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Abstract

In this paper we are examining the issue of overtraining in Fuzzy ARTMAP. Over-training in Fuzzy ARTMAP
manifests itself in two different ways: (a) it degrades the generalization performance of Fuzzy ARTMAP as training
progresses, and (b) it creates unnecessarily large Fuzzy ARTMAP neural network architectures. In this work we
are demonstrating that overtraining happens in Fuzzy ARTMAP and we propose an old remedy for its cure: cross-
validation. In our experiments we compare the performance of Fuzzy ARTMAP that is trained (i) until the completion
of training, (ii) for one epoch, and (iii) until its performance on a validation set is maximized. The experiments were
performed on artificial and real databases. The conclusion derived from these experiments is that cross-validation
is a useful procedure in Fuzzy ARTMAP, because it produces smaller Fuzzy ARTMAP architectures with improved
generalization performance. The trade-off is that cross-validation introduces additional computational complexity in
the training phase of Fuzzy ARTMAP.
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1 Introduction

Fuzzy ARTMAP has been introduced in the neural network literature by Carpenter , et al., 1992, and since then it

has been established as one of the premier neural network architectures in solving classification problems. In solving

classification problems Fuzzy ARTMAP has the capability of establishing arbitrary mappings between clusters of

an input space of arbitrary dimensionality and clusters of an output space of arbitrary dimensionality. At times, in

doing so it creates very large neural network architectures. As a result, a number of researchers have tried to address

this problem with various degrees of success (e.g., see Williamson, 1996, Vertzi, et al., 1998, and Gomez Sanchez,

et al, 2000). In Vertzi, et al, 1998, the authors discussed the issue of overtraining in Fuzzy ARTMAP. This issue is

most apparent when the classes of the classification problem that Fuzzy ARTMAP tries to solve exhibit significant

overlap and results in the creation of large Fuzzy ARTMAP neural network architectures. In this paper we address
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the same problem, the problem of overtraining in Fuzzy ARTMAP. Overtraining in Fuzzy ARTMAP manifests itself

in two different ways. It may decrease the generalization performance of the network or it may increase the size of the

Fuzzy ARTMAP architecture (without necessarily improving its generalization), or both. To address the problem

of overtraining in Fuzzy ARTMAP we propose the usage of cross-validation techniques. Cross validation is a well

respected procedure in the statistical literature that allows you to determine when overtraining occurs. To avoid

some of the issues that plague cross-validation approaches (e.g. , the issue of small dataset) we focus our attention

here only on databases that have sufficient number of datapoints. This way, we can split the data into a training,

validation and test set that are representative of the distribution that the data follow.

There is a large and interesting literature on cross-validation methods which often emphasizes asymptotic statistical

properties, or the calculation of generalization error for certain models. The literature is too large to survey here,

so we restrict ourselves in a limited sample of papers that share some connection with the work conducted in this

paper, and the foundational papers that include those of Stone (Stone 19'74, 1977). In Kohavi, 1995, three methods

for accuracy estimation of a model and for model selection are discussed. The leave-one-out cross-validation, the

k-fold cross-validation and the bootstrap method; the models considered include C4.5 and Naive Bayes. Kohavi's

conclusion is that the best method is 10-fold cross-validation for accuracy estimation of a model and model selection.

In our paper we assume that we have enough data, and as a result we can claim that the correct data distribution is

accurately represented by the training, validation or test sets. Consequently, we perform training of Fuzzy ARTMAP

with a single training set, validation of Fuzzy ARTMAP with a single validation set and testing of Fuzzy ARTMAP

with a single test set. Our experimental results indicate that we can trust this cross-validation approach in producing

reliably good Fuzzy ARTMAP models. This method of performing cross-validation is also adopted by Amari (Amari,

et al., 1996, 1997). Another paper that is worth mentioning is the paper by Dietrich (see Dietrich, 1998). In this

work the author discusses a taxonomy of statistical questions in machine learning, one of which is the selection of

an appropriate pattern classifier under the assumption that the data available to us are plentiful. This is the same

problem that we are focusing on here, from the perspective of which of a number of Fuzzy ARTMAP neural networks

is the best classifier for the classification problem at hand. The type of Fuzzy ARTMAP networks investigated are

(a) a Fuzzy ARTMAP network that is trained until completion, (b) a Rizzy ARTMAP network that is trained for
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one epoch, and (c) a Fuzzy ARTMAP network that is trained to the point where its performance on the validation

set is maximized. Our careful examination of the literature did not identify any references where Fuzzy ARTMAP

training is stopped early through a cross-validatory procedure. As we have mentioned earlier this is the topic that

this paper addresses.

2 Fuzzy ARTMAP Neural Network Architecture

The details of the Fuzzy ARTMAP neural network architecture are included in Carpenter, et. al, 1992. What

is worth mentioning here is that Fuzzy ARTMAP can operate in two distinct phases, the training phase and the

performance phase.

The training phase of Fuzzy ARTMAP works as follows: Given a list of training input/output pairs, such as {I' ,01},

. . . {F, O}, . . . {JNT, 0NT}, we want to train Fuzzy ARTMAP to map every input pattern ofthe training list to its

corresponding output pattern. In order to achieve the aforementioned goal, we present the training list repeatedly to

the Fuzzy ARTMAP architecture. That is present J1 to ARTa and 01 to ARTb, then J2 to ARTa and 02 to ARTb,

and finally 1NT to ARTa and 0NT to ARTb; this corresponds to one list presentation. We present the training

list as many times as it is necessary for Fuzzy ARTMAP to correctly classify all the input patterns. The task is

considered accomplished (i.e., the learning is complete) when the weights do not change during a list presentation.

The aforementioned training scenario is called off-line learning. The performance phase of Fuzzy ARTMAP works

as follows: Given a list of test input patterns, such as I , . . . , 12, . . . , INS, we want to find the Fuzzy ARTMAP

output produced when each one of the aforementioned test patterns is presented at its F field. In order to achieve

the aforementioned goal, we present the test list once to the trained Fuzzy ARTMAP architecture.
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3 Cross-Validation

Estimating the accuracy of a classifier induced by supervised learning methods, such as Fuzzy ARTMAP, is an

important issue. One of the reasons for its importance is that it gives us some guidance on how good the future

predictive accuracy of the classifier is. Another, equally important reason, is that it gives us a way of choosing the

"best" classifier model amongst a set of classifier models.

Cross-validation is a statistical technique that allows us to estimate the accuracy of a classifier model. Kohavi, 1995,

discusses two prominent cross-validation procedures. The first one referred to as the hold-out method. We split the

set S of available data into a training set 8tr and a validation set S,., . The classifier is designed using the data in the

training set Str and its accuracy is estimated by evaluating its performance on the validation set S,, . That is, the

holdout estimated accuracy is defined as

PCCv=1OOx1:; : (yj,0j) (1)
(Ii ,Oi) ES

where PCCV denotes the percentage of correct classification of the classifier over the validation set S, ,NV are the

number of datapoints in validation set S, , the I and O designate the i-th input and desired output pair in S, ,

is the actual response of the classifier when it is excited by the input I, and (x, y) =1 if x = y, while 6(x, y) = 0 if

xy.

Obviously the holdout estimate is a random number that depends on the division of the available data in S into a

training set Str and a validation set S, . Often the holdout method is repeated k times and the estimated accuracy

Pccv is produced by averaging the estimated accuracies of the k runs.

The second method for cross-validation is referred to as k-fold cross-validation. In this procedure the available data

S is split into k mutually exclusive subsets, designated as S1 , 82 , . . ., S' of approximately equal size. The classifier
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is trained and tested (validated) k times. Each time m, m e {1, 2, . . . , k}, it is trained on S \ s and tested on Stm.

The cross-validation estimate is defined as the number of correct classifications divided by the number of data points

in the set S. That is,

Pccv = 100 x j7 : :
m=1 (I,O1)ESm

where PCCV is the percentage of correct classification on the validation set (which in this case happens to be the

entire set of available data), NV is the number of elements in S (which happens to be the same as 5), (I ,O)

represents a generic input/desired output pair in 5, and yj is the actual output of the classifier, designed with data

in S \5, and excited with the input I from the set S. Once more, 6(x, y) = 1 if x = y, while 6(x, y) = 0 if x y.

Obviously the cross-validation estimate in equation (2) is a random number that depends on the division into folds.

Complete cross-validation is the average of the above estimates over all the possible folds of NT training data into k

folds of approximately equal size. This is too expensive though, except in the case of 1-fold cross-validation, with NT

relatively small. As Kohavi states repeating cross-validation multiple times using different splits into folds provides a

better estimate at the expense of additional computational cost. In stratified cross-validation, the folds are stratified

so that they contain approximately the same proportions of labels as the original set.

In this paper we use stratified cross validation to stop training of Fuzzy ARTMAP at a point where its performance

on the validation set is maximized. To produce the estimate of the Fuzzy ARTMAP performance we used the holdout

cross-validation technique. Since we are focusing on datasets with large samples of data we do not have to worry

about making inefficient use of the available data. Furthermore, since we deal with large databases we did not use

k-fold cross validation to avoid increased computational costs.
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4 Experiments — Results — Observations

We conducted experiments with artificial databases to demonstrate the potential of cross-validation in Fuzzy ARTMAP.

The artificial databases consist of Gaussian data that are of dimensionality 2 or 5 or 10. They belong to either 2

different classes or 3 different classes. The degree of overlap of data that belong to different classes is either low,

or medium, or high. The Gaussian data generated are independent in different dimensions and their means and

variances are chosen appropriately so that they can justify the characterization of low, medium, or high overlap.

For example, let us assume that we have a collection of Gaussianly distributed data, of dimensionality 2, that belong

to 2 different classes. We decided to use 5,000 datapoints per class to train Fuzzy ARTMAP (this set is Str),5,000

different datapoints per class to cross-validate Fuzzy ARTMAP (this set is Se), and 5,000 different datapoints per

class to test the performance of the trained Fuzzy ARTMAP (this set is Stes). We trained Fuzzy ARTMAP in three

different modes:

1. Mode 1: Train Fuzzy ARTMAP with the training data until completion (i.e., until Fuzzy ARTMAP's mis-

classification rate on the training data is 0%). Evaluate the performance of the trained Fuzzy ARTMAP on

the test data (Stes). This performance is denoted by PCC8.

2. Mode 2: Train Fuzzy ARTMAP for one complete epoch (an epoch of training corresponds to one presentation

of all input/output pairs of the training set through Fuzzy ARTMAP). Evaluate the performance of the trained

Fuzzy ARTMAP on the test data (set Ste8). This performance is denoted by PCC.

3. Mode 3: Train F\izzy ARTMAP for one complete epoch but check its performance on the validation set (set

S) every 100 iterations of training (an iteration of training corresponds to one input/output training pair

presentation to Fuzzy ARTMAP). At the end of the one epoch of training we identify the iteration number at

which the trained Fuzzy ARTMAP has exhibited the maximum performance on the validation set. We denote

this performance as PCCV . The weights of the Fuzzy ARTMAP that exhibited the maximum performance on

the validation set are retained. These weights are then used to evaluate Fuzzy ARTMAP's performance on the
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test set (set Ste8). We denote this performance by PCCte8.

For all the aforementioned three modes of training we also retained the information about the number of nodes that

the trained Fuzzy ARTMAP has created. We denote the number of these nodes as N, NEP and Na, for modes

1, 2 and 3 of training, respectively. For the artificial databases Mode 3 cross-validation was performed only for the

first epoch of training, due to the fact that cross-validation is a computationally expensive procedure. We observed

that for the artificial databases performing cross-validation only for the 1st epoch of training was enough, since we

were able to produce a small Fuzzy ARTMAP architecture with a good generalization performance.

Our experimental results with the artificial databases are illustrated in Table 1. In Table 1 we depict the results in

8 different columns. Column 1, designated, as Overlap defines the degree of overlap between the data belonging to

different classes. The second column of Table 1 depicts the number of classes in our dataset; as we have mentioned

before we have experimented with data belonging to 2 or 3 distinct classes. The third column in Table 1 shows the

dimensionality of the input patterns. To discuss the rest of the columns of Table 1, let us focus on one of the rows of

Table 1, the boldfaced entry of the medium overlap category corresponding to data of dimensionality 10, belonging

to 3 classes. The results reported in columns 4 through 8 of the boldfaced entry of the medium overlap category are

extracted by averaging the results over 25 experiments. These experiments were constructed by taking 5 different

sets of training/validation/test data and for each such set of data we trained Fuzzy ARTMAP with 5 distinct orders

of training data presentations . For future reference we refer to these 5 different sets of data as S , S, and S8 , for

1 � m < 5. For each one of these sets we refer to the 5 orders of training data presentation by or(m),where or(m)

takes the values 1, 2, 3, 4, 5 to designate the five different orders of presentation for each one of the 5 training data

sets. The entry of the fourth column of the boldfaced row in the medium overlap category corresponds to PCC8.

The entry of the fifth column of the boldfaced row in the medium overlap category corresponds to PCCte8 1G1C18.

The quantities PCCte8 and PCC3 are defined as follows:

PCCte8 : i PCCt8(m,or(m)) (3)
m=1 or(m)=1
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Pcc8 = : >1 PCC3(m,or(m)) (4)
m=1 or(m)=1

where PCCte8(m, or(m)) is the performance of Fuzzy ARTMAP on the test data S8, trained under mode 3, with

training data S presented to it in the order or(m),while PCC8 (m, or(m)) is the performance of Fuzzy ARTMAP

on the test data S8, trained under mode 1, with training data S presented to it in the order or(m).

Note that the entries of the fourth column of Table 1 , which correspond to the average percentage of correct classifica-

tion for Mode 1 Fuzzy ARTMAP (complete training scenario) are a quantitative verification that we are dealing with

a low, medium or high overlap. The PCC8 value for the low overlap is in the high 90's range, the medium overlap

is in the low to mid-80's range and the high overlap is in the 60's to 70's range. The entry of the sixth column ofthe

boldfaced row in the medium overlap category corresponds to PCCte8 PCC, which is the average difference

in the percentage of correct classification between the Mode 3 and Mode 1 trained Fuzzy ARTMAPs. The seventh

column, designated as CRC, corresponds to the average ratio of the number of nodes created by the Mode 1 trained

Fuzzy ARTMAP and the number of nodes created by the Mode 3 trained Fuzzy ARTMAP. This ratio is referred

to as compression ratio complete (CR'), to remind us how much Mode 3 trained Fuzzy ARTMAP compresses the

information compared to Mode 1 trained Fuzzy ARTMAP (which is trained to completion). The eighth column,

designated as CR 1EP , corresponds to the average ratio of the number of nodes created by the Mode 2 trained

Fuzzy ARTMAP and the number of nodes created by the Mode 3 trained Fuzzy ARTMAP. This ratio is referred

to as compression ratio one epoch (CRJP), to remind us how much Mode 3 trained Fuzzy ARTMAP compresses

the information compared to Mode 2 trained Fuzzy ARTMAP (which is trained for one epoch). The definitions of

the quantities CRC, and CR 1EP are similar with the definitions of the quantities PCCte8 and PCCS,

defined in equations (3) and (4).

If we observe the results depicted in Table 1, we can draw some useful observations regarding the performance of

Fuzzy ARTMAP under the three different modes of training.
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1. The number of nodes created by Fuzzy ARTMAP trained under Mode 3 (cross-validated training) is significantly

smaller than the number of nodes created by Fuzzy ARTMAP trained under Modes 1 (complete training) and

2 (one epoch of training). This observation is more pronounced for higher overlap datasets.

2. The generalization performance of Fuzzy ARTMAP trained under Mode 3 (cross-validated training) is better

than the generalization performance of Fuzzy ARTMAP trained under Mode 1 (complete training) or Mode 2

(one epoch of training).

3. The difference in the generalization performance between Modes 3 (cross-validated training) and Mode 2 (one

epoch of training) is larger than the difference in the generalization performance between Modes 3 and Mode

1 (complete training).

4. The difference in the number of nodes created between Modes 1 (complete training) and Mode 3 (cross-validated

training) is larger than the difference in the number of nodes created between Modes 2 (one epoch of training)

and Mode 1.

5. The above observations are valid for all the dimensions (2, 5, 10) and all the number of distinct classes (2, 3)

that we experimented with.

5 Conclusions

In this paper we investigated the relative performance of Fuzzy ARTMAP trained to completion, or trained for 1

epoch, compared to the performance of Fuzzy ARTMAP trained until the maximum performance on a validation set is

achieved. The results on the artificial databases, where we could control the amount of data used, the dimensionality

of the input patterns and the degree of overlap of data belonging to different classes, indicate that cross-validation

help us discover a Fuzzy ARTMAP network with increased generalization and significantly reduced number of nodes.

These conclusions were more pronounced as we moved from databases of low overlap to databases of higher overlap.

We have also conducted some experiments with real databases (extracted from the UCI repository; see Murphy et

al., 1994) to investigate the issue of overtraining and the advantages of using cross-validation. Our results indicated
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that whether overtraining happens or not is problem dependent, and cross-validation helps us when to stop Fuzzy

ARTMAP training.

Overlap Classes Dim. PCC8 PCC8 — PCC8 ] PCCte8 PCCW ] CR1EP]
Low 2 2 95.39 1.11 1.82 44.21 14.94

2 5 96.78 0.79 1.92 19.31 5.04
2 10 99.76 0.08 0.43 3.26 2.02
3 2 99.95 0.86 1.51 45.32 15.75
3 5 99.19 0.08 0.51 10.31 3.82
3 10 99.57 0.31 0.68 3.23 2.05

Medium 2 2 84.50 2.69 4.34 J 63.54 23.34
2 5 83.03 0.29 2.44 42.98 10.87
2 10 83.59 1.27 3.66 f18.38 4.27
3 2 85.22 2.31 4.20 75.19 28.55
3 5 83.51 2.61 4.81 55.84 14.34
3 10 85.66 2.38 4.34 34.75 7.91

High 2 2 70.34 2.53 3.96 J 44.97 18.22
2 5 68.09 2.43 3.94 f51.45 14.17
2 10 68.05 2.73 4.24 28.97 6.89
3 2 67.22 3.02 4.95 91.00 43.71
3 5 63.61 2.24 3.90 93.10 28.90
3 10 73.06 1.01 2.62 17.96 4.14

Table 1: Comparison of Average Percentage of Correct Classification (PCC's) and Average Node Compression
Ratios (CR's) for the three different Fuzzy ARTMAP training modes (1, 2, 3) and three degrees of overlap (low,

medium, high) using artificial databases.
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