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Abstract 

We present a modification to the Fuzzy ARTMAP neural network architecture for conducting classification in a 
probabilistic setting. We call this new architecture Hierarchical ARTMAP (HARTMAP). Performance comparisons 
with Fuzzy ARTMAP, Gaussian ARTMAP and Boosted ARTMAP on some simple two-class problems are discussed. 
Experimental results indicate that HARTMAP yields better generalization results on problems involving overlap of 
the underlying pattern distributions. 

1 Introduction 
An important performance measure of a machine learning algorithm is its generalization capability. Gen- 
eralization is characterized by the number of unseen examples correctly predicted by a learning algorithm 
given sample training data from which to learn. In this paper we focus on the particularly difficult situation 
in which the training data is drawn from pattern class distributions that are naturally overlapping. For 
these types of problems, a learning algorithm must potentially deal with conflicting information in order t o  
generalize to the underlying distributions. 

Fuzzy ARTMAP is a neural network architecture for conducting supervised learning in a multidimensional 
setting [l, 21. When Fuzzy ARTMAP is used on a learning problem, it is trained to the point that  it correctly 
classifies all training data. This feature causes Fuzzy ARTMAP to “over-fit,’ some data sets, especially those 
in which the underlying pattern distributions have overlap. To avoid the problem of “over-fitting”, we must 
allow for error in the training process. One solution for allowing error during the training is t o  use a statistical 
approach. Such an approach is used in Gaussian ARTMAP [3] and in Boosted ARTMAP [4]. 

In this paper, we will present an extension to Boosted ARTMAP which uses a hierarchical structure of 
classification templates. Our architecture, called HARTMAP, was motivated by the desire t o  improve gener- 
alization performance using statistical methods, while maintaining a structure within which we can operate 
so that “difficult” portions of the problem space can be handled with adequate knowledge of consequences. 
The hierarchical structure allows us, at each level of the hierarchy, t o  estimate class frequencies so that we 
can determine parts of the problem space that are going to be difficult t o  properly classify. We are then free 
to deal with these hard areas by breaking them up into smaller hierarchies. 

A summary of the paper is as follows. In section 2, we briefly describe some ART-based neural ar- 
chitectures: Fuzzy ARTMAP, Gaussian ARTMAP and Boosted ARTMAP. In section 3, we describe our 
extension, hierarchical ARTMAP. Empirical results are presented in section 4, and conclusions are discussed 
in section 5. 

2 ART-based Architectures 
The Fuzzy ART neural network architecture was designed to cluster data  into categories [5]. Fuzzy ART 
is structured into three layers of interacting neural nodes, labeled Fo, Fl and F 2 ,  where the output of FO 
is connected to Fl, and Fl and’F2 are mutually connected. At Fo, an M-length input vector from the 
environment is complement coded and passed on to  Fl . 

41 
0-7695-06 19-4/00 $10.00 0 2000 EEE 

mailto:verzi@cs.unm.edu
mailto:heileman@eece.unm.edu
mailto:mng@ece.engr.ucf.edu
mailto:mjhealy@boeing.com


Figure 1: The Fuzzy ARTMAP Architecture. 

The Fl and F2 layers interact to choose an F2 template that best matches the complement coded input 
vector according to: 

This choice is confirmed if the vigilance criterion is not violated, i.e., 

The parameter a,  called the choice parameter, is usually a small positive quantity. The vigilance parameter, 
p, is a user input between 0 and 1, where a value closer t o  1 indicates desired tighter coupling within clustered 
patterns and a value closer to 0 allows less coupling within clustered patterns. 

The process of complement coding a pattern vector, a,  produces a new vector A = (a, ac), where ac is the 
complement of a. There are two stages in ART cluster formation. A winner-take-all strategy is employed in 
choosing the best matching cluster template in the F2 layer given a complement coded input vector according 
to (1). Next, a vigilance check is performed to ensure that learning the input pattern in the chosen cluster 
will not degrade the template below the vigilance as in (2). Initially all template weights are set to  1, and 
learning proceeds as follows 

w ( . ~ ~ ~ )  = p ( I  A wjold)) + (1 - P)w(lold), 

where p is the learning parameter. In this paper we will set p = 1 which is a special case called fast learning. 
An important feature of ART is that the F2 layer is allowed to grow as needed for a particular problem. A 

pool of templates is maintained, where a committed template has, at some point, learned at least one input 
pattern. One uncommitted template is allowed to  compete with existing committed templates according 
to (l), given the initial weight settings. 

Fuzzy ARTMAP [2]. The architecture, in figure 1, consists of two Fuzzy ART modules connected through 
a MAP field. The ARTA module is given pattern data and the ARTB module is given label data for a given 
supervised learning task. The MAP field links pattern clusters with label clusters. Supervised learning 
is performed in Fuzzy ARTMAP by ensuring that each ARTA template is linked with only one ARTB 
template. Thus, a many-to-one association from patterns to labels can be formed. 

Gaussian ARTMAP [3]. This architecture is a modification of Fuzzy ARTMAP proposed by Williamson. 
The structure of Gaussian ARTMAP is very similar to  Fuzzy ARTMAP (figure l), except that  the ARTAmodule 
is replaced by a GaussianARTA module, and no complement coding is done here. The Gaussian ARTMAP 
choice function is computed as follows: 
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In equation 3, nj is the number of training instances that have resonated with F2 node j ,  N is the number 
of currently committed F2 nodes, and p,j and uij are the empirically estimated mean and variance for the 
j t h  F2 node in dimension i. The Gaussian ARTMAP vigilance criterion function is: 

Finally, the Gaussian ARTMAP update formulas for F2 node j in dimension i are: 

nj = nj + 1 

An extra parameter to Gaussian ARTMAP, y is used to set initial as well as minimum variance values (i.e. 
U i j  I Y). 

Boosted ARTMAP (BARTMAP) [4]. This architecture is also structured similar t o  Fuzzy ARTMAP 
(figure l), except that each Fz node is given its own vigilance parameter. BARTMAP uses an extension of 
the MAP field from PROBART [6] to keep track of class frequency estimates for each F2 node. 

3 Hierarchical ARTMAP 
While working with the BARTMAP architecture, the authors were struck by the need to determine the 
consequences of allowing more than one association between BoostedARTA F2 nodes and BoostedARTB F2 
nodes. In Fuzzy ARTMAP, each data template (A-side) is allowed to associate with only one label template 
(B-side). BARTMAP data templates can associate with any number of label templates, and thus, the 
predicted label for a data template becomes the label template with the highest association. In this model, 
however, it is difficult to determine the consequences of using the maximally associated label template for 
each data template. In designing HARTMAP, we wanted to maintain an entire hierarchy of data template 
nodes, where at each level, we can determine how much estimated error we are willing to  allow, and whether 
or not we are willing to use more data template nodes to reduce the estimated error. 

Just as with the other ART-based neural architectures, Hierarchical ARTMAP is composed of two ART- 
like modules connected by a MAP field. The HierarchicalART (HART) module is an extension of the 
BoostedART (BART) module for conducting hierarchical classification of input data. What we mean by 
hierarchical classification is that levels of categorization will be formed as the network is trained. In our 
network architecture, each successive level will classify more tightly coupled groups of data. The hierarchy 
of categories allows us to  train our network until we have achieved a specified level of accuracy, in training, 
or until all inputs are correctly classified. One benefit of HARTMAP is that it works on-line. 

The HART extends the BART module by adding a hierarchical structure to the Fz layer of nodes. By 
this we mean that each F2 node is the “parent” of 0 or more “child” F2 nodes. HARTMAP uses the same 
choice competition and vigilance criterion as Fuzzy ARTMAP as well as the same weight update functions 
(also used in Boosted ARTMAP (41). The difference is that only a selected number of nodes is allowed to  
compete in each level of the hierarchy. Also in HARTMAP, we introduce two new input parameters to the 
system. The training baseline vigilance controls the depth to  which the architecture is trained, and the 
testing baseline vigilance controls the depth to  which a predicted label is sought. 

The rules of operation are very straight forward. Each parent’s children compete for resonance with 
an input instance. If the winning “child” node satisfies its vigilance criterion, then it becomes the new 
parent and we continue down the hierarchy. If this child node fails its vigilance test, then it is reset and 
the competition continues amongst its siblings. If none of the children satisfy their vigilance criteria, then a 
new node is created with a vigilance value greater than its parent, and it becomes the new parent. During 
training, descent into the hierarchy continues until an F2 node is reached that wins its sibling competition, 
satisfies its vigilance criterion and its own vigilance is greater than training baseline vigilance. During testing, 
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descent continues in the same fashion until an F2 node is found where its own vigilance is greater than or 
equal to  the testing baseline vigilance. 

At each level in the hierarchy, all children have a higher vigilance than their parent. This means that 
each of the children can only resonate with a portion of the input instances that their parent can resonate 
with. Note that we also have a top level node which does not compete in any choice competition, but rather 
manages its children. This top level node has a vigilance of 0, which means that all input instance could 
resonate with it. In training HARTMAP, we can learn the training data to  0% error by setting the training 
baseline vigilance to 1, but it will require at least as many Fz nodes as training instances. 

technique 
Fuzzy ARTMAP 
Gaussian ARTMAP (y = 0.01) 
BARTMAP 
HARTMAP 

4 Empirical Results 

epochs templates % correct std. dev. 
8.5 220.8 63.1 1 .o 
5.0 12.8 66.1 10.2 
9.1 32.2 68.1 2.3 
3.2 54.0 69.4 1.2 

For our empirical results, we compare the generalization performance of HARTMAP with Fuzzy ARTMAP 
as well as Gaussian ARTMAP and BARTMAP. The first learning problem consists of two overlapping 2D 
Gaussian distributions with the same means and different variances, and the second learning problem consists 
of two overlapping 2D Gaussian distributions with different means and the same variances. The third learning 
problem consists of two overlapping 2D Uniform distributions with the same centers and different boundaries 
(similar to problem one). Next, we trained each of the four networks on a learning problem consisting of 
two bimodal 2D Gaussian distributions [7]. Finally, we trained each of the four networks on the BUPA liver 
disorder problem from the UCI repository [8]. 

In each of the learning problems, one class was labeled 0 and the other 1, to  allow for concept learning. 
All data were normalized to fit within the unit square so that the Fuzzy ART architecture could be used. 
Also, each class contributed equally to  both the training and test data sets. 

For the 2D generated data in our experiments, each network was trained on 1000 training samples and 
tested with either 1000 (bimodal 2D Gaussian learning problem) or 10000 (other 2D learning problems) test 
samples. For the UCI learning problems, each of the databases was sampled into 2/3 training/l/3 test sets. 
For each of the learning problems, we conducted 100 such training/testing scenarios for the average values 
reported in the tables below. 

An ARTA baseline vigilance of 0.0 and ARTB baseline vigilance of 1.0 was used for Fuzzy ARTMAP, and 
the MAP field vigilance was 1.0. In Gaussian ARTMAP, we used y values of 0.01 or 0.1, and we ran Gaussian 
ARTMAP for 5 epochs for each learning problem. BARTMAP was run using 0.1 as a starting value for 
BARTA vigilance values, and 0.1 was also used as a step size for increasing these values. A vigilance of 1.0 
was used in BARTMAP for ARTB. BARTMAP was executed to  an error tolerance of 0.31 for distribution 
1, 0.1 for distribution 2, 0.2 for the uniform learning problem, 0.25 for the bimodal 2D Gaussian learning 
problem and 0.4 for the BUPA dataset. 

HARTMAP was trained with training and testing baseline vigilance values of 0.8 except for the BUPA 
dataset where 0.1 was used. We used a vigilance step of 0.1 from parent to  child in all of the learning 
problems in this paper. This means that each child node has a vigilance value of 0.1 greater than its parent. 

Overlapping Gaussians-Case 1. Our first experiment is a difficult problem where one 2D Gaussian sits 
on top of the other one. Both 2D Gaussians had mean (10, lo),  and one had a variance of (1.0,l.O) while 
the other had a variance of (2.0,2.0). This problem does not have an error-less solution, and in fact the best 
separator, the quadratic where the two Gaussians intersect, has a non-zero Bayes error. 

In table 1, we see the learning performance of ARTMAP, Gaussian ARTMAP, BARTMAP and HARTMAP 
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on the problem at hand averaged over 100 sets each consisting of 1000 training samples and 10000 test sam- 
ples. The second column shows the average number of passes through the training data, i.e., epochs, needed 
to  reach a solution. The third column gives the percentage of correctly classified test instances. 

technique 

Gaussian ARTMAP (y = 0.1) 
BARTMAP 
HARTMAP 

Fuzzy ARTMAP 

Overlapping Gaussians-Case 2. The next pair of distributions considered again has no error-less solu- 
tion. It consists of two overlapping 2D Gaussians with different means. Thus, the two distributions overlap 
side-by-side, and a linear boundary is the optimal class separator. One 2D Gaussian had mean (8 ,8) ,  and 
the other one had mean (12,12), while both had a variance of 2.0. 

epochs templates % correct std. dev. 
7.8 128.1 77.8 0.9 
5.0 10.3 76.9 11.8 

38.8 59.1 78.9 1.6 
3.2 188.6 79.2 1.2 

technique 
Fuzzy ARTMAP 

technique 
Fuzzy ARTMAP 

BARTMAP 
HARTMAP 

Gaussian ARTMAP (y = 0.01) 

Gaussian ARTMAP (y = 0.1) 
BARTMAP 
HARTMAP 

epochs templates % correct std. dev. 
8.4 163.4 72.2 1.7 
5.0 12.5 75.5 12.2 
9.5 45.3 75.9 2.6 
3.1 57.0 77.6 1.7 

17.4 24.8 89.6 0.7 
3.2 93.6 89.3 0.9 

Table 2: Generalization Performance - Case 2 

Overlapping Uniforms-Case 3. Our third experiment is similar to the first problem, except that now 
we are dealing with uniform distributions. Both uniform squares have centers at (10,lO). One class has an 
area of 4, and the other has an area of 16. Note that the Bayes error for this problem is 0.125 %. 

Overlapping Bimodal 2D Gaussians-Case 4. Our next experiment is similar to the second learning 
problem, except that now we are dealing with bimodal 2D Gaussian distributions. The first class has Gaussian 
modes with centers at ( 1 , l )  and (-1, -1) each with variances of 1, and the second class has Gaussian modes 
with centers at (0,O) and (0.5,0.5) each with variances of 0.5. 

BUPA Liver Disorder. 
itory is shown in table 5. 

Performance on the BUPA liver disorder learning problem from the UCI repos- 
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technique 
Fuzzy ARTMAP 
Gaussian ARTMAP (y = 0.1) 
BARTMAP 
HARTMAP 

5 Conclusions 

epochs templates % correct std. dew. 
5.3 16.9 56.5 4.3 
5.0 8.5 54.4 7.2 
2.8 5.9 56.5 3.3 
2.2 2.1 57.6 0.7 

It is clear that HARTMAP has a generalization performance competitive with Fuzzy ARTMAP, Gaussian 
ARTMAP and BARTMAP on the problems presented. HARTMAP can require a considerable number of 
F2 nodes compared with the other ART-based neural architectures; however, these extra Fz nodes contain 
information on the hierarchical structure of the data used in training. Our current research focuses on using 
the structure contained in the hierarchy for the difficult problem of combined compression and classification. 
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