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 ABSTRACT
In this paper we introduce new useful, geometric concepts regarding categories in Fuzzy ART and Fuzzy ARTMAP, which
shed more light into the process of category competition eligibility upon the presentation of input patterns. First, we
reformulate the competition of committed nodes with uncommitted nodes in an F2 layer as a commitment test very similar to
the vigilance test. Next, we introduce a category’s match and choice regions, which are the geometric interpretation of the
vigilance and commitment test respectively. After examining properties of these regions we reach three results applicable to
both Fuzzy ART and Fuzzy ARTMAP. More specifically, we show that only one out of these two tests is required; which test
needs to be performed depends on the values of the vigilance parameter ρ and the choice parameter a. Also, we show that for
a specific relation of ρ and a, the vigilance ρ does not influence the training or performance phase of Fuzzy ART and Fuzzy
ARTMAP. Finally, we refine a previously published upper bound on the size of categories created during training in Fuzzy
ART and Fuzzy ARTMAP.
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1. INTRODUCTION
Fuzzy-ART1 (FA) and Fuzzy-ARTMAP2 (FAM) are two neural network architectures with roots in the adaptive resonance
theory3. While FA is intended for unsupervised clustering purposes, FAM is capable of building maps between clusters of
two separate spaces (known as input and output spaces) via a supervised learning scheme. While a single FA module
comprises FA, FAM consists of two FA modules interconnected with each other through an inter-ART module, which is
responsible for forming the appropriate cluster associations. Moreover, as a special application, FAM can be used as
classifier system. In this particular case, the output space of the mapping coincides with the set of class labels corresponding
to the patterns of the input space and therefore the role of the output space FA module becomes trivial. The means of learning
for both networks is the summarization of similar training patterns into clusters, which we will define as FA categories and
are used both in FA and FAM. FA categories are the building block of knowledge/memory representation for both
architectures. The forming of FA categories itself is achieved in a self-organizing manner; learning in FA and FAM does not
involve the minimization of any objective function. There are many desirable properties of learning and characteristics
associated to FA/FAM. First, they are both capable of off-line (batch) and on-line (incremental) learning. Under fast learning
rule1,2 assumptions, both exhibit fast, stable and finite learning: the networks’ knowledge stabilizes relatively fast after a
finite number of list presentations (epochs). Under the same assumptions, the FAM classifier achieves 100% correct
classification on its training set. Furthermore, they both feature outlier detection mechanisms that identify input patterns not
typical of previously experienced inputs. Also, due to the specifics of their neural architecture, responses of FA and FAM to
specified inputs are easily explained, in contrast to other neural network models, where in general it is difficult to explain
why an input pattern x produced an output y. However, both architectures have been criticized about their lack of a noise
removal mechanisms, which would have lessen the effects of noise present in the input data and minimize the risk of over-
fitting. Properties of learning for FA and FAM can be found in their original references1,2, as well as in the work of others4,5.
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We must note that significant insight into the functionality of FA/FAM has been gained by studying certain geometrical
concepts related to FA categories. For example, the fact that FA categories can be represented as hyper-rectangles in the input
domain has aided in the development of several properties of learning and has increased our level of understanding about the
inner workings of these architectures. In this paper we will attempt to explain what makes a FA category eligible to select an
input pattern and we will present some consequences of our newly introduced geometrical concepts, which apply both to FA
and FAM.

2. FUZZY-ART CATEGORY BASICS
Before proceeding with the introduction of new geometrical concepts revolving around FA categories, we believe that it is
necessary to provide limited background on certain key elements. We assume that the reader is already familiar with the basic
concepts about FA/FAM. We begin by introducing some useful notation. Let R be the set of real numbers and UM∈ [0,1]M

denote the closure of the M-dimensional unit hyper-cube that serves as an input space for any FA-module. We define as
|⋅|:U2M →R to be the L1-norm for the U2M  domain and ||⋅||1:UM →R to be the L1-norm for the UM domain. Additionally, we
define the min-operator ∧ :U2M×U2M →U2M, such that, if w1, w2∈ U2M and w3= w1∧ w2, then the mth component w3m of vector
w3 is w3m=min{w1m, w2m}. In the FA/FAM literature it is customary to denote as a∈ UM as a pattern of the input space and as
I=[a ac]∈ U2M to be its complemented coded version, where ac=1-a and 1 is the all-ones vector. Vector I serves as the input
vector to the FA modules. On grounds of convenience, we take the liberty of using x and xe=[x xc]=[x 1-x] for the input
pattern and its complement coded form. Note, that all aforementioned quantities are row vectors. The information of each FA
category j is stored in the FA module’s template, which is a vector of the form wj=[uj vj

c]∈ U2M and uj, vj∈ UM; we will call
the latter vectors template elements. Due to FA/FAM’s learning schemes, for every template it always holds that ujm≤vjm with
m=1..M. The size s(wj) of a category with template wj is defined as
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Note, that for every input pattern x∈ UM and template wj it holds
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Based on Equations 1 and 2, we define as the distance of a pattern x∈ UM from a category with template wj the quantity
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There is a one-to-one correspondence between FA categories, templates and committed nodes in the F2 layer of each FA
module. Each one of these nodes represents an FA category; the category’s description is stored in its top-down weight
vector, which constitutes its template.  Uncommitted nodes in the F2 layer of FA modules do not correspond to categories and
represent the “blank” memory of the system. It has been shown1,2,4 that FA categories can be geometrically represented as
hyper-rectangles embedded in the FA module’s input space UM. An example, when M=2, is shown in Figure 1 depicted in the
next page. The union of the shaded area in Figure 1 and the boundaries of the rectangle defined by uj and vj, is called
representation region of category j. Also depicted in the same figure, dis(x,wj) reflects the minimum L1 distance  (also known
as city-block or Manhattan distance) between pattern x and category’s j representation region. Note that, if x were inside or
on the borders of the rectangle, its distance from category j would have been 0.
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Figure 1: Geometric representation of FA category j assuming a 2-dimensional input space.

Learning in a FA module is achieved by creating categories and updating them as necessary in light of new
information.  For a FA category, incorporating new evidence in the form of a training pattern, is attained by increasing its
size and simultaneously reducing the distance between the pattern and the category. The learning law that implements this
idea for a category j being updated due to a pattern x is
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where γ∈ (0,1] is a learning rate parameter. Due to Equations 1 through 4 we deduce that
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As special case, when γ=1 (fast learning assumption), a category j that will be modified upon presentation of pattern x will
increase its size so that its new representation region contains x. In such a case, we say that the updated category j encodes
pattern x. In all other cases, where γ<1 (slow learning assumption), we will say that pattern x updated category j. Figure 2
illustrates the 2 cases in a 2-dimensional setting
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Figure 2: FA category modifications - slow vs. fast learning.

In the above figure, under slow learning pattern x updates wj
old to wj

new1, while under fast learning wj
new2 expands enough to

encode x. Notice that under both learning assumptions the new representation region includes the previous one. As a general
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comment, FA categories are never destroyed during learning and can only increase in size; destruction of a category would be
equivalent to partial loss of the FA module’s knowledge.

Except of the learning rate γ, FA modules have 3 more parameters: the vigilance parameter ρ∈ [0,1], the choice
parameter a>0 and the order of pattern presentation. The latter one can be thought of as a parameter affecting only the
module’s training phase (for P training patterns we have P! distinct orders), since the order, in which training patterns are
presented to the module, affects the characteristics and the number of the module’s categories. The vigilance and choice
parameters are the only ones that affect both the training and the performance phase of a module. Two important quantities
related to FA categories are the category match function ρ(w|x) (CMF) and the category choice function T(w|x) (CCF - also
known as bottom-up input or activation function), which are defined below:
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Based on Equations 1 and 3, the CMF and CCF can be alternatively expressed via geometry-based quantities as
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The above functions play a central role in the two modes of operation of a FA module (training and performance). The CMF
value of a category with respect to an input pattern is the quantity used in the comparison to the FA module’s vigilance
parameter ρ. On the other hand, the CCF value of a category with respect to a pattern x is used to determine the winning node
in the F2 layer of FA modules during node competition for x; the node with the highest CCF value is rendered to be the
winner.

3. THE COMMITMENT TEST
The comparison of CMF values to the vigilance parameter ρ constitutes the vigilance test (VT), which acts as a screening
device for categories before the node competition takes place. If a given input pattern during either training or performance
phase does not fit the characteristics of a category j, then j will fail the VT and is disqualified from the node competition.
Therefore, the VT can be regarded as a novelty detection mechanism that is able of pointing out non-typical patterns with
respect to existing categories in the FA module. The VT is expressed as

ρρ ≥)|( xw j . (11)

Categories fail the test, when their CMF value is less than ρ. However, the VT is not the only component of novelty
detection. During node competition both committed and uncommitted nodes participate. Assuming that uncommitted nodes
have a template of wu=1, they feature constant CMF and CCF values of

1)|( == uu ρρ xw . (12)
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From Equations 11 and 12 it is apparent that uncommitted nodes always pass the VT, since ρ∈ [0,1]. In order for a category j
to have a chance of winning the competition and be the one that best explains the presence of a given pattern, it must
definitely have a CCF value higher or equal than the one of uncommitted nodes, that is,
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For the reason we mentioned above we can view the above comparison of CCF values as a test similar to the VT, which
determines the eligibility of a category j to compete with other existing categories in the same FA module for a given input
pattern. Furthermore, it acts as an outlier detector too.

Definition 1
We define as commitment test (CT) of a category j featuring a template wj with respect to an input pattern x the comparison
of its CCF value, T(wj|x), to the CCF value of an uncommitted node, Tu. We say that category j passes the CT, when T(wj|x) ≥
Tu.

CT is a useful conceptual device, as it will become apparent later in this paper. Taking into account the facts presented so far,
we can formulate the following definition:

Definition 2
A category j that passes both the VT and CT, when presented with an input pattern x during either training or performance
phase, will be called eligible to select x. The set of all existing categories that are eligible to select x is called the candidate
set S(x).

4. CATEGORY REGIONS
At this point we are ready to define various FA category regions. Unfortunately, proofs of the properties presented in this and
the following section are left out due to lack of space. However, the reader might be able to verify these properties in the 2-
dimensional case with the aid of figures that are provided. The first region, a category’s representation region, has been
already introduced in the previous section; we will just provide its formal definition based on Equations 2 and 3.

Definition 3
We define as representation region Rj=R(wj) of a category j with template wj the following subset of UM{ } { }0),(|)(          |)( =∈=⇔=∧∈= jMjjjMj disURUR wxxwwwxxw . (15)

It has also been shown pictorially in Figure 2 that, if x∉ R(wj), then R(wj)⊂ R(xe∧ wj), otherwise R(w)=R(xe∧ wj). This implies
that R(w)⊆ R(w∧ xe) for any x∈ UM and, when a category is being modified, its representation region expands (includes more
points of the input space).  Next, we will proceed with a definition that adorns the VT with a new geometrical interpretation.

Definition 4
We define as match (vigilance) region Vj=V(wj|ρ) of a category j with template wj for a particular value ρ of the vigilance
parameter the following subset of UM
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Note that in Definition 4 we made use of Equations 9 and 11. We call the quantity dV(wj|ρ) the radius of the match (vigilance)
region. It stands for the maximum L1 distance a pattern x can have from the category’s representation region, so that the
category (with template wj) still passes the VT for a vigilance parameter value of ρ. Based on Definition 4 we can replace the
algebraic definition of the VT, as shown in Equation 11, with a geometric one:

Geometric Definition of the Vigilance Test
A FA category j with template wj passes the VT with respect to an input pattern x∈ UM for a particular value ρ of the
vigilance parameter, if and only if x∈ V(wj|ρ).

One can observe in Equation 16 that the match region radius decreases with increasing category size. In other words, while a
category experiences a representation region expansion, its match region decreases in size. This observation and the fact that
dV(wj|ρ) can only be positive hints that the VT enforces a maximum category size, which is controlled by the value of ρ.
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Property 1
Due to restrictions solely imposed by the VT, for all ρ∈ [0,1] a FA category can reach a maximum size of M(1-ρ) under fast
learning. In general, for a FA category j with template wj it holds that R(wj)⊆ V(wj|ρ) ∀ ρ∈ [0,1]. Only if the category’s size
equals the maximum size M(1-ρ), then R(wj)=V(wj|ρ)  ∀ ρ∈ [0,1].

In the case, where R(wj)=V(wj|ρ), patterns outside category j will never pass the VT for any pattern outside its representation
region. Also, upon presentation of patterns inside its representation region, due to the learning law in Equation 4, the category
will also not get modified. Therefore, if R(wj)=V(wj|ρ), category j cannot be updated due to any training pattern and has
reached its maximum size. We know at this point that the match region always contains the representation region. Also, if for
some pattern x and category with template w it holds ρ(wj|x)=ρ, then x is located on the boundary of the category’s match
region. In other words, the match region’s boundary represents all points, for which the category will barely pass the VT.
Illustrations of a category region for a general case of wj when M=2 is given in Figure 3. The union of both shaded areas
constitutes the match region of the category depicted. We state here without proof that for higher dimensionalities of the
input space (higher values of M) the match region’s boundary is a convex polytope with their axes of
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Figure 3: Match region of a template j in 2 dimensions.

symmetry parallel to the ones of the coordinate system. We continue with Property 2, which describes the relationship of a
category’s match region before and after an update due to a pattern belonging to the category’s original match region.

Property 2
During the training phase and using fast learning, the match region of any FA category contracts, whenever the category
expands to encode a pattern located inside its match region, but outside the category’s representation region. Stated in terms
of sets, for any FA category j with template wj and any pattern x∈ V(wj|ρ)-R(wj) it holds that V(xe∧ wj|ρ)⊂ V(wj|ρ) ∀ ρ∈ [0,1].
Also, it holds that V(xe∧ wj|ρ)=V(wj|ρ), if and only if x∈ R(wj). As a general statement, if x∈ V(wj|ρ), then V(xe∧ wj|ρ)⊆ V(wj|ρ)
∀ ρ∈ [0,1].

Since match regions are contracting when their related representation regions expands, an immediate result of Property 2 is
the following:

Property 3
During the training phase and using fast learning, the match region’s hyper-volume of any FA category decreases, whenever
the category expands to encode a pattern located inside its match region, but outside the category’s representation region, i.e.,
if x∈ V(wj|ρ)-R(wj), then Vol(V(xe∧ wj|ρ))<Vol(V(wj|ρ)).

An example of a 2-dimensional match region contracting is shown in Figure 4 illustrated in the next page, where a
representation region expands due to category’s j update and its match region decreases in volume (surface, in 2 dimensions),
while it remains contained in the original match region. A similar statement to Property 2 and 3 also holds for slow learning
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and implies that as long as a category is being updated, the match region contracts and decreases in hyper-volume. As an
immediate result of Property 2, we conclude the following statement:

Property 4
A category that does not pass the VT for a pattern x and a specific value of the vigilance parameter ρ will never pass the VT
in future list presentations of off-line FA/FAM training for the same pattern x and value of ρ.

So far we have highlighted many aspects of the match region, which relate directly to the notion of the VT. A similar
development as in Equation 16 can be performed for the CT.
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Figure 4: Contraction of match region in 2 dimensions.

Definition 5
We define as choice (commitment) region C(wj|a) of a category j with template wj for a particular value a of the choice
parameter the subset of UM
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In other words, C(wj|a) stands for all points of the input space, for which the category j with template wj would satisfy the
CT, when the choice parameter equals a. Points, for which T(wj|x)=Tu, lie on the boundary of the choice region. We can also
describe the CT using geometrical concepts, as we did with the VT.

Geometric Definition of the Commitment Test
A FA category j with template wj passes the CT with respect to a pattern x∈ UM for a particular value a of the choice
parameter if and only if x∈ C(wj|a).

In a similar fashion, the quantity dC(wj|a) in Equation 17 is called the radius of the choice (commitment) region. Observations
similar to the ones that we have stated for the match region radius can be stated for dC(wj|a) as well.
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Property 5
Due to restrictions solely imposed by the CT, for all a∈ (0,∞) and a training set of finite cardinality, the least upper bound for
any FA category’s size equals M2/M+a. Thus, for a FA category j with template wj under the same conditions it holds
R(wj)⊂ C(wj|a).

For a 2-dimensional category its choice region would resemble in shape to the match region depicted in Figure 3. This is
because Equations 16 and 17 are of the same general form. Unfortunately, for the choice region there is no counterpart to
Property 2 or 4, but there is a counterpart ot Property 3. Without giving a formal proof, it turns out that after a category has
been updated the new choice region does not completely lie within its former choice region. However, a weaker result can be
shown as stated below:

Property 6
For all a∈ (0,∞) the choice region of any FA category j decreases in terms of hyper-volume each time the category is updated
due to an input pattern inside its choice region, but outside its representation region. In other words, if x∈ C(wj|a)-R(wj), then
Vol(C(xe∧ wj|a))< Vol(C(wj|a)).
Again, an example of the above statement in 2 dimensions is given in Figure 5, which illustrates the fact that, although the
choice region decreases in hyper-volume (surface, in 2 dimensions), it is not completely contained in the category’s original
choice region. So far we have examined both the VT and the CT separately and the results imply that both perform analogous
functionality: they regulate which and how many points are allowed to be selected by a particular category during node
competition. To summarize, as the category expands due to new input patterns during the training phase and its size
increases, the hyper-volume of both regions decreases.
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Figure 5: Hyper-volume decrease of choice region in 2 dimensions.

A category enters the candidate set to compete for a particular pattern, if it passes both tests, as stated in Definition 2. Based
upon our previous definitions of category regions and our last comment we are led to the following region definition:

Definition 6
We define as claim region L(wj|ρ,a) of a FA category j with template wj for a particular value ρ and a of the vigilance and
choice parameter respectively the following subset of UM
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As expected, the quantity dL(w|ρ,a) is called the radius of the claim region, which also decreases, when a category’s size
increases. From Figures 4 and 5 we have observed that both the match and the choice region have a similar shape; in general,
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the regions differ only in their radii. Also, in view of Definition 6 we expect that the claim region will coincide either with
the match or the choice region depending on the values of ρ and a.

Property 7
The claim region of a FA category j with template wj coincides either with the category’s match region or its choice region
depending on the value of the vigilance parameter ρ, the value of the choice parameter a and, under certain circumstances, on
the category’s size s(wj). In more detail, for a∈ (0,∞) we discriminate 3 major cases:
i) If 0≤ρ≤a/(M+a), then L(wj|ρ,a)=C(wj|a).
ii) If a/(M+a)<ρ<(M+a)/(2M+a) and we define sthres=(2M+a)(1-ρ)-M, then

iia) if s(wj)<sthres, then L(wj|ρ,a)=C(wj|a).
iib) if sthres<s(wj), then L(wj|ρ,a)=V(wj|ρ).
iic) if s(wj)=sthres, then L(wj|ρ,a)= C(wj|a)= V(wj|ρ).

iii) If (M+a)/(2M+a)≤ρ≤1, then L(wj|ρ,a)=V(wj|ρ).

An immediate result stemming from Definition 6, Properties 2 and 5 is the following:

Property 8
For all ρ∈ [0,1] and a∈ (0,∞) the claim region of any FA category j decreases in terms of hyper-volume each time the
category is updated due to an input pattern inside its claim region, but outside its representation region. In other words, if
x∈ L(wj|ρ,a)-R(wj), then Vol(L(xe∧ wj|ρ,a))< Vol(L(wj|ρ,a)).

5. RESULTS
The category regions along with their properties that we’ve presented so far are sufficient to describe under what conditions a
category will be eligible to select a particular pattern during the training and performance phase of FA/FAM. All the results
of this section apply for FA modules with parameters ρ∈ [0,1] and a∈ (0,∞). The following theorem comes as an immediate
result from Property 7:

Theorem 1
Upon presentation of pattern x during training for any γ∈ (0,1] or during the performance phase of a FA/FAM network, in
order to determine if a particular FA category j of template wj enters the candidate set, it suffices to perform only one of the
two tests (VT, CT). The test necessary to be performed depends on the values of the network parameters.
i) If 0≤ρ≤a/(M+a), then it suffices to perform only the CT.
ii) If a/(M+a)<ρ<(M+a)/(2M+a) and we define sthres=(2M+a)(1-ρ)-M, then

iia) if s(wj)<sthres, then it suffices to perform only the CT.
iib) if sthres<s(wj), then it suffices to perform only the VT.
iic) if s(wj)=sthres, then perform either the CT or the VT.

iii) If (M+a)/(2M+a)≤ρ≤1, then it suffices to perform only the VT.

Definition 7
We define as a-dominant region the subset 0≤ρ≤a/(M+a) of the (ρ, a) parameter space [0,1]×(0,∞).

The vigilance ρ is used in FA/FAM only in the VT. In case (i) of Theorem 1 we notice that, if for a category the CT is
satisfied with respect to a certain pattern, then the corresponding VT will automatically be satisfied as well. This fact leads us
to the following result:

Corollary 1.1
If some FA module, which is part of a FA/FAM network, operates in the a-dominant region of the (ρ, a) parameter space,
then the training and performance phase does not depend on the value of ρ.

Corollary 1.1 tells us, for example, that, if a FA network operates in the a-dominant region, the number of categories it is
going to create during training does not depend on ρ. An immediate result derived from Property 7 is the following theorem
pertaining to the maximum size of categories.
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Theorem 2
For a FA/FAM network that has been trained with a finite cardinality training set the size of FA categories is limited by the
following rules
i) If 0≤ρ<(M+a)/(2M+a), then the category size has a least upper bound of s(w)<M2/(M+a).
ii) If (M+a)/(2M+a)≤ρ≤1, then s(w)≤M(1-ρ).
Both statements can be combined in a single inequality
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The previous theorem refines somehow an older result1 that stated s(w)≤M(1-ρ) for all values of ρ∈ [0,1] and a∈ [0,∞). In our
last figure featured in the next page, Figure 6, different regions of the (ρ, a) plane are pointed out and related to the results of
this section. The curves graphed are ρ=φ1(a)=a/(M+a) and ρ=φ2(a)=(M+a)/(2M+a). In Figure 6a the area aboveρ=φ2(a)
represents choices of the parameters, for which the satisfaction of the VT implies the satisfaction of the CT for all categories
with respect to any input pattern. The contrary holds for choices of (ρ ,a) below the curve ρ=φ1(a). The shaded area signifies
the parameter choices, where the necessity of the tests depends on the size of each category. In Figure 6b the curve ρ=φ2(a)
divides the plane into two different areas: for a choice of  (ρ, a) pairs below ρ=φ2(a) only a least upper bound exists for the
size of categories and for pairs above ρ=φ2(a) the categories can reach a maximum size of M(1-ρ).

Figure 6: Regions of interest in the (ρ,a) parameter plane.

6. CONCLUSIONS
In this paper we have highlighted the commitment test as a category-filtering device similar to the vigilance test. The two
tests conjointly determine the eligibility of nodes to compete for presented patterns in FA/FAM training or performance
phase. Additionally, their geometric aspect in the form of category regions has helped us in understanding their functionality
and behavior especially during training. Based on the existence of these regions we were led to a few results concerning
FA/FAM, which are primarily of theoretical interest. From a practical perspective, the most interesting result pertains to the
existence of a-dominant region of the (ρ, a) parameter space. FA/FAM behavior does not depend on ρ, when the network
parameter selection is a-dominant. Thus, a researcher experimenting with different parameter values on a FA/FAM network
needs only to consider distinct values of a, when (ρ, a) belongs to the a-dominant region and distinct values of pairs (ρ, a)
only if otherwise. Finally, the above category regions and produced results can also be adapted with only a few modifications
to the case of Hypersphere-ART6 and Ellipsoid-ART7 categories, which use hyper-spheres and hyper-ellipsoids instead of
hyper-rectangles for category representation.
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