C A  
approach itself but limitations of the eigenface-based fit- 
ness function. We were able to allow for some degree of 
tolerance by employing a separate eigenspace for the 
face of interest, however, more powerful approaches 
necd to bc uscd in defining the fitness function. Among 
thc mcthods we plan to investigate in the future arc the 
method of Fisherfaces [23] and the method of Indepen- 
dent Component Analysis (ICA) [24]. 
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