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ABSTRACT
The Neural Multiple Source Tracking (N-MUST) algorithm, which is based on an architecture of a family of radial basis

function neural networks (RBFNN), is investigated for multiple source tracking with neural network-based adaptive array
antennas. The N-MUST algorithm consists of an initial stage with a number of Radial Basis Function Neural Networks
(RBFNN) trained to detect the presence of the sources, while a second stage of networks is trained to estimate the exact
locations of the sources. The field of view of the antenna array is divided into separate angular sectors, which are in turn
assigned to a different pair of RBFNN' s. When a network detects one or more sources in the first stage, the corresponding
second stage networks are activated to perform the direction of arrival (DOA) estimation step. No prior knowledge of the
number of present sources is required. Simulation results are performed and experimental data is applied to the networks to
investigate the required training criteria to achieve good generalization in the detection mode, with respect to the angular
separations and relative SNR of the sources. The results show substantial reduction in the computational complexity of the
network training compared to the single network approach.

Keywords
Smart antennas, source arrival estimation, neural networks, radial basis function neural networks, unsupervised learning,
supervised learning.

I. INTRODUCTION

Recently, neural networks-based direction fmding algorithms have been proposed for single and multiple source
direction fmding [1-3]. It has been shown that neural networks have the capability to track sources in real-time. In [41, a
radial basis function neural network has been used to track the locations of mobile users. However different networks were
needed for different number of users with fixed angular separation. This paper presents a generalization of the algorithm
introduced in [4] in such a way that the system would be able to track an arbitrary number of sources with any angular
separation withoutprior knowledge of the number of sources. The Neural Multiple Source Tracking (N-MUST) algorithm is
based on architecture of a family of radial basis function neural networks that perform both detection and direction of arrival
(DOA) estimation. The new approach is based on dividing the field of view of the antenna array into angular spatial sectors,
then train each network in the first stage of the architecture to detect signals emanating from sources in that sector. Once this
first step is performed, one or more networks of the second stage (DOA estimation stage) can be activated so as to estimate
the exact location of the sources. The main advantage of this new approach is a dramatic reduction in the size of the training
set required to train each smaller neural network. The organization of this paper is as follows: Section II presents the problem
formulation and elaborates on the use of neural networks for direction finding. In section III, the new approach labeled N-
MUST is described. The simulations results are presented in section IV and in section V some conclusive remarks summarize
the performance ofthe algorithm.

II. NEURAL NETWORK-BASED DIRECTION FINDING
Consider a linear array composed of M elements. Let K (K<M) be the number of narrowband plane waves, centered at

frequency coo impinging on the array from directions {O 2 9K } Using complex signal representation, the
received signal at the ith array element can be written as,
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xi (t) = Sm (t)em + n1 (t) ; i = 1,2, • • • M
(1)

where Sm(t) jS the signal of the mth wave, n1(t) is the noise signal received at the ith sensor and

o0d.
km S1fl(Om) (2)

C
where d is the spacing between the elements of the array, and c is the speed of light in free space. Using vector notation we
can write the array output in a matrix form:

x (t) = A S(t) + N(t) (3)

Where, X (t), N(t) and S(t) are given by:

X(t) = [x1 (t) x2 (t) . . . XM (t)]T (4)

N(t) = [n1 (t) n2 (t) .. . M (t)]T (5)

S(t) = [s1(t) s2(t) ... sK(t)]T (6)
In (4) and (5) and (6) the superscript "T' indicates the transpose of the matrix. Also in (3) A is the MxK steering matrix ofthe
array towards the direction ofthe incoming signals defmed as:

A=[a(91) ... a(Om) •.. a(6K)] (7)

where a(Om) corresponds to

a(Gm ) [i e121 . . . e_J(M_D
IJ (8)

Assuming that the noise signals {n1(t), i =1 :M)), received at the different sensors, are statistically independent, white
noise signals, of zero mean and variance cr2 and also independent of S(t) ,then the received spatial correlation matrix, R, of
the received noisy signals can be expressed as:

R = E{X(t)X(t)' } A E[S(t)S'' (t)]AH + E[N(t)N" (t)] (9)
In the above equation, "H" denotes the conjugate transpose. The antenna array can be thought of as performing a mapping G:

R K CM from the space of the DOA, {®= [O '°2 ,OK] T} to the space of sensor output
r iT . . . ,-iM rK

{ X(t) = ix1 (t) x2 (t) . . . XM (t)j }. A neural network is used to perform the mverse mappmg F: U —+ It . The
algorithm described in this paper for the problem of direction fmding is based on using radial basis function neural networks
to approximate this inverse mapping F. Note that a Radial Basis Function Neural Network can approximate an arbitrary
function from an input space of arbitrary dimensionality to an output space of arbitrary dimensionality[5-7]. The RBFNN
consists of three layers of nodes, the input layer, the output layer and the hidden layer. The input layer is the layer where the
inputs are applied, the output layer is the layer where the outputs are produced. The RBFNN is designed to perform an input-
output mapping trained with examples. The purpose of the hidden layer in a RBFNN is to transform the input data from an
input space of some dimensionality to a space of higher dimensionality L. The rationale behind this transformation is based
on Cover's theorem[8] which states that an input/output mapping problem cast in a high-dimensionality space nonlinearly is
easier to solve. The nonlinear functions that perform this transformation are usually taken to be Gaussian functions of
appropriately chosen means and variances. There are alot of learning strategies that have appeared in the literature to train a
RBFNN. The one used in this paper was introduced in [9], where an unsupervised learning algorithm, such as the K-
Means[lO], is initially used to identify the centers of the Gaussian functions used in the hidden layer. Then, an ad-hoc
procedure is used to determine the widths (standard deviations) of these Gaussian functions. According to this procedure the
standard deviation of a Gaussian function of a certain mean is the average distance to the first few nearest neighbors of the
means of the other Gaussian functions. The aforementioned unsupervised learning procedure allows you to identify the
weights (means and standard deviations ofthe Gaussian functions) from the input layer to the hidden layer. The weights from
the hidden layer to the output layer are identified by following a supervised learning procedure, applied to a single layer
network (the network from hidden to output layer). This supervised rule is referred to as the delta rule. The delta rule is
essentially a gradient decent procedure applied to an appropriately defmed optimization problem. For more details about the
delta rule, and how it is applied to single layer networks see[6} . Once training of the RBFNN is accomplished, the training
phase is complete, and the trained neural network can operate in the performance mode (phase). In the performance (testing)
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phase, the neural network is expected to generalize, that is respond to inputs that it has never seen before, but drawn from the
same distribution as the inputs used in the training set. One way of explaining the generalization exhibited by the network
during the performance phase is by remembering that after the training phase is complete the RBFNN has established an
approximation of the desired inputloutput mapping. Hence, during the performance phase the RBFNN produces outputs to
previously unseen inputs by interpolating between the inputs used (seen) in the training phase.

II.!. Sample Data Preprocessing
The input vector to the input layer of the network is the upper triangular half of the spatial correlation matrix R that can be
organized as an M(M+1) dimensional vector of real and imaginary parts denoted b. This procedure is illustrated in Table 1.
The dimension of the hidden layer is equal to the number of the Gaussian functions L, which can be chosen to be equal to the
number of total input/output pairs in the training set if perfect recall is desired. The input vector b is normalized by its norm
prior to being applied at the input layer ofthe neural network, i.e.

b
(10)

F11 r12 r13

R = r,1 r22 r23
b = [r11 r12 r13 r22 r23 r33]

r31 r32 r33

Table 1. Correlation matrix reduction

It should be noted here that training a single neural network to detect the angle of arrival of multiple sources is not an easy
task. The exhaustive training involved becomes prohibitive for more than three or four sources, since the number of possible
training data combinations is enormous. To circumvent this problem multiple, but smaller, neural networks are employed.
Each network then tracks a smaller number of sources within a smaller angular sector.

IlL THE NEURAL MULTIPLE SOURCE TRACKING (N-MUST) ALGORITHM

The Neural Multiple Source Tracking (N-MUST) algorithm is also based on the radial basis function neural networks
(RBFNN), but it is composed of two stages, the detection stage and the estimation stage, as shown in Figure 1 . In the first
stage, a number of RBFNNs are trained to perform the detection phase, while in the second stage another set of networks is
trained for the direction of arrival estimation phase. When networks detect one or more sources in the first stage, the
corresponding second stage networks are activated to perform the direction of arrival (DOA) estimation step. No prior
knowledge of the number of sources present is required.

HI.! Detection Stage

In this approach, labeled the Neural Multiple Source Tracking (N-MUST) algorithm, the antenna array can track an arbitrary
number of mobile users (sources) without prior knowledge of the number of mobile users. As shown in Figure 1 ,there are
two stages of RBFNN' s. The first stage is the "detection stage" which consists of P RBFNNs, each focusing on a sector of
width 9w The entire angular spectrum (field of view of the antenna array) is divided in P sectors. The th (l� p� P) RBFNN
is trained to determine if one or more signals exist within the [(p-i) 0w pOw)] sector. If there are any signals present in the
corresponding sector, the neural network will give the value 1 for an answer. Otherwise, the network will register a zero as its
output value. This information is then passed to the second stage, the "direction of arrival" stage, which estimates the angles
of these signals. Each one of the P neural networks of the detection stage, has M (M+l) input nodes representing the
correlation matrix R and one output node. The number of hidden nodes in the second layer is also M (M+l). To illustrate
how a network is trained in the detection stage, let us consider a case where the network is required to track N sources in the
[10° 20°] sector with some angular separation A8. We start the training with sources at -90°, -90°+0 -9o°+(N-l)1\e. We
use this vector of DOA to generate the correlation matrix R and the normalized vector z. We then select the subsequent DOA
vectors as -88°, -88°+A0,..., -88°+(N-l)tO, -86°, -86°+A0,..., -86°+(N-l)z\0 and so on. The target output of the network is
set to "1" only when one or more of the angles in the DOA vector lies in the [10° 20°] range; otherwise the target outputof
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the network is zero. In the simulations performed, a network was tested with number of sources and angular separations
different than it had seen in the training. The network was able to detect the presence of the sources correctly. This suggests
that considering all possible combinations of number of sources and separations need not be considered for the detection
phase.

111.2. DOA Estimation Stage

The second stage of neural networks is trained to perform the actual direction of arrival estimation. The P networks of the
DOA estimation stage are assigned to the same spatial sectors as in the detection stage (see Figure 1). When the output of one
or more networks from the first stage is 1 , the corresponding second stage network(s) are activated. The input information to
each second stage network is the correlation matrix R, while the output is the actual DOA of the sources. The number of
hidden nodes is the same as the number of input nodes given by M(M+l). Consider a system with minimum source
resolution of 2°, a single neural network trained to track sources over the antenna's field of view (e.g. 1 800 wide) could be
trained for angular separations AO of 20,40,60, .. up to some A. This results in such a huge training set that the single neural
network approach becomes impractical. However, by assigning different networks for different angular spatial sectors,
smaller training sets are sufficient since the network is only required to track sources in a limited spatial region. For sectors
lO02O0 wide, it follows that the number of distinct locations of possible sources as well as the size of the training set are
significantly reduced. Whereas most direction fmding algorithms require the knowledge of the number of sources, in our
approach we only need to specify the minimum angular resolution that the system is required to achieve. Rather than
designing the network with number of output nodes equal to K (number of sources), for a sector of width 0w and minimum
angular resolution of EOmm, the number of output nodes is given by

J= ow (11)
LAOmin]

DOA estimates are obtained by postprocessing the neural network outputs of the second stage. J output nodes represent bins
in a discrete angular spatial region centered at AOmjn intervals. The output nodes are trained to produce values between "0"
and " 1

" . An output of "1" indicates the presence of a source exactly on the bin and a "0" represents no source. Sources
located between the bin angles are represented by values between "0" and "1".

Iv. SIMULATIONSAND RESULTS

To investigate the behavior ofthe network for various angular separations a linear array of 10 elements was trained to detect
the presence of sources in the 100 wide sector [35O -25°]. Different training and testing sets were generated from 2 sources
of 20 angular separation and 4 sources of 20 angular separation, respectively. The correlation matrix was calculated from 400
snapshots of simulated array measurements. Figure 2 shows a comparison between the desired and actual response for this
array with sources having a SNR of 10 dB. For Emergency 91 1 services, the FCC regulations require a base station to be able
to locate a mobile user with an accuracy of 125m (400feet) 67% of the time. To investigate the accuracy of the N-MUST
algorithm in localizing users, we simulated a scenario with sectors 19° wide (Ow) and minimum angular resolution (ABmin) of
2°. In this case, the dimension of the output layer of individual networks in the estimation stage becomes 10 nodes. Figure 3
and 4 show the error in the DOA estimates of 4 sources with 2° angular separation in the sector [3Ø0 -1 10] using a linear
array of 8 elements (d=X/2) assuming cells 3 and 5 miles wide, respectively. The input layer of a single neural network
consisted of 72 nodes and the sources were assumed to be of equal power, 5 dB higher than the noise power. In Figure 5 and
6, the estimation errors ofthe same array tracking 2 sources with different angular separations with densely populated cells of
3 and 2 mile diameters, respectively, is shown. In both cases, the N-MUST algorithm achieves a better accuracy than the
FCC requirements.

V. CONCLUSION

A new algorithm is presented for locating and tracking the angles of arrival of multiple sources. This algorithm is based on a
family of neural networks operating in 2 distinct stages. The new approach is based on dividing the field of view of the
antenna array into spatial sectors, then each network is trained in the first stage to detect signals emanating from sources in
that sector. According to the outputs of the first stage, one or more networks of the second stage can be activated so as to
estimate the exact location of the sources. No a priori knowledge is required about the number of sources, and the networks
can be designed to arbitrary angular resolution. The results demonstrated the high accuracy of the algorithm. The main
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advantage of this new technique is a dramatical reduction in the size ofthe training set since much fewer training possibilities
need to be considered by sectoring the antenna field of view.
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Figure 1 The Neural Multiple Source Tracking architecture. Figure 2 A 10 element linear array and sources
in a 100 wide sector[-25° -35°]. Trained with 2
sources and tested with 4 sources separated by 2°
in space.
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Figure 3 Estimate error ,M=8, 4 sources, 3 mile wide cell
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