
Fingerprint Identification Using Delaunay Triangulation 
George Bebist, Taisa Deaconut and Michael GeorgiopoulosS 

?Department of Computer Science, University of Nevada, Reno 
$Department of Electrical and Computer Engineering, University of Central Florida 

{ bebis, deaconu } @cs.unr.edu, mng@ece.engr.ucf.edu 

Abstract 

This paper presents a new indexing-based approach to 
fingerprint identification. Central to the proposed 
approach is the idea of associating a unique topological 
structure with the fingerprint minutiae using the Delau- 
nay triangulation. This allows for choosing more “mean- 
ingful” minutiae groups (i.e., triangles) during indexing, 
preserves index selectivity, reduces memory require- 
ments without sacrificing recognition accuracy, and 
improves recognition time. Specifically, assuming N 
minutiae per fingerprint on the average, the proposed 
approach considers only O( N )  minutiae triangles during 
indexing or recognition. This compares favorably to 
O( N’),  the number of triangles usually considered by 
other approaches, leading to significant memory savings 
and improved recognition time. Besides their small num- 
ber, the minutiae triangles we used for indexing have 
gbod discrimination power since, among all possible 
minutiae triangles, they are the only ones satisfying the 
properties of the Delaunay triangulation. As a result, 
index selectivity is preserved and indexing can be imple- 
mented in a low-dimensional space. Some key character- 
istics of the Delaunay triangulation are (i) it is unique 
(assuming no degeneracies), (ii) can be computed effi- 
ciently in O ( N f o g N )  time, and (iii) noise or distortions 
affect it only locally. The proposed approach has been 
tested on a database of 300 fingerprints (10 fingerprints 
from 30 persons), demonstrating good performance. 

Keywords: fingerprint recognition, Delaunay triangula- 
tion, indexing 

1. Introduction 
Fingerprint matching is one of the most popular 

and reliable biometric techniques used in automatic per- 
sonal identification. There are two main applications 
involving fingerprints: fingerprint verifcation [ 1][2] and 
jingerprint identification [3]-[5]. While the goal of fin- 
gerprint verification is to verify the identity of a person, 
the goal of fingerprint identification is to establish the 
identity of a person. Specifically, fingerprint identifica- 
tion involves matching a query fingerprint against a fin- 
gerprint database to establish the identity of an individ- 

ual. To reduce search time and computational complex- 
ity, jingerprint classification is usually employed to 
reduce the search space by splitting the database into 
smaller parts [5][6]. Matching is usually based on lower- 
level features determined by singularities in the finger 
ridge pattern known as minutiae. 

Given the minutiae representation of fingerprints, 
fingerprint matching can simply be seen as a point 
matching problem [7]-[9]. In this context, matching two 
fingerprints implies finding a subset of minutiae in the 
first fingerprint that best match to a subset of minutiae in 
the second fingerprint through a geometric transforma- 
tion in an optimal sense (i.e., least-squares). Besides 
matching two fingerprints together, the main issue when 
dealing with large fingerprint databases is how to select 
the most similar fingerprints to the query fingerprint from 
the database. Both of these problems appear very often in 
computer vision, particularly, in object recognition. As a 
result, methods for object recognition have much in com- 
mon with fingerprint identification methods. 

Indexing-based methods [lo]-[ 121 are quite attrac- 
tive when dealing with large object databases, since the 
query object does not have to be compared with every 
other object in the database. Specifically, indexing is a 
mechanism which, when provided with a key value, is 
able to rapidly access some associated data. Thus, 
instead of having to search the space of all possible 
matches and explicitly reject invalid ones, indexing 
inverts the process so that only the most feasible matches 
are considered. The main idea behind indexing is to pre- 
store information about the models in a table. For each 
model, groups of features are extracted and an index is 
computed from each group. Information about each 
group is then stored in the indexed location. During 
recognition, the information stored in the table is used to 
quickly eliminate non-compatible matches. Recently, 
Germain et al. have proposed using the FLASH algo- 
rithm [4], an indexing-based object recognition algo- 
rithm, for fingerprint identification. 

There are important issues to be considered when 
using indexing for fingerprint identification including the 
issues of memory requirements and index selectivity. In 
terms of memory requirements, the number of table 
entries will be of the order of O(Ns),  where N is the 
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average number of object features and S is the size of 
groups. Fingerprints usually contain between 30 and 80 
minutiae [ 1][2], a number which is higher than the aver- 
ape number of features (e.g., curvature extrema) found in 
a typical object. This, along with the common practice to 
store more than one imprints of the same finger in the 
database to improve robustness and accuracy [ 1][2], 
leads to much higher space requirements. 

The issue of index selectivity relates to the dis- 
crimination power of the groups considered for indexing. 
Groups with low discrimination power give rise to very 
similar indices (low index selectivity). As a result, a large 
number of hypothetical matches are generated during 
recognition, making indexing ineffective. The main cause 
of reduced index selectivity is the small size of groups 
used for indexing and that almost every possible group is 
considered for indexing. One way to deal with this prob- 
lem is by increasing the index dimensionality using 
larger size groups, however, this will also increase mem- 
ory requirements since the number of groups increases 
exponentially with size. Alternatively, additional infor- 
mation can be computed from each group and added to 
the index to increase its dimensionality. FLASH is based 
on this idea (7-dimensional indices were used in [ 11  J and 
9-dimensional in [4]). Although this approach is effec- 
tive, i t  also increases time requirements and raises the 
issue of computing the additional information fast and 
reliably. 

In this paper, we propose a new approach to finger- 
print identification based on indcxing and thc Dclaunay 
triangulation [ 13][14]. The problem of triangulation is a 
fundamental one in computational geometry with appli- 
cations in surface or function interpolation. Here, the 
Delaunay triangulation is used to associate a unique 
topological structure with the fingerprint minutiae. The 
goal is to use the Delaunay minutiae triangles for index- 
ing. This yields reduced memory requirements without 
sacrificing recognition accuracy, preserves index selectiv- 
ity without resorting to high-dimensional indexing 
schemes, and improves recognition time. It can be shown 
that if N is the number of minutiae, the Delaunay trian- 
gulation produces O ( N )  triangles [14][ 151. Thus, the 
number of table entries will be of the order of O ( N ) .  This 
compares favorably to O ( N 3 ) ,  the number of all possible 
triangles considered by other approaches [4][ 101. In 
addition, the Delaunay minutiae triangles have good dis- 
crimination power since, among all possible triangles, 
they are the ones satisfying the properties of the Delau- 
nay triangulation [14J[ 151. This, along with their small 
number, leads to faster recognition and low-dimensional 
indexing. 

The key characteristics of the Delaunay triangula- 
tion of a set of points is that it is unique. Also, it can be 
computed efficiently in O(N1ogN) time [16]. One prob- 
lem is that it  is sensitive to noise and distortions (e.g, 
introduced by missing or spurious minutiae points), how- 

ever, both noise and distortion have only a local effect on 
it. This means that correct identification will be possible 
if some region of the fingerprint has not been seriously 
affected. 

The paper is organized as follows: in Section 2, we 
discuss the use of indexing for fingerprint identification. 
Section 3 reviews the Delanuay triangulation and Section 
4 describes how the Delaunay triangulation is used for 
fingerprint identification. Section 5 presents our experi- 
mental results and finally, our conclusions are given in 
Section 6. 

2. Using indexing for fingerprint identifica- 
tion 

The problem of fingerprint identification has much 
in common with the problem of 2D model-based object 
recognition where recognition relies upon the existence 
of a set of predefined models. Given an unknown scene, 
recognition implies: (i) the identification of a set of fea- 
tures from the scene which approximately match a set of 
features from a model, (ii) the recovery of the geometric 
transformation that the model has undergone and, (iii) 
verification that other features coincide with the predic- 
tions. Similarly, fingerprint identification refers to the 
process of matching a query fingerprint against a finger- 
print database in order to establish the identity of an indi- 
vidual. In both cases, thc goal is to quickly determine if 
an object or fingerprint is in the database and to retrieve 
those objects or fingerprints which are most similar with 
the unknown scene or query fingerprint. Since usually 
there is no a-priori knowledge of possible feature corre- 
spondences, matching can be computationally too expen- 
sive, even for a moderate number of models in the 
database. 

Indexing has received considerable attention in the 
literature [ 101-[12] since it does not require considering 
each model separately, thus, it is less dependent on the 
database size. Indexing-based methods have two phases 
of operation: preprocessing and recognition. During pre- 
processing, features which remain unchanged under geo- 
metric transformations (invariants) are extracted from 
groups of model points and used to form indices. The 
indexed locations are filled .with entries containing refer- 
ences to the models. During recognition, features from 
groups of image points are extracted and used to form 
indices again. The models listed in the indexed entries 
are collected into a list of candidate models and the most 
often indexed models are selected for further verification. 
Verification works by computing the transformation 
between the model(s) and the image and then by aligning 
the model(s) with the image using the computed transfor- 
mation. Then, the similarity of the model with the image 
is estimated (e.g., by finding the percentage of model 
features that have been aligned with image features). 

453 



Although indexing is an attractive approach, very 
often i t  becomes less effective due to limited index selec- 
tivity. The heart of the problem is the low dimensionality 
of the invariants used to form the indices. In addition, 
indexing has high memory requirements. In the case of 
fingerprints, memory requirements can become much 
higher since fingerprints contain more features on the 
average than typical objects. Indexing-based methods 
usually consider every possible group of features (of a 
specific size) for building the table. There are two main 
reasons for this: first, i t  is desirable to build some degree 
of redundancy in the table so recognition can become 
more robust and second, there is usually no a-priori 
knowledge for choosing certain groups over others. 
Although redundancy can improve robustness, redun- 
dancy with limited index selectivity increase false posi- 
tives, slowing recognition time significantly. 

One way to deal with the problem of limited index 
selectivity is by choosing larger size groups. However, 
this will further increase memory requirements since the 
number of groups increases exponentially with size [20]. 
To get around this problem, "grouping" has been sug- 
gested in object recognition to identify important groups 
of features only [ ~ I J .  Using' grouping in fingerprint 
recognition, however, will not be a good idea since the 
minutiae have a rather random distribution. Another idea 
to improve index selectivity is by adding new invariants 
to the index, thus, increasing its dimensionality. The 
FLASH algorithm is based on this idea [ 1 I ] ,  In [4], the 
FLASH algorithm was used for fingerprint identification. 
FLASH considers triangles of minutiae to compute a 
9-dimensional index which includes information about 
the lengths of the sides of the triangle formed by the tri- 
angle, the ridge count between each pair, and angle infor- 
mation. Although the idea of using high-dimensional 
invariants does improve index selectivity, new issues 
arise since we need to consider how the high- 
dimensional invariants will be computed fast and reli- 
ably. 

In this paper, we propose a new indexing-based 
approach to fingerprint identification. Central to the new 
approach is the idea of associating a unique topological 
structure with the minutiae using Delaunay triangulation. 
The minutiae triangles of the Delaunay triangulation are 
then used for indexing. There are several advantages 
behind this idea. First of all, we only consider O(N) tri- 
angles for indexing, implying lower memory require- 
ments and less redundancy. Second, the minutiae trian- 
gles of the Delaunay triangulation have good discrimina- 
tion power since, among all possible triangles, they are 
the only ones satisfying the properties of the Delanuay 
triangulation. The improved index selectivity along with 
the less redundancy of the information stored in the table 
yield less false positives and improve recognition time. 
Finally, indexing can be implemented in a low- 
dimensional space. 

3. Background on Delaunay triangulation 
Triangulation is a process that takes a region of 

space and divides i t  into subregions. The space may be of 
any dimension, however, a 2D space is considered here 
since we are dealing with 2D points (minutiae). In this 
case, the subregions are simply triangles. Triangulation 
has many applications in finite elements simulation, sur- 
face approximation and nearest neighbor identification 
[16]. Here, however, our goal, is  to associate a 2D topo- 
logical structure with the minutiae. 

Given a set S of points p , ,  p2, ..., PN, we can 
compute the Delaunay triangulation of S by first comput- 
ing its Vororioi diagram. The Voronoi diagram decom- 
poses the 2D space into regions around each point such 
that all the points in the region around p i  are closer to p i  
than they are to any other point in S. Given the Voronoi 
diagram, the Delaunay triangulation can be formed by 
connecting the centers of every pair of neighboring 
Voronoi regions. Figure la shows a set of 2D points, 
their Voronoi diagram is shown in Figure 1 b while their 
Delaunay triangulation is shown in Figure IC.  Delaunay 
triangulation has certain properties, including: (1) the 
Delaunay triangulation of a non-degenerate set of points 
is unique, (2) a circle through the three points of a Delau- 
nay triangle contains no other points and (3) the mini- 
mum angle across all the angles in all the triangles in a 
Delaunay triangulation is greater than the minimum 
angle in any other triangulation of the same points. 

. .  . .  
. I .  . . .  . 

. .  . , . .  . : , . .  . . .  
. . . .  . .  
. .  . . .  . .  

. .  . . 
I .  

. . _  . 
1 . .  

Figure I. (a) A set of points, (b) its Voronoi diagram, and 
(c) its Delaunay triangulation. 

Property 1 supports the use the Delaunay triangles for 
indexing. Property 2 implies that the insertion of a new 
point in a Delaunay triangulation affects only the trian- 
gles whose circumcircles contain that point. As a result, 
noise affects the Delaunay triangulation only locally. 
This is very important in the context of our application. 
The last property implies that the triangles obtained are 
not "skinny". This is also very desirable in our applica- 
tion since the computation of the geometric transforma- 
tions between fingerprints is based on corresponding 
minutiae triangles. Using skinny triangles can lead to 
instabilities and errors [IO]. In a comparison study that 
involved several well known topological structures [ 181, 
the Delaunay triangulation was found to have the best 
structural stability under random positional perturba- 
tions. 
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The Delaunay triangulation and the Voronoi dia- 
gram are very efficient algorithms since the number of 
edges in both of them is proportional to a small constant 
times the number of points ( O ( N ) ) .  Since each edge 
belongs to at most two triangles or polygons, then the 
number of triangles generated by the Delaunay triangula- 
tion is also linear to the number of points. In our experi- 
ments, we have used Fortune's implementation which is 
available from http://netlib.bell-labs.com/netlib/voronoi. 
The complexity of the algorithm is O(Nlog(N)) .  

4. Indexing using Delaunay triangulation 

4.1. Minutiae triangulation 
The proposed fingerprint identification system rep- 

resents fingerprints in terms of their minutiae. The two 
most prominent minutiae, which are also the ones used 
here, correspond to ridge endings and ridge bifurcations. 
Each minutiae is represented by its coordinates (x,y). 
Once the minutiae have been extracted (we use the algo- 
rithm in [5]), their Delaunay triangulation is computed. 
Figure 2 demonstrates the Delaunay triangulation of the 
minutiae extracted from one of the fingerprints in our 
database. 

Figure 2. The Delaunay triangulation of the minutiae. 

4.2. Building the index table 
The index table is built by considering the minu- 

tiae triangles formed by the Delaunay triangulation. 
Before deciding what invariants will be computed from 
each minutiae triangle, the geometric transformation that 
relates different fingerprint instances should be defined. 
Usually, it is assumed to be a rigid or similarity transfor- 
mation [2]-[4][5]. In this paper, we assume similarity 
transformations (translation, rotation, and scaling) with a 
refinement step based on affine,transformations (see Sec- 
tion 4.4). From each minutiae triangle, information 
invariant to similarity transformations is thus computed. 
Then, an index is formed using the invariants and appro- 
priate information is stored in the indexed table location. 

Without using the Delaunay triangulation, we 
would have to consider every possible triangle. Assum- 
ing N minutiae on the average, the number of possible 
triangles is O(N3).  In contrast, the Delaunay triangula- 
tion yields only O ( N )  triangles. Since these triangles sat- 

isfy the properties of the Delaunay triangulation, they 
can be found through a well defined procedure and have 
good discrimination power. Using these triangles for 
indexing preserves index selectivity and allows for 
implementing a low dimensional indexing scheme. 

Given a minutiae triangle (e.g., see Figure 3), we 
compute three invariants which are then used to form a 
3-dimensional index. The invariants are based on the 
sides and angles of the minutiae triangle. First of all, we 
sort the sides of the triangle to avoid considering all pos- 
sible orders of three points: 

Then, the following invariants are computed: 

11 
13 

o s - 2 1  

o s - I 1  12 

13 

-1  I COS(A) I 1 

where A is the angle between the smallest two sides. 

A 

Figure 3. Invariants using the minutiae triangles. 

The reason for using the cosine of the angle and 
not the angle itself is because the value of the angle is 
sensitive to noise introduced by the minutiae extraction 
algorithm while the cosine can filter out part of that 
noise. It should be mentioned that the angle we consider 
for indexing is the largest of the three angles in the trian- 
gle under consideration. Obviously, very large angles 
yield triangles whose points are almost collinear. 
Although the Delanuay triangulation tends to avoid such 
"skinny" triangles as mentioned in Section 3, this cannot 
always be guaranteed (unless extra points are inserted in 
the minutiae set, e.g., see [16]). Such triangles are not 
desirable since the computation of the geometric trans- 
formation becomes unstable (small errors in the minutiae 
locations yield large errors in the computation of the 
parameters of the transformation). Thus, we reject trian- 
gles whose largest angle is greater than a threshold (168 
degrees). 
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After the invariants have been computed, linear 
scaling followed by quantization yields an integer index. 
For each index computed, information about the finger- 
print and its minutiae is stored in the index table. Specif- 
ically, the entries stored in the table have the following 
format: 

(persorz-ID, impriizf-ID, n i l ( x ,  y), m*(x ,  y), nz,(x,  y)) 

where person-ID corresponds to an identification code 
for the person, print-ID is an identification code for the 
particular imprint of that person (i.e., each person can 
have more than one imprints stored in the database), and 
m j ( x ,  y) are the ( x ,  y) coordinates of the mi point in the 
group of minutiae. 

Fingerprint images are usually very noisy due to 
various factors such as fingerprint morphology and imag- 
ing conditions. Also, certain amount of noise is intro- 
duced by the minutiae extraction process. In order to 
account for variations in the fingerprint images of the 
same finger, i t  is often imperative to store in the database 
information from several different images of the same 
finger taken at different times. Although this increases 
memory requirements, i t  makes the system more robust 
to noise and distortions. In Section 5, we report a num- 
ber of experiments by varying the number of imprints 
stored in the database. 

4.3. The identification step 
During identification, each index generated by a 

query fingerprint is used to retrieve all model fingerprints 
stored in the database under the same index. While pro- 
cessing the query fingerprint, the minutiae points are 
extracted and their Delaunay triangulation is computed. 
For each Delaunay minutiae triangle, the lengths of the 
sides are calculated, sorted in ascending order, and the 
invariants are computed. Then, the invariants are quan- 
tized as in preprocessing. The resulting index is used to 
retrieve from the database all the entries stored at the 
same index table location. To account for noise, we also 
retrieve entries stored in a small neighborhood (i.e., a cir- 
cle of radius 2) around the indexed location. 

Most indexing-based approaches accumulate evi- 
dence about a model by casting a vote for every entry 
stored in the indexed locations and by "histograming" the 
entries to pick the ones which have received a high num- 
ber of votes [IO].  The problem with this approach is that 
i t  takes into consideration only the number of votes 
received by a particular entry and does not consider 
whether these votes are consistent among themselves. To 
introduce a measure of coherence, Lamiroy and Gros 
[ 191 have proposed voting in the transformation space. 
The key idea behind this approach is to consider transfor- 
mations which form large clusters in the transformation 
space. The same idea was also used in [4]. 

We have also adopted this idea in our work since it 
is very effective. Specifically, each of the entries 
retrieved from the index table represents a hypothesized 
correspondence between three minutiae in the query fin- 
gerprint and three minutiae in the model fingerprint. 
Given this information, the transformation that best maps 
the query triangle to the model triangle is computed. The 
computed transformation parameters are binned and, 
along with the person-ID and imprint-ID, form a key 
that indexes another data structure used for evidence 
accumulation. An 8-dimensional integer array was used 
in order to store the number of votes in the transforma- 
tion space (six dimensions for the parameters of the 
transformation, one for the person-ID and one for the 
imprint-ID). 

If a large number of minutiae can be brought into 
correspondence by a transformation, then the indices 
generated by the triangles formed by those minutiae will 
generate the same or very similar transformation parame- 
ters. Hence, a larger number of votes for a correct match 
will be accumulated. There might be a number of ran- 
dom correspondences between minutiae triangles in the 
query fingerprint and some model fingerprint, however, 
the likelihood of a number of consistent transformation 
parameters being generated by random correspondences 
is small, and the verification step will eliminate most of 
them. 

4.4. The verification step 
The transformations that are further considered for 

verification are the ones with the 4 largest number of 
votes. The verification stage determines whether two fin- 
gerprints correspond to the same finger or not. This is 
performed by aligning the two fingerprints using the 
transformation computed in the previous step and by 
computing the amount of overlap. Specifically, given a 
query fingerprint, a list of candidate fingerprints which 
possibly match the query fingerprint is generated. For 
each candidate match, a transformation is computed. 
Then, the computed transformation is applied on the can- 
didate fingerprint to align it with the query fingerprint. If 
a large number of minutiae from the candidate fingerprint 
are "close" (i.e., less that I5 pixels) to a large number of 
minutiae from the query fingerprint, then it is very likely 
that the two fingerprints come from the same finger. To 
compute the percentage of overlap, we use the following 
formula: 

2n 

m + q  
p = -  x 100 

where n is the number of matched minutiae, m is the 
number of minutiae in the candidate fingerprint and q is 
the number of minutiae in the query fingerprint. 

Although we use similarity transformations to 
related different fingerprint instances, differences in the 
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pressure of the figure on the sensor or skin elasticity pro- 
duce deformations which are not modeled very well by 
similarity transformations. In our experiments, we have 
found that a refinement of the computed similarity trans- 
formations using affine transformations can align the fin- 
gerprints more accurately. Based on this observation, our 
verification procedure has two stages. In the first stage, 
the two fingerprints are aligned through a similarity 
transformation since the invariants computed are invari- 
ants to similarity transformations. In the second stage, 
however, we find additional minutiae correspondences 
and we attempt improve the alignment by computing an 
affine transformation. Figure 4a shows the alignment of 
two fingerprints using just three minutiae and similarity 
transformation. Figure 4b shows the aligned fingerprints 
using more minutiae correspondences and affine transfor- 
mation. 

5.2. Experiments 
To characterize system's performance, we have 

conducted several experiments. In the first set of experi- 
ments, we vary the number of imprints stored in the 
database for each person. Thus, a subset of the 300 fin- 
gerprint images was used to build the database while the 
rest images were used for testing. We have experimented 
with storing 3, 5, and 7 images per person in the 
database. In each case, six experiments were conducted. 
In the first five experiments, the images stored in the 
database were chosen randomly while in the last experi- 
ment, the "best" images were chosen (in terms of image 
quality according to our opinion). 

We classify our results in four categories: (a) cor- 
rect: the query fingerprint has been correctly matched to 
one or more fingerprints from the same person, (b) false 
positive: the query fingerprint has been matched to one or 
more fingerprints from an incorrect person (c) false  nega- 
tive: the query fingerprint has not been matched to any 
fingerprint in the database (we assume that the database 
contains fingerprints from each person), and (d) mixed: 
there is not enough evidence to assign the query finger- 
print to one of the previous three categories. The reason 
we have mixed matches is because we store more than 
one imprints in the database for each person. Usually, the 
query fingerprint is matched to more than one imprints 
from the same person (see Figure 5). Sometimes, how- 
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Figure 4. Aligning the two fingerprints using a similarity 
transformation, (b) improving the alignment through an 
affine transformation. 

In each stage, a different threshold is used to define 
the percentage of minutiae from the candidate fingerprint 
that are "close" to minutiae from the query fingerprint. In 
particular, a smaller threshold (20%) is used in the first 
stage to make sure that we consider as many candidate 

ever, the list of matches contains fingerprints from other 
persons as well. We call this case a "mixed" match. 
Mixed matches require further processing. Here, we 
resolve the mixed results using a "majority" rule. 
According to this rule, we assign the query fingerprint to 
the individual with the maximum number of imprints in 
the list of matches. In our experiments, we were able to 
resolve all mixed matches correctly using this rule (the 
percentage of mixed matches is shown in the last column 
for completeness). 

- 
matches as possible, thus, reducing the number of false 
negatives. In the second stage, however, we filter out the 
false positives introduced by the first stage by using a 
higher threshold (40%). The threshold used to define the 
"closeness" between minutiae is also different is each 
stage (10 pixels in stage one and 15 pixels in stage two). 

5. Experimental results 

5.1. The data set 
(a) (b) The fingerprint images used in this study have 

been captured using an inkless fingerprint scanner. Our 
database contains 300 fingerprints, captured from 30 
individuals (10 images per finger for each individual). 
The size of these images is 400 by 400 pixels. When 
these fingerprint images were captured, no restriction on 
the position and the orientation of fingers were imposed. 

Figure 5. Several imprints from the same finger match 
the same query image; (a) imprintl, (b) imprind. The 
black lines correspond to the query image while the 
white lines correspond to the model. 

Tables 1-3 show the results obtained storing vari- 
ous number of imprints (3, 5, and 7) in the database for 
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each person. From these results, we can infer that the 
recognition accuracy depends on the number of imprints 
stored in the database for each person. In particular, the 

extraction algorithm failed to detect certain minutiae). 
Figure 6 shows examples of these cases. 

last row of each table shows that if the imprints stored in 
the database are of good quality, then recognition accu- 
racy can be improved significantly. The number of false 
negatives are relatively high compared to the number of 
false postives. Obviously, the threshold used for match- 
ing (40% of points should match) has some effect on 
this. Although this threshold was chosen experimentally 
here, we plan to optimize its choice in our future work. 

Table 1. Stored: 3 imprints per person; Tested: 210. . ,  .. 

(a> (b) 

Figure 6. (a) The query fingerprint is of bad quality, (b) 
the query fingerprint has a small number of minutiae in 
common with other fingerprints from the same finger 
(the black lines correspond to the query fingerprint). 

In the next experiment, we wanted to test how false 
positives increase with the database size. Also, we were 
interested in testing how the system performs on finger- 
prints from people not represented in the database. In 
order to test this assumption, we fixed the number of 
query fingerprints to 50 by randomly choosing 5 persons 
out of the 30 persons contained in our database. Then, 
we used the fingerprints of the rest 25 persons (25 x 10 = 
250) to build the database. Five experiments were con- 
ducted by storing in the database 250, 200, 150, 100 and 
50, randomly chosen, fingerprints. 

As can be seen from Table 4, false positives 
increase slowly with the database size. Usually, if a 
query fingerprint has a match in the database, there will 
be no room for false positives since the matched model 
will receive a large number of votes. However, if a match 
does not exist, we have noticed that false alarms usually 
occur at around the threshold value (all the false alarms 
encountered in our experiments had less than 45% com- 
mon points while the threshold was 40%). One way to 
improve the results is by using additional information for 
verification. Currently, we just use the minutiae locations 
for verification. However, additional information such as 
local orientation can improve the results. Another way is 
to increase the threshold for the number of matched 
minutiae but this will of course increase the number of 
false negatives. The answer to this dilemma depends on 
the application. 

The response time of our system depends on the 
query fingerprint. If the query fingerprint has a match in  

Table 2. Stored: 5 imprints per person; Tested: 150. 

We have also tested all possible combinations of 
storing 9 fingerprints from each person in the database. 
Recognition accuracy improved even more in this case, 
however, our results indicate that there are certain finger- 
prints that are very 
for this are: (i) the quality Of the query fingerprint is so 

to identify. The main the database, the. the response time is of order of a few 
seconds (usually, 4-5 - no code optimization was per- 

bad that it does not resemble very well any of the other 9 
fingerprints and (ii) the query fingerprint does not have 

Of the finger- 
prints (e.g., two fingerprints might correspond to differ- 
ent poses of the finger on the scanner or the minutiae 

formed, all the experiments were llln on an Ultra Sun 
30). In this case, a few hypotheses are generated. How- 
ever, if a match does not exist, then the response time can 
double or even triple. In this case, a large list of hypothe- 

minutiae in  common with the 
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ses are created which are then subject to verification. 

#images in the database 
50 
100 
150 
200 
250 

Average #of False Positives (5 trials) 
0.6( 1.2%) 
0.8( 1.6%) 

1(2%) 
1.4(2.8%) 
1.6(3.2%) 

6. Discussion and conclusions 
We have proposed a indexing-based new approach 

to fingerprint identification using the Delaunay triangula- 
tion. The most important characteristics of the proposed 
approach are: low storage requirements, improved index 
selectivity, low dimensional indexing requirements, and 
fast identification. Our results indicate that the accuracy 
of a fingerprint recognition system can be improved by 
storing in the database imprints of good quality. This is a 
reasonable assumption since in most applications, the 
quality of the imprints is (or can be) controlled during 
acquisition. Our experiments have shown that most 
misses occur in the case of images of poor quality or 
images that do not have a good representant in the 
database. 
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