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Abstract - This paper describes an approach to classification of noisy signals using a technique based on the Fuzzy 
ARTMAP neural network (FAM). A variation of the testing phase of Fuzzy ARTMAP is introduced, that exhibited 
superior generalization performance than the standard Fuzzy ARTMAP in the presence of noise. We present an 
application of our technique for textured grayscale images. We perform a large number of experiments to verify the 
superiority of the modified over the standard Fuzzy ARTMAP. More specifically, the modified and the standard 
FAM were evaluated on two different sets of features (fractal-based and energy-based), for three different types of 
noise (Gaussian, uniform, exponential) and for two different texture sets (Brodatz, aerial). Furthermore, the 
classification performance of the standard and modified Fuzzy ARTMAP was compared for different network sizes. 
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1. Introduction 

During the past few years, neural networks (NN) have been extensively used for classification tasks. The 
main body of the work in this area has been concentrated in the use of feedforward NN models. Another family of 
NN architectures called ART architectures has been developed that can address successfully classification problems. 
This family includes Fuzzy ARTMAP NN (FAM) [I] ,  Gaussian ARTMAP [2] etc. Like other members of the 
ARTMAP family, FAM has certain advantages over traditional feedforward NN models. One advantage of FAM is 
that it is faster than other neural networks, due to the small number of training epochs required by the network to 
“learn” the input data. FAM is even faster than other ARTMAP techniques due to the computationally “cheap” 
input/output mapping. Also, the classification results of FAM are easily interpretable. Compared to nearest neighbor 
techniques, which are also commonly used, FAMMN requires less memory and classification time since it uses a 
compressed representation of the data. 

In this work, we introduce a variation of FAM that exhibits superior generalization performance than the 
standard FAMMN when the signals, are corrupted by additive noise. The variation of FAM, which is named FAM- 
m, uses prior knowledge of the characteristics of the feature set to adjust the regions of dominance of each class 
accordingly. We show that FAM-m does not introduce significant additional computational complexity to the 
standard FAM. In this paper we consider classification of textured images which are a case of 2-D signals, and our 
approach can be easily extended to other types of signals (e.g., 1-D, 2-D, etc.). Gaussian ARTMAP [2] has been 
used before for classification of natural textures [3]. 

The proposed modification of FAM is especially suited to applications where it is required that the feature 
set captures only the shape characteristics of the signal and not its actual amplitude or average value. 
Electrocardiographs used for medical diagnosis, speech signals, textured images and satellite images are examples 
of these type signals. For example, it is important to be able to classify correctly a texture that has been obtained in 
different illumination environments, or a speech signal independently of how loud it is. Fractal dimension (FD) is 
suitable for the aforementioned type of applications because it is independent of linear transformations applied to the 
signal [4][5][6]. Also, the normalized energy features (NE) that are used in this work are insensitive to linear 
transformations. Furthermore, in order to make the application more general, we use features that do not contain 
rotational information. 

The paper is organized as follows. In Section 2, an overview of the Fuzzy ARTMAP architecture is 
presented. In section 3, the feature sets are presented. In Section 4, the proposed classification technique (FAM-m) is 
discussed. In Section 5 we present the experimental results and finally, in section 6 we conclude with some closing 
remarks. 

2. Fuzzy ARTMAP Neural Network 

The FAh4 is described in [2] and only a short description of it will be presented here. For the training 
phase of FAM, a list of MP training inpuaabel pairs, such as (I1,  O’}, (Iz, 02}, . . . ,{IMp, OM‘), is presented 
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repeatedly to the FAM until the desired mapping is established for all pairs. During the training phase a number N, 
of nodes is created. Each node is represented by a weight vector which is designated by w; ={ wy, , . . . , w,Y2~,} and it 
is called template. Each template defines a Mu - dimensional hyper-box that includes within its boundaries all the 
training input patterns that were coded by the template. The first Mu elements of the template define a vector, which 
is the lower endpoint of the hyperbox and the last Mu elements define the complement, 1-VI" ,of a vector v",, which is 
the upper endpoint. Consider the r-th inpudlabel pair (i.e., {Ir, Or} )  from the training list. The bottom-up input of 
pattern I' to nodes j is calculated according to: 

11' A W ~  I ( 1 )  
T Q  I ' ) =  

I (  p , + l w y  I 

where is called the ART, choice parameter. From the set of nodes that satisfy the vigilance criterion (see [2]), we 
choose the one that receives the maximum bottom-up input. If due to prior learning node j,, is mapped to a label 
different than 0' then the mapping is incorrect and the node is disqualified. The input pair is presented repeatedly, 
until a node is finally selected and the corresponding template is updated. After all patterns have been presented and 
no template changes occurred, the learning process is considered complete, otherwise the patterns are presented 
again. For the test phase, each input pattern I from the test list is assigned the label of the node that receives the 
maximum bottom-up input and satisfies the vigilance criterion. If no node satisfies the vigilance criterion, the label 
of the input pattern is designated as "unknown". We must note that the fuzzy min operator (A) of two vectors wI and 
w2 is a vector whose components are equal to the minimum of the corresponding components of wI and w2, and the 
"size" (I . I) of a vector w is defined to be equal to the sum of its components. 

3. Feature sets 

The first feature set is based on normalized energy (NE). First, the original image is filtered using Gabor 
filters [7] of standard deviation (T and central fkequency U,. Then, the energy in a window W of size R x R that is 
centered at the pixel with coordinates (x,y) can be defined as: 

x'=x-RD y9=y-RD 

W 
where muo, is the mean grayscale value in the window W of the filtered image. In order to make energy dependent 
only on the texture and not on the magnitude of$he image, we normalize it by dividing with the energy in the 
correspyding windsw W of t$e original image E (x,y). Therefore, we define the normalized energy (NE) as the 
ratio Enuo,(x,y) = Euodx,y) / E  (x,y). The first feature set consists of the NE of twelve filter versions of the original 
image as it is defined by (9, for twelve different central frequencies U, = 0.04k, k = 1, 2..12, and constant standard 
deviation CT = 23. 

The second feature set consists of six FD-based features that are computed using the variation method [8]. 
We use the FD, the FD of the higher grayscale values and the FD of the lower grayscale values, where the slope of 
the line that passes through two points (log( ]/a), log{ (W6)3V,}), 6 = (1, 2) is considered (see [SI). We also use the 
FD, the FD of the higher grayscale values and the FD of the lower grayscale values, where the slope of the line that 
passes through two points (log(1/6), l0g{(R/6)~Vu~}), 6 = (2, 3) is considered. The FD of higher and lower grayscale 
values is actually the FD computed on the images defined as 

respectively, where mw is the average grayscale value in a window W of size R x R around (x,y). A FLAG means 
that the corresponding pixel value is not included in the calculation of FD. 

4. The FAM modification 

In this section, we present a modification of the FAM, named FAM-m that performs well in the presence of 
noise. Prior to classification, the features are extracted from the textures. The set of feature vectors extracted from 
the textures is divided into training and test set. The training of the FAM-m is exactly the same as the training phase 
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of the standard FAM. The bottom-up input of node j as it is defined by (l), includes the calculation of the 
denominator Dj = Pa+ Iwjl. We notice that after training is over, Dj remains unchanged. Even if the training is on- 
line, this quantity remains unchanged when the test phase takes place. The quantities Dj for every node j, are stored 
in memory along with the templates wj, so that they are not recalculated in the test phase. The bottom-up input is 
expressed as: WA wj”l 

T,“ (1‘) = - (4) 
Dj 

The advantage that this implementation offers to the test phase of FAM-m will be apparent after the description of 
the test phase of FAM-m. 

Assume that we are dealing with an Mu-dimensional hyperspace. Each node can then be represented as an 
Ma-dimensional hyperbox. When a pattern is tested, a hyperbox competes with other hyperboxes to associate this 
pattern with the class that it represents. Generally, each hyperbox is dominant in the region that it occupies and in 
some region around it. We have shown experimentally that patterns that are extracted from a noisy texture will 
move, at least in most of the cases, towards the direction of the pattern that is extracted from a pure noise surface. 
We name this pattern the noise pattern IN. Therefore, if in the test phase of the FAM we modify the region of 
influence of each hyperbox so that it gives more emphasis to coordinates that are further away from the noise pattern 
than the ones that are closer, then we have a better chance of correctly classifying the noisy textures. The 
modification of the test phase of the FAM needs to be such that it also allows the correct classification of noiseless 
textures. We have implemented a variation of the test phase of FAM (i.e., FAM-m) to achieve the aforementioned 
objectives. First, we define the distance between a template w and a pattern I as: 

( 5 )  dist(w,I) = IwI - IwAII 

In the special case where the template w is a pattern 1’, the distance between I and I’ as it is defined in (5) is simply 
the distance between the patterns in terms of the L1 norm: 

dist(I’,I) = 111-1’111 = Y IIi - III (6)  

Assume that the hyperbox defined by w2 is closer to IN than the one defined by wI: dist(wl,IN)>dist(wI,IN). 
Then, node 2 benefits from this movement over node 1 because it tends to “capture” patterns that belong to node 1 
and move towards IN. In our approach we modify the boundary between the regions of dominance by dividing the 
bottom-up input of a node with a term that depends on the corresponding template w. We denote this term as N(w). 
The function N(w) = M, - y dist(w, IN), where y is a small constant associated with the amount of noise that has 
affected the textures, is a good choice. First, if the distance of two nodes from IN is the same: dist(wl, IN) = dist(wz, 
IN) we do not want to favor one node versus the other. Second, if dist(wl, IN) < dist(wz, IN) this modification favors 
node 1 by moving the boundary between regions of dominance towards node 2. The bottom-up input for node j of 
FAM-m for the test phase is equal to: 

i = I  

1 II‘A wjUl 

M, - ydist(wj”,IN) p, +Iwj”l 
Tm; (1‘) = (7) 

where I‘ is the r-th input pattern fiom the list of test patterns. The value of y can be the largest possible so that the 
modification does not introduce more than a specified percentage of extra misclassification on the training set. 

A two-dimensional example that shows the effect of the modification is shown in Figure 1. The input 
patterns in this example belong to two classes denoted as class 1 and class 2 and they are represented by “x” and 
“+”respectively. These patterns are NE-based feature vectors that are actually extracted from two aerial textures 
respectively. The “light gray” area represents the region of dominance of the hyperboxes that belong to class 1, and 
the “white” area the region of dominance of the hyperboxes that belong to class 2. The “dark gray” area indicates the 
region in which the modification has effect. More specifically, it is the region that belongs to class 1 for the standard 
FAM but it belongs to class 2 for the FAM-m. We can see that the boundary between the regions of dominance of 
the two classes has been shifted towards class 1, which is the one closer to the noise pattern. For this example the 
value of y was selected equal to 0.45. The effect of the modification is the following: for textures that have not been 
affected by noise FAM may have slightly better classification performance over FAM-m but when the textures are 
affected by noise FAM-m gives significantly better results. Experimental results show that the modification is 
effective. 

As a reminder, the denominator Dj of the bottom-up input was stored and it remains constant in the test 
phase. In the case of the FAM-m the denominator will be: 
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Dj" = [M, - y dist(wj",IN)] [pa + Iwjll (8) 

The new denominator Dj" can be stored in memory as well, since it depends only on the template w, that remains 
constant in the test phase. As a result the bottom-up input in the test phase will be equivalent to the bottom-up input 
as it is defined in (4), and does not introduce any more calculations than (4). 

5. Experimental Results 

We performed a large number of experiments in order to illustrate the effectiveness of the proposed FAM- 
m for classification of signals affected by additive noise. We considered the application of texture classification. 
Two different texture sets were used. The first texture set consisted of 20 textures obtained from the Brodatz album 
[9]. The second texture set consisted of 20 textures obtained from aerial images. A large number of patterns was 
extracted from both texture sets as it will be described later. We considered these two texture sets because we 
wanted to examine the classification performance of FAM-m on Brodatz textures which are obtained in ideal 
environmental conditions, and aerial textures that represent a more realistic situation. 

Two feature sets with different characteristics were extracted from each texture set. The first one consisted 
of 12 NE-based features and the second one consisted of 6 FD-based features as they were described in section 3. 
The NE-based feature set is more robust to noise than the FD-based feature set, but the classification results that 
were obtained with the FD-based feature set are better when noise is not present. The training and testing were 
performed separately for each feature set. Let us consider the NE-based feature set. For Brodatz textures, a total of 
2560 either NE or FD feature vectors (or equivalently patterns) that were extracted from non-overlapping windows 
of size 16x16 were used for training. A total of 1280 feature vectors were used for testing in the case where noise is 
not present. For aerial textures, a total of 1280 either NE or FD feature vectors that were extracted from non- 
overlapping windows of size 16x16 were used for training. A total of 640 feature vectors were used for testing in the 
case where noise is not present. The size of the windows was selected to be relatively small (16x16) so that 
segmentation of more that one texture in the same image is possible if desired. We considered 3 different types of 
additive noise, namely Gaussian noise, uniform noise and exponential noise. For each type of noise we considered 
different values of standard deviation. Approximately 82,000 NE-based and 82,000 FD-based feature vectors were 
extracted from the 20 Brodatz textures for each type of noise and for each value of standard deviation. 
Approximately 20,000 NE-based and 20,000 FD-based feature vectors were extracted from the 20 aerial textures for 
each type of noise and for each value of standard deviation. The scope of this paper is to illustrate the superior 
performance of FAM-m over FAM in the presence of noise independently of the size of the network. For this 
reason, we compared the FAM and the FAM-m for different number of nodes. 

All combinations of the parameters described above were considered. More specifically, the classification 
performance of FAM and FAM-m was examined on the two texture sets, for the two feature sets, for three different 
types of noise, for different values of the standard deviation of noise, and for different sizes of the networks. The 
classification results are shown in Tables 1 and 2. Table 1 and table 2 present the classification results when the FD- 
based feature set and the NE-based feature set is used respectively, when noise is present. 

We must note that the noise pattern IN was extracted from a pure Gaussian noise texture for both FD-based 
and NE-based feature sets. The noise pattern could have been extracted from any other type of white noise. The 
reason is that the distance between the noise pattern extracted from a pure noise texture and the patterns extracted 
from other textures is relatively large, independently of the type of noise. The value of y was found to be 
approximately equal to 0.1 for the NE-feature set, and approximately equal to 0.2 for the FD-feature set. 

Noise: Gaussian Uniform Exponential Noise: Gaussian Uniform Exponential 
St. Devi.: 14.2 18.2 14.2 18.2 14.2 18.2 St.Devi.: 14.2 18.2 14.2 18.2 14.2 18.2 

(b) 
Table 1: PCC of FAM and FAM-m for the FD feature and (a) aerial textures (b) Brodatz textures. 
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Noise: Gaussian Uniform Exponential 
St. Dev.: 14.4 21.6 28.8 14.4 21.6 28.8 14.4 21.6 28.8 

(b) 
Table 2: PCC of FAM and FAM-m for the NE feature and (a) aerial textures (b) Brodatz textures 

In summary, all experiments show that the PCC is always larger for FAM-m when the standard deviation 
of noise is larger than 7.2, independently of the type of the noise, in the texture set and the feature set. The 
difference is larger for larger values of the standard deviation. When noise is not present and when the standard 
deviation of noise is equal to 7.2, the PCC is similar for the FAM and the FAM-m. The PCC is slightly better (about 
0.5% in the average) for FAM if noise is not present, which is the price paid for the significantly improved 
performance of FAM-m over FAM when noise is present. When noise is not present, the average PCC of all 
networks is 85% and 90% for NE and FD respectively and for aerial textures, and 90% and 94% for NE and FD and 
the Brodatz textures. The rest of the results are shown in Tables 1 and 2. We can also notice that the PCC is larger 
for FAM-m when noise is present independently of the number of nodes. More specifically, in the presence of noise, 
the PCC of FAM-m for a specified number of nodes, is always larger than the PCC of FAM for the same number of 
nodes. We must note that the difference in PCC between FAM and FAM-m is larger for smaller networks. This 
suggests that FAM-m provides better compressed representation of the training data, and also that FAM-m performs 
better in the case of small training sets. 

6. Conclusions 

In this paper we introduced a variation of the testing phase of the FAM that we named FAM-m. We have 
demonstrated that FAM-m exhibits superior generalization performance than FAM in the classification of signals 
that are corrupted with noise, independently of the type of noise and the size of the network. Furthermore, we have 
shown that FAM-m does not require more classification time than FAM. The introduced modification of FAMMN 
was based on the fact that values of signal features which are distant ftom feature values that correspond to a pure 
noise signal, are affected more severely than values of signal features that are close. If the variance of the noise that 
contaminates the signals is estimated, then the FAM could adapt so that the classification results are further 
improved. In this paper we have considered classification of textured images which are a special case of 2-D signals. 
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Figure 1: The effect of the modification: (a) Patterns extracted from the training texture set, (b) Patterns extracted from the 
training texture set when noise is added, (c) Patterns extracted from the "clean" test texture set, (d) Patterns extracted from 
the test texture set when noise is added. 
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