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ABSTRACT 
A recent report developed by the National Research Council (NRC) for the Defense Modeling and 
Simulation Office (DMSO) encourages the use of real world, war-gaming, and laboratory data in 
support of the development and validation of human behavioral models for military simulations.  Also 
encouraged in this report is the use of interdisciplinary teams embracing the disciplines of the 
psychological, computer, and military sciences to create such models.  This paper describes the use 
of an artificial intelligence modeling framework, observational learning, to support these objectives. 
This framework combines the research methods of experimental psychology with the machine 
learning methods of computer science to develop behavioral models from data generated by military 
experts participating in live and/or simulated exercises. 
 
To date, research has demonstrated that behavioral models developed through this framework can 
be integrated into popular Semi-Automated Force (SAF) systems to enhance their performance.  
However, there has been no known investigation as to what the benefits of this approach are with 
respect to behavioral model fidelity.  This paper introduces the interdisciplinary nature of 
observational learning by briefly surveying its history with respect to computer science and 
psychology and by illustrating how it can be used in conjunction with military experts.  Next, this paper 
examines experimental evidence to determine whether a significant difference exists between SAF 
performance and human performance for a low-level, skill task.  Finally, this paper demonstrates how 
behavioral models developed through human performance data generated by military SMEs can be 
used in conventional SAF systems to make SAF performance more "human-like". 
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INTRODUCTION 
 
A recent report developed by the National 
Research Council (NRC) for the Defense Modeling 
and Simulation Office (DMSO) encourages the use 
of real world, war-gaming, and laboratory data in 
support of the development and validation of 
human behavioral models for military simulations.  
Also encouraged in this report is the use of 
interdisciplinary teams embracing the disciplines of 
the psychological, computer, and military sciences 
to create such models.  This paper describes the 
use of an artificial intelligence modeling framework, 
observational learning, to support these objectives.  
 
To date, research has demonstrated that 
behavioral models developed through this 
framework can be integrated into popular Semi-
Automated Force (SAF) systems to enhance their 
performance (Henninger et al, 1999).  However, 
there has been no known investigation as to what 
the benefits of this approach are with respect to 
behavioral model fidelity.  This paper introduces 
experimental evidence to determine whether a 
distinguishable difference exists between SAF 
performance and human performance for a low-
level, closed-loop, skill task and demonstrates how 
behavioral models developed through human 
performance data generated by military SMEs can 
be used in conventional SAF systems to make 
SAF performance more "human-like". 
 
SAF Background 
 
Currently, distributed battlefield simulations use 
computerized behavioral models of combatants to 
serve as opponents against whom trainees can 
fight, or as friendly forces with whom the trainees 
can fight.  These computer-controlled combatants 
are known as Computer Generated Forces (CGFs) 
and usually generate multiple battlefield entities 
(e.g., tanks, aircraft or infantry) using computer 
algorithms rather than a human crew to control the 
actions of those entities.  The software used to 
control the behavior of the CGF entities is flexible 
enough to react to what is happening in the 
simulated battle and produce intelligent and 

realistic actions. The behavior of the CGF may be 
generated by a human operator assisted by 
software, in which case the class of CGF is 
referred to as a semi-automated force (SAF), or 
they may be generated completely by software, in 
which case they are known as autonomous forces 
(AFs).  At a minimum, the behavior generated by 
CGFs should be feasible and doctrinally correct.  
For example, CGF behaviors should be able to 
emulate the use of formations in orders, identify 
and occupy a variety of tactical positions (e.g., 
fighting positions, hull down positions, turret down 
positions, etc.), and plan reasonable routes. 
 
Traditionally, SAF behaviors have been 
implemented in procedural languages (e.g., Ada or 
C) and organized around state transition constructs 
such as finite state machines (FSMs) or Petri Nets.  
For example, a SAF behavior such as “Occupy a 
Battle Position” might be constructed around states 
such as:  “Start FSM”, “Travel”, “Calculate 
Position”, “Move Into Position”, and “End FSM”.   
Any one of these states, in turn, could be (1) an 
embedded FSM, (2) a simple function call 
representing some low-level primitive action, or (3) 
any combination of the two.  This type of 
organization provides a useful means for 
structuring and communicating the intricacies of 
the behavior. 
 
SAF Knowledge Acquisition 

 
Although the behavior of SAF entities can be quite 
complex, they merely provide feasible behavior.  
Since these behavioral models are fashioned 
entirely by doctrine that is acquired from 
declarative knowledge (e.g., manuals and 
interviews), they simply emulate standard 
procedures (Ourston, et al., 1995; Calder, et al, 
1993; and Smith and Petty, 1992), and provide no 
representation for the intrinsic performance 
characteristics that make live entities unique from 
one another.  For example, the current SAF 
behavioral models used in DIS exercises may 
simulate the movement of a vehicle to a given 
location by some standard movement model 



 
 
 

(Smith, 1994), but they do not individualize that 
movement method by either assigning or 
simulating human performance characteristics to it 
(e.g., tendency to hug the side of the road, 
propensity to maintain speed above speed limit, 
etc.).  Thus, behavioral models fashioned entirely 
by doctrine are often characterized as yielding 
responses that are  “too perfect” or “not human-
like”.  However, the fact that these behaviors are 
not consistently humanlike in no way suggests that 
these behaviors are simplistic.  Prevalent SAF 
systems have integrated hundreds of thousands of 
lines of code to successfully simulate the 
command and control hierarchy of a military unit 
and its operation on the battlefield.   By providing 
planned behaviors (e.g., "Conduct a Tactical Road 
March", "Attack By Fire", "Service Station Re-
supply", etc.), situational awareness and 
assessment capabilities, and reactive behaviors 
(e.g., "Breach a Minefield", "Call for Indirect Fire", 
"Actions on Contact", etc.), they have 
accomplished their objective of providing adequate 
friendly and enemy forces to populate the 
battlefield.   
 
A recent report by the National Research Council 
(Pew and Mavor, 1998) has recognized that the 
doctrinally driven behavioral models used by the 
SAF community like “many social and 
organizational theories are expressed as verbal 
descriptions of institutional, social, and political 
processes” (p. 15).  However, because modeling 
human behavior on the battlefield is a highly non-
linear, dynamic task and because it is difficult to 
determine a consistent set of predictions through 
the sole use of verbal models, there has been a 
call by the National Research Council to develop 
and validate human behavioral models through the 
use of human performance data.  According to 
Pew and Mavor, central to the successful 
execution of this task is the use of interdisciplinary 
teams embracing the disciplines of psychological, 
computer, and military sciences.  For those with a 
specific interest in this topic, the next section 
reviews the interdisciplinary nature of observational 
learning by briefly surveying its history with respect 
to computer science and psychology and by 
illustrating how it can be used in conjunction with 
military experts.  Others may proceed to the 
section following the next with no loss of critical 
information. 
 
 
 
 

MERGING THE DISCIPLINES AND USING 
PERFORMANCE DATA 

 
Essential to the problem of how to make behavior 
models more human-like is a definition of what the 
term "behavior" represents.  The term behavior is 
usually used to refer to anything a human being 
does: that is, any act or succession of acts that are 
objectively observable. A key word in the definition 
of behavior is "observable."  Behavior refers to 
movement, activity, or action that is overt.  
 
Broadly defined, psychology is the study of the 
behavior of intelligent organisms (Hilgard, et al, 
1979). Since artificial intelligence (AI) and machine 
learning (ML) are concerned with the automation of 
intelligent behavior (Lugar, 1993), it would make 
sense then that they borrow and/or learn from the 
annals of psychology.  This, in fact, is evidenced in 
a variety of AI/MLconcepts.  For instance, a 
number of first generation knowledge acquisition 
systems embraced as a part of AI's history (Shaw 
and Gaines, 1987; Boose and Bradshaw, 1987) 
make use of  "repertory grids", which are based on 
the theory of personal constructs developed by 
George Kelly, a well-known clinical psychologist.  
In his research, Kelly employed introspective 
methods to build templates that modeled an 
individual's perception of the world. Introspection 
involves examining one's own thoughts and 
feelings and making inferences based on this 
examination, and, at one time, it was the prevalent 
form for obtaining psychological data. 
 
As the discipline of psychology matured, it was 
agreed that introspection was not entirely open to 
scientific analysis and that the workings of the 
mind could only be known through the observation 
of the behavior it controls.  As a result, in modern 
times, experimental psychologists seldom use 
introspection.  Instead, they rely on a method of 
collecting data called observation.  Observation, or 
naturalistic observation, has always been a tool of 
science and is a well-respected and scientific 
method for accumulating information.  This 
transition has also been evidenced in the AI/ML 
communities where computational intelligence and 
fuzzy modeling approaches using observational 
data are becoming increasingly popular behavior 
modeling paradigms. 
 
The difference between introspective and 
observational techniques for acquiring knowledge 
has also been an issue of concern to the SAF 
community.  Because SAF models are driven by 
human behaviors, the value of the simulation 



 
 
 

whether for training, operations, or policy analysis 
depends in large part on the validity of the human 
knowledge on which those models are based.  All 
SAF developers recognize the importance of 
acquiring valid tactical knowledge from creditable 
subject matter experts (SMEs).  Some developers 
(Velt, 1993; Deutsch, 1993) assert that while 
acquiring introspective knowledge from SMEs may 
be beneficial and/or necessary, it alone is not 
sufficient. This view is corroborated by Pew and 
Mavor (1998) who assert that, “humans, 
unassisted by a computer, are simply not good at 
thinking through the implications of such 
complexity” (p. 15).  According to these 
researchers, conventional CGF knowledge 
acquisition techniques capture the SME's 
perceived decision, and this perception may not be 
consistent with the SME's actual decision.  In other 
words, the decisions people think they would make 
are not necessarily identical to the decisions 
people would actually make. To better understand 
this phenomenon, Deutsch offers a concrete 
domain example taken from Dreyfus and Dreyfus: 
 
“In the Air Force, instructor pilots teach beginning 
pilots how to scan their instruments.  The instructor 
pilots teach the rule for instrument scanning that 
they themselves were taught and, as far as they 
know, still use.  At one point, however, Air Force 
psychologists (DeMaio et al. 1976) studied the eye 
movements of the instructors during simulated 
flight and found, to everyone’s surprise, that the 
instructor pilots were not following the rule they 
were teaching.  In fact, as far as the psychologist 
could determine, they were not following any rule 
at all. ... the instructors, after years of experience, 
had learned to scan the instruments in flexible and 
situationally appropriate ways.” 
 
Deutsch continues by asserting that introspection 
is unreliable for determining the deliberative 
aspects of performance and cites psychological 
literature which reports that during the process of 
introspection, influential stimuli are not only 
inaccurately reported, but that they are frequently 
missed entirely.  Furthermore, he cites 
psychological literature which suggests that it is not 
unusual for subjects to be unable to report that a 
cognitive process has occurred at all, and that 
even responses are not always easily reported.  
 
Ultimately, Deutsch suggests that distributed 
simulation environments and CGFs provide a 
unique framework in which to design scenarios and 
conduct experiments to explore skilled behaviors of 
domain experts.  That is, by working with subject 

matter experts in a synthetic CGF environment, 
simulated scenarios which approximate the 
environment in which an expert interacts can be 
used to allow the expert to communicate by "doing" 
instead of by "reflecting".  As a result, the models 
are based on human performance data acquired 
by observation instead of data acquired through 
introspection.   
 
This paper builds on the recommendations and 
assertions offered by Pew and Mavor (1998) and 
Deutsch (1993).  In the next section, the 
performance of a low-level skill task by a SME is 
compared with the performance of the same task 
by a SAF to determine whether a noticeable 
difference exists.  Then, the section after the next  
demonstrates how the use of SME-generated 
performance data can be used to make 
conventional SAF performance more human-like. 
 
COMPARISON OF HUMAN MOVEMENT TO SAF 

MOVEMENT MODEL 
 

This section presents the method used to compare 
the near-term movement behavior of a ModSAF 
M1A2 entity with the movement behavior of a 
trained tank driver. Since maneuvering in the 
battlefield is a complex behavior depending on 
many factors, the problem was scoped to focus on 
the examination of the vehicle’s speed and 
orientation over one section of a road march route. 
Three scenarios were generated for the M1A2 
entity and three scenarios were considered for the 
SME, who was a former Army officer with Armor 
experience.   Also, the SME was provided ample 
opportunity to become familiar with the road march 
order parameters and the M1A2 table top driver 
simulator controls (see Figure 1). 
 

 
 

Figure 1.  Driver at M1A2 Table Top Simulator 



 
 
 

The NE_Bosnia terrain database was used for the 
experiment, and the route used for the road march 
may be seen in Figure 2.  Both the ModSAF entity 
and the human tank drivers started the route in 
identical locations with identical orientations and 
order parameters.  Also, the performance of both 
the ModSAF entity and the human driver was 
evaluated over the same section of the route. 
 

170492,86687
170524,86666

 
 

Figure 2.  Route Used for Comparison 
 
Figures 3 and 4 show the trajectory and speed 
data over the three runs made by the ModSAF 
entity and the SME, respectively.  All data in all 
plots represent the vehicle state between the 
terrain database coordinates (170492,86687) and 
(170524,86666).  The trajectory plots are 
presented relative to the route’s center line, and 
both the trajectory and speed plots denote the 
point at which the way point change occurs1.   
 
General observations for the SAF entity’s behavior 
include a drastic reduction in speed while 
approaching a turn and a drastic increase while 
departing the turn.  Also, as evidenced in the 
trajectory plot of Figure 3, the SAF entity tends to 
                                                           
1 A way point change occurs in ModSAF when the 
entity’s 3-dimensional euclidian distance is within 5 
meters of the way point and a periodic update 
occurs.  The way point change for SME data is 
derived by projecting two points equidistant from 
the way point along each road segment and then 
comparing the vehicle’s position relative to each of 
these points.   When the distance to the point 
projected on the departing side of the route is less 
than the distance to the point projected on the 
approaching side of the route, the way point is 
updated. 

take the turn through immoderate heading 
changes made over a relatively short period of time 
and shows little symmetry in its path relative to the 
way point.  Alternatively, the SME generated 
human performance data shown in Figure 4 reveal 
a smoother, more continuous trajectory with 
greater symmetry about the way point.   Further, in 
the corresponding speed plot, a general pattern of 
very little speed change is apparent. 

 
MODELING HUMAN PERFORMANCE DATA 

WITH NEURAL NETWORKS 
 
The task of modeling human driving skills (e.g., as 
acceleration, steering, and vehicle following) with 
neural networks has been well-investigated 
(Pomerlau et al., 1995; Nechyba and Xu, 1997) in 
the autonomous learning and intelligent vehicle 
communities.  A neural network is a collection of 
simple processors or nodes interconnected with 
each other that learn from examples and store the 
acquired knowledge in their interconnections, 
referred to as weights.  Neural networks can solve 
a variety of problems related to non-linear 
regression and non-linear dynamic systems.  
 
To model the SME’s performance on the road 
march, a feed-forward architecture with back-
propagation training was used to develop two 
networks.  The first network estimates the change 
in the vehicle’s speed and the second network 
estimates the change in the vehicle’s heading.  As 
indicated in Table 1, each of the networks consists 
of five inputs in the first layer, five nodes in the 
second layer, and a single dependent variable 
representing the response that is output by the last 
layer. 
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Table 1.  Architecture by Neural Network Type 

 
The inputs shown in Table 1 were normalized 
according to equations (1) – (5) below.  
Fundamentally, the inputs for each of the networks 
were a function of the M1A2’s state at the last 
simulation clock and how this state related to the 
road characteristics and March Order parameters. 
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)max( wpwp DDRwp =  (1)

MDRcl cl=  (2)
MSRs /=  (3)

HxyHabHRab =  (4)
HxyHbcHRbc =  (5)

 where 
speedentityS =  

turnatwaypointtodistanceDwp =  
speedordermarchM =  

centerlinesroadtodistanceDcl '=  
absegmentroadofdirectionHab =  
bcsegmentroadofdirectionHbc =  

headingentityHxy =  
 
Graphically, each of the networks may be 
visualized as shown in Figure 5.  The goal of  
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where 
• x1, x2, x3, x4, and x5 are the predictors  
      (k = 1 to 5) 
• y is the response (i = 1) 
• there are five hidden nodes (j = 1 to 5) 
• there are three layers (L = 0,1,2) 
• node “12” is node 2 in layer 1 
• weight “13”, w13, connects node 3 of layer L  

to node 1 of layer L+1  
 

Figure 5.  5-5-1 Feed-Forward Architecture 
 
training these networks is to determine the set of 
weights that will minimize the error between the 
calculated output, yI, that reflects the propagated 
effects of the inputs, and the training output, dI, as 
shown in equation (6). 
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where yI is calculated by summing the products of 
the inputs and weights, w, for each node in the 
hidden layer (7), applying a non-linear 
transformation function to each the nodes in that 
layer (8), and then propagating these effects to the 
output layer (9). So, to compute the output of the 
middle layer, yj, the total weighted input to the jth 
node for pattern p is given by: 
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and a non-linear activation function is applied to 
give the output of the jth node, )()1( py j : 
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where )(g is the frequently used sigmoid function. 
 
These effects are then propagated to the output 
layer by applying similar sets of equations (9).  The 
net input to the ith node for pattern p is given by: 
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and, in this instance, the output of the ith node for 
pattern p, yI(p), is not transformed, and thus is the 
same as the input. 
 
Once the error is computed (6), the weights are 
adjusted by computing the negative gradient of the 
error function and taking the partial derivatives of 
this function with respect to the weights (equations 
10 and 11). This allows errors at the output layer to 
be propagated backward toward the input layer in 
proportion to the error contributions due to the 
weight changes at the previous layer. 
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where η  is a user defined positive constant 
representing the rate of descent along the error 
surface. 
 
By applying the chain rule of derivation (see 
Rummelhart et al, 1986 for complete derivation), 
these equations reduce to: 
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For the example in Figure 5 representing the 5-5-1 
single output networks used in this investigation, 
these equations simplify to: 
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Each of these weight adjustments directs the 
network towards a solution to the input/output 
mapping.  That is, these weights are training the 
network to produce a certain output given a set of 
inputs.  This is one of the fundamental benefits of 
the neural network approach.  With the proper 
training and representation, the network will arrive 
at a mapping of how the responses are formed and 
there is no need to acquire and represent an 
expert’s knowledge in terms of rule sets. 

 
RESULTS 

 
Using data represented in Figure 4, architecture 
represented in Table 1, and the equations 
presented in the previous section, two neural 
networks representing the change in entity speed 
and change in entity orientation were trained and 
evaluated.  The application of the resulting model 
to the initial conditions in Run 1 generated the  
trajectory and speed data displayed in Figures 6a 
and 6b, respectively. It is clear, even from a simple 
visual comparison that the neural network trained 
with SME generated data more accurately 
represents true SME behavior than the ModSAF 
entity movement model does.  However, the 
improvement in fidelity comes at a small cost, as 
presented in Henninger et al (1999) which reports 
that the neural network-based model executes in 
an average of 2.925x10-4 seconds as compared to 
the standard ModSAF near term movement model 

which executes in an average of 1.7650x10-4 
seconds.  That is, the neural network program 
required almost two-thirds more processing time 
than the standard ModSAF near-term movement 
model required.  This estimate, however, is a 
conservative figure favoring ModSAF, as it 
includes all computations (i.e., data pre-processing 
and model execution) for the neural network based 
movement behavior but does not include a portion 
of the pre-processing operations performed for the 
execution of the ModSAF movement model. 
 

 
 
 

 

 
waypoint 
change 

 
 

 
vehicle 
path 

 
 

 
route 
center line 

 
Figure 6a.  Neural Network Based Movement 
Model’s Trajectory  
 
 

 
Figure 6b.  Neural Network Based Movement 
Model’s Speed Distribution (m/s) 
 

CONCLUSIONS 
 
The results of this initial study suggest that 
modeling human performance data with neural 
networks can improve the fidelity of SAF models.  
However, since the domain of required SAF 
behavior is so broad and the scope of the 



 
 
 

investigation was significantly limited, further work 
is required to evaluate the potential of this 
modeling paradigm to the complete domain of SAF 
behaviors. 
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