
Ellipsoid ART and ARTMAP for incremental unsupervised and
supervised Learning

Georgios C. Anagnostopoulos* and Michael Georgiopoulos**

School of Electrical Engineering & Computer Science
University of Central Florida, Orlando, Florida

 ABSTRACT

We introduce Ellipsoid-ART (EA) and Ellipsoid-ARTMAP (EAM) as a generalization of Hyper-sphere ART and
Hypersphere-ARTMAP respectively. Our novel architectures are based on ideas rooted in Fuzzy-ART (FA) and Fuzzy-
ARTMAP (FAM). While FA/FAM summarize input data using hyper-rectangles, EA/EAM utilize hyper-ellipsoids for the
same purpose. Due to their learning rules, EA and EAM share virtually all properties and characteristics of their FA/FAM
counterparts. Preliminary experimentation implies that EA and EAM are to be viewed as good alternatives to FA and FAM
for data clustering and classification tasks. Extensive pseudo-code is provided in the appendices for computationally efficient
implementations of EA/EAM training and performance phases.
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1. INTRODUCTION
Fuzzy-ART1 (FA) and Fuzzy-ARTMAP2 (FAM) are two neural network architectures based on the adaptive resonance
theory that addresses Grossberg's stability-plasticity dilemma3. While FA can be used for clustering of data, FAM is capable
of forming associations between clusters of two different spaces and, as a special case, can be used as a classifier too. In this
paper we will focus more on the classification capabilities of FAM rather than its ability to associate clusters. Therefore,
when we refer to FAM, we will mean the FAM architecture customized for classification tasks. An important feature of
FA/FAM is the ability to undergo both batch (off-line) and incremental (on-line) learning. In off-line learning, a set of
training patterns is repeatedly presented until the completion of the learning task at hand. In contrast, during on-line learning,
the networks’ structure is being altered as necessary to explain the existence of new patterns as they become available. Under
a special modus operandi called fast learning, a particularly interesting property of these networks is that they complete their
learning in a finite number of steps. In other words, their training procedure converges fast to a stable state in a finite number
of list presentations (epochs). This is in contrast, for example, to feed-forward neural networks, which use the Backprop
algorithm for their training and only asymptotically reach a stable state. Morevoer, once fast learning has reached its
completion FAM achieves a 100% correct classification on its training set.
In order to perform their learning task (clustering for FA and classification for FAM), both architectures group their input
data into clusters (FA categories or simply categories). FA forms its categories from unlabeled input patterns via an
unsupervised learning scheme, while in FAM categories are formed in a supervised manner and consist of input patterns
bearing the same class label. Note that, in FAM many categories might describe a single class of patterns and therefore share
a common class label. FA and FAM can be thought of as networks that during training perform compression of their inputs
by substituting single patterns with clusters. The forming of clusters is achieved via a self-organinzing scheme; FA/FAM
perform their tasks without optimizing a specific objective function. Both of them process real-valued, vector-valued data;
both cannot cope with data featuring missing attribute values. Also, FA and FAM work especially well, when the data is
binary-valued. Furthermoe, both of the networks require a preprocessing stage, where either input pattern normalization or
complement coding is used to prevent category proliferation. While input data normalization causes a loss of vector-length
information, complement coding normalizes input vectors and preserves their amplitude information. Another interesting
aspect of the two architectures is that due to the internal structure, it is easy to explain the networks’ outputs, such as why a
particular pattern was selected by a category.
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This is not the case, for example, with feed-forward neural architectures, where it is significantly difficult to explain why an
input x generates a certain output y. A key element in the learning process of the two architectures is a non-typical pattern
detection mechanism that is capable of identifying patterns, whose presence is not explained by the already developed (via
learning) categories within the networks. Thus, during training phase, a pattern that does not fit the characteristics of already
existing categories will initiate the creation of a new category. Aside from FA/FAM’s advantages, criticism4 has been voiced
on the lack of a smoothing operation during learning that would ameliorate the effects of noise present in the data. The
architectures use hard-competitive learning to form their categories, hence, over-fitting becomes an issue. On the next page
we summarize in a table the main characteristics of FA/FAM. The interested reader might find properties of learning for FA
and FAM in other references5,6. Due to space limitations, we assume that the reader already possesses a rudimentary
background in FA and FAM.

Characteristics of FA/FAM
Capable of both off-line and on-line learning.
Capable of fast, finite, stable learning.
Feature an outlier detection mechanism.
Network behavior upon presentation of a pattern is easily explained.
Are sensitive to noise and prone to over-fitting, because they do not
feature a noise removal mechanism.

Table 1: Main characteristic of FA/FAM learning.

The organization of this paper is as follows: first we state the motivation behind developing EA and EAM as extensions to
FA and FAM respectively and continue with the description of the novel architectures/algorithms. Later in this paper, we
present some illustrative experimental results, which compare EAM to the original FAM, and finally we state our
conclusions. Extensive pseudo-code is provided for a computationally efficient software implementation of both EA and
EAM training (Appendix A) and performance (Appendix B) phases. As a general comment, you will notice that our intent is
to highlight some algorithmic elements of the architectures described in this paper, rather than focusing on their architectural
nature. In other words, in this paper we emphasize the view of FA/FAM and EA/EAM as clustering and classification
algorithms respectively.

2. ELLIPSOID-ART & ELLISPOID-ARTMAP
FA and FAM utilize hyper-rectangles for category representation, which works especially well for patterns, whose attributes
take quantized values (for example, patterns with binary valued-features).  Note, that if M is the dimensionality of the input
space, then each FA category requires 2M memory units (floating point numbers, for example). When it comes to clustering
problems, depending on the distribution of input space patterns, hyper-rectangles are not always the ideal shape to represent
clusters7. Furthermore, regarding classification tasks, due to the fact that both algorithms utilize city-block (L1) distances, it
can be shown that decision boundaries created by FAM are piece-wise linear. Based on these facts as a motivating point,
Gaussian-ART7 (GA) and Gaussian-ARTMAP7 (GAM) addressed this issue successfully using hyper-ellipsoids for the
geometric representation of categories utilizing also 2M memory units per category. A characteristic of GA/GAM is that their
hyper-ellipsoids are constrained to have their axes parallel to the corresponding ones of the input space’s coordinate system.
Although there are several similarities between GA/GAM and FA/FAM, the former ones do not feature an appealing property
of the latter ones, which is to complete the off-line training phase in a finite number of list presentations under fast learning
conditions (learning rate γ equals 1). Hypersphere-ART8 (HA) and Hypersphere-ARTMAP8 (HAM) were the first neural
network architectures to employ shapes (hyper-spheres) other than hyper-rectangles for category description, while
maintaining the major (if not all) properties of FA and FAM. In HA/HAM, hyper-spheres require M+1 memory units per
category and are capable of forming more complex decision boundaries than FA/FAM.

In this paper we present EA and EAM, which are a successful attempt of using hyper-ellipsoids as category
representations with 2M+1 memory units per category, while simultaneously retaining virtually all of the properties and
characteristics of FA and FAM respectively. The new architectures essentially extend the ideas first presented in HA/HAM.
To guarantee the inheritance of FA/FAM properties, during the training phase EA categories have to be updated in such a
manner so that they comply to the following two constraints: i) the hyper-ellipsoids must maintain a constant ratio µ between
the lengths of their major axis and their remaining axes and ii) the hyper-ellipsoids must also maintain constant the direction
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of their major axis once it is set. Despite the above limitations, EA categories can have arbitrary orientations in the input
space in order to capture the characteristics of the data. An EA category j corresponds to each node in the EA module’s F2

layer and is described by its template vector wj=[mj dj Rj], where mj is the center of the hyper-ellipsoid, dj is called the
category’s direction vector, which coincides with the direction of the hyper-ellipsoid’s major axis, and Rj is called the
category’s radius, which equals half of the major axis’ length. The category’s size s(wj) is defined as the major axis’ full
length and equals 2Rj. A comparison between a 2-dimensional FA and EA category is given in Figure 1.
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Figure 1: 2-dimensional FA and EA categories with template elements.

EA/EAM geometry revolves around the use of weighted Euclidian distances, rather than the city-block (L1) distance of
FA/FAM. Distances of patterns from an EA category j depend on the category’s shape matrix Cj defined as
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 In the above expression, µ is the ratio of the hyper-ellipsoid’s major axis length over the length of each other minor axes.
Also, all vectors are arranged in columns and the T-exponent signifies the transpose of the quantity it is applied upon. Note,
that for EA categories that encode a single pattern, dj is defined to equal the zero vector 0 and the shape matrix Cj is defined
to equal the identity matrix I. In general, the distance of an input pattern x from an EA category j is given as
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Instead of explicitly forming the shape matrix Cj, using Equation 1 we can calculate the distance of a pattern x from the
center mj of a category j with shape matrix Cj according to
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In Eq. 4, ||⋅||2 denotes the usual Euclidian (L2) norm of its vector argument. Based on Equation 2, we define the representation
region of an EA category j as the set of all points of the input space satisfying
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In Figure 1 the shaded areas correspond to the representation regions of the categories involved. The shape of the
representation regions in EA/EAM depends on the order, according to which patterns are being presented during training, and
the EA/EAM network parameters. EA/EAM feature 4 network parameters: D (which plays the role of M in FA/FAM), the
(common for all categories) ratio  µ∈ (0,1] of minor-to-major axes lengths, the vigilance parameter ρ∈ [0,1] and the choice
parameter a>0 (the value a=0 is valid only for EA). In the case of EAM for classification tasks, these parameters will refer to
the ones of its ARTa module, since the ones of ARTb are of no practical interest. The ARTa module corresponds to the input
domain and ARTb to the ouptut domain of EAM. When EAM is used as a classifier the outpout domain coincides with the set
of class labels perinent to the classification problem. As was the case with HA/HAM8, the definition of the category match
function (CMF) ρ(wj|x) and the category choice function (CCF) T(wj|x), also known as bottom-up input or activation
function, for an EA category j is based on the homologous expressions valid for FA categories:
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Uncommitted nodes in EA/EAM feature a constant CMF value of ρu=1 and a constant CCF value of Tu=D/(2D+a) for all
patterns of the input space. Furthermore, uncommitted nodes do not correspond to any category; they just represent the
“blank” memory of the networks. As a reminder, the CMF value of a category is used for its comparison to the vigilance
parameter, when performing the vigilance test (VT). Also, the category’s CCF value is used for its comparison to the CCF
value Tu of the uncommitted node, when performing the commitment test (CT), and to determine a winning category during
node competition in the F2 layer for an input pattern. Care should be taken, when choosing a value for D. To guarantee that
the CMF’s and the CCF’s value for all categories and for all possible input patterns lies in the interval [0,1], D should be
selected at least equal to the maximum possible Euclidian distance between patterns of the input space (Euclidian input space
diameter) in consideration, that is,

2,
max qp

qp
D xx −≥ . (8)

EA/EAM training phases are identical to the ones of FA/FAM. Upon presentation of a new training pattern all committed
nodes in the F2 layer (that correspond to existing categories) are initially assumed to belong to a candidate set S, whose
members are eligible to encode the pattern. As a first step, all members of S undergo the VT, which removes from S all
categories with CMF value less than ρ. Next, the remaining members of S (if any) compete with each other in terms of CCF
values. An uncommitted node also participates in the competition, which constitutes the CT. Categories with CCF value less
than Tu are filtered out of S. If no category passes both the VT and the CT (thus, S is empty), an uncommitted node becomes
committed and forms a new category that encodes the new pattern. In the case of EA, if S is non-empty after the VT and CT,
the category featuring the highest CCF value is allowed to encode the pattern. On the other hand, in the case of EAM, the
course of action depends on the comparison of labels between the pattern and the chosen category. If the pattern and the
chosen category share a common label, then the category is allowed to encode the pattern. Otherwise, if there’s label
mismatch, match tracking2 (MT) is performed.

EA categories encode training patterns by updating their templates. During training, EA categories can only grow in
size and therefore can never be destroyed. The learning rules of EA/EAM resemble the ones of HA/HAM8 and are depicted
below. The learning rate is denoted as γ∈ (0,1]; γ=1 corresponds to fast learning. Also, x(2) denotes the second pattern to be
encoded in category j.
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Equation 9 and 10 imply that, when a training pattern is already located inside the representation region of category j, no
updates will take place for this category. Figure 2 provides a 2-dimensional illustration of a comparison between FA and EA
category updates. In case of a category update, due to the learning rules in Equations 9 through 11, the category’s new
representation region  can be shown to be the minimum hyper-volume hyper-ellipsoid that simultaneously contains both the
old representation region and the new pattern to be encoded (provided that the new pattern is not the second one to be
encoded by the category). Notice, that once the EA category’s direction vector dj has been set, it remains constant during
future updates. Notice, also that the boundaries of the two ellispoids Eold and Enew touch only at one point, t(x,wj
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Figure 2: Category update assuming fast learning in FA/FAM and EA/EAM in 2 dimensions.

A typical lifecycle of an EA category under fast learning assumptions is depicted in Figure 3. When category j is first created
upon presentation of pattern x1, its center mj coincides with x1, its direction vector is dj=0 and its radius is Rj=0. Assumming
that category j is eligible to encode pattern x2, the category’s representation region expands into an ellipse with its center mj

amidst x1 and x2, Rj equal to the Euclidian distance between x1 and x2 and, finally, dj is set equal to the unit Euclidian-length
vector along the direction of x2-x1. Assumming that category j is also eligible to encode x3, the representation region expands
enough to include the previous representation region and the new pattern, while maintaing constant its relative form (constant
ratio µ of minor axis length over major axis length) and constant direction (constant direction vector dj).
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Figure 3:  Lifecycle of an EA category in 2 dimensions under fast learning.
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The performance phases of EA/EAM are also identical to the ones of FA/FAM. To force EAM to classify a test pattern to
one of the existing classes, the vigilance ρ  has to be set equal to 0 and uncommitted nodes have to be excluded from node
competitions, thus, no CT must be performed.  An interesting fact regarding EAM is that, if it is trained using ρ=1 and then
is being used as a classifier with ρ=0 without requiring the CT during performance, EAM becomes equivalent to the L2-norm
(Euclidian) 1-Nearest Neighbor classifier9. Furthermore, if µ=1 EA/EAM become equivalent to HA/HAM, which justifies
our statement, that EA/EAM are generalizations of HA/HAM.

Figure 4: Decision boundaries example for FAM and EAM.

The advantage of EAM in certain classification tasks can be attributed also on the fact that it can create decision boundaries
that are non-linear, in contrast to FAM, which composes only piece-wise linear boundaries. An example of this fact is shown
in Figure 4, where FAM and EAM have to separate two classes with no overlap on the plane. Points marked as asterisks
stand for training patterns. Black regions signify points in the plane classified as class 0 and white ones as class 1. The gray
areas constitute points deemed by the classifiers as non-typical of the training data via the VT and/or the CT. Also, each
rectangle corresponds to a FA category and each ellipse to an EA category. As you may have observed, the number of
categories created through training differs between Figures 4a, 4b and 4c, 4d. This has been achieved by using different
values for the network parameters.
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3. EXPERIMENTAL RESULTS

In general, an objective comparison of clustering algorithms is difficult to be achieved, thus, we will not attempt to directly
compare EA with FA. However, we can show the potential of the EA/EAM family by comparing EAM with FAM on the
basis of classification performance. We chose a simple, artificial classification example for our purposes, namely the Circle-
in-a-Square problem. It has been used in the past as a benchmark problem in the DARPA artificial neural network technology

(ANNT) program10. A circle of radius π2/1=R  is inscribed in the unit square, so that its interior covers exactly half of the
unit square’s surface. The classifiers have to learn how to distinguish points inside the circle (class label 1) from points
outside it (class label 0). Ten training sets have been created drawing samples from each class with equal probability. Each
set contains a multiple of 10 worth of training patterns: the first set contains 10, the second 20, etc. Also, a test set was
created with 10200 equally spaced labeled patterns that form a grid of points inside the unit square. Both classifiers were
trained until completion of fast learning using the same order of training patterns. A variety of network parameter values
were used for both FAM and EAM. The classification performance results are illustrated in Table 2 below.

Training set
cardinality

FAM
%performance

EAM
%performance

EAM
%improvement

EAM pattern
advantage

10 66.405254 65.101461 -1.303793 -13300
20 72.865405 74.875012 2.009607 20500
30 86.383688 85.677875 -0.705813 -7200
40 88.167827 88.354083 0.186256 1900
50 89.716694 89.873542 0.156848 1600
60 84.158416 84.089795 -0.068621 -700
70 90.167631 90.079404 -0.088227 -900
80 89.83433 91.412607 1.578277 16100
90 88.971669 89.795118 0.823449 8400

100 91.22635 91.657681 0.431331 4400

Table 2: Comparison of classification performance between FAM and EAM on the Circle-in-a-Square Problem.

Columns 2 and 3 contain the percent correct classification rate of FAM and EAM respectively. Column 4 depicts the
difference of percent correct classification between EAM and FAM. Finally, column 5 shows the number of test patterns that
corresponds to the difference of percent correct classification between EAM and FAM (value in Column 4). Evidently, in 6
out of 10 cases EAM slightly outperforms FAM with a maximum difference of 2%. We are currently in the process of
performing additional experiments using machine learning databases to study the classification performance of EAM with
respect to FAM and to other classification algorithms.

4. CONCLUSIONS
In this paper we have presented two novel neural network architectures, namely Ellipsoid-ART and Ellipsoid-ARTMAP for
clustering and classification tasks respectively. These architectures are based on principals and key ideas of Fuzzy-ART and
Fuzzy-ARTMAP and therefore inherit they learning properties: they are capable of batch and on-line learning, exhibit fast,
stable, finite learning and they both are equipped with a outlier detection mechanism. Moreover, they can be regarded as
generalizations of Hypersphere-ART and Hypersphere-ARTMAP. Both of them use hyper-ellipsoids as the means to
summarize input data, in contrast to FA/FAM, which use hyper-rectangles. Therefore, they are not constrained to creating
only piece-wise linear decision boundaries. Finally, we have demonstrated with limited experimental results that EA and
EAM can be considered worthy alternatives to FA and FAM.
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APPENDIX A
The algorithm below implements EA/EAM (EAM for classification) off-line training phase assuming fast learning. N is the
number of existing categories in EA/EAM , P is the number of training patterns, M is the dimensionality of the input patterns,
S is the candidate set and {D,ρ, a} are the network parameters. Lines starting with double back-slashes (“//”) represent
comments.

// Initialization

Set const1:=D+a,  const2:=Mρ, 
aD

D
Tu +

=
2

: , N :=0

Set the Candidate Set to empty, i.e. S :=∅  .

// List presentation (epoch) loop.
Until no more categories have been created or updated, do
{ // Pattern loop.

For each training pattern xp p:=1..P
{ // Calculate the category match function values.

For each category j:=1..N

{ Calculate
J

jpjpdis
C

mxmx −=:),(

Calculate jjpjp Rdisdis −= ),(:),( mxwx

// If xp is outside the category’s representation region
If 0),( >jpdis wx

{ Calculate the scaled vigilance ),()(:)|()|(*
jpjjpjp dissDD wxwwxwx −−== ρρ

// Perform a test equivalent to VT.

If 1
* )|( constjp ≥wxρ , then include category j in S.

}
Else, if 0),( ≤jpdis wx

{ // Pattern xp lies inside the representation region of category j,
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// therefore it is guaranteed that j passes the VT for xp.
Include category j in S.
Set 0:),( =Jpdis wx

}
} // End of category loop

// If at least one existing category passed the VT
If S ≠ ∅
{ // Calculate the category choice function values.

For each category j in S

Calculate the CCF value 
)(

)|(
:)|(

2

*

j

jp
jp sconst

T
w

wx
wx

−
=

ρ

// Find the category with the maximum category choice function value.
Determine the maximum value Tmax of T(xp|wj) from the categories in S. Simultaneously,
find the category with the smallest index j, for which T(xp|wj)=Tmax. Assume that it is category k.

// Perform the CT on category k.
If Tmax<Tu

{ // No existing category passed the CT, thus, no category is chosen.
Set J:=none
Empty the Candidate List, i.e. S :=∅ .

}

While S ≠ ∅
{ // In case of EA, if the Candidate Set is non-empty, category k is eligible to encode

// xp, because all the training patterns and all created EA categories are assumed to have a
// common class label. Therefore, the following if-statement is always true for EA.
If category k has the same class label as xp

{ Set J:=k.
Empty the Candidate Set, i.e. S :=∅ .
Exit the while loop.

}
Else, if category k has a different class label than xp

{ // The following part of the algorithm may apply only to EAM.
// EA will never enter here.

Remove category k from S.

// Perform Match Tracking (MT).
If S ≠ ∅
{ Remove from S all categories j, for which it holds

)()( **
kpjp w|xw|x ρρ =

// Find the category with the maximum category choice function value.
Determine the maximum value Tmax of T(xp|wj) from the categories
in S. Simultaneously, find the category with the smallest
index j, for which T(xp|wj)=Tmax. Assume that it is category k.

}
Else, if S =∅ ,
{ // No existing category was found suitable to encode xp after MT.
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Set J:=none.
}

}
} // End of while loop

}
Else, if S =∅
{ // No existing category passed the VT.

Set J:=none.
}
   
If J=none
{ // No existing category tested eligible to encode xp, therefore create a new one.

Create a new category n with 0  ,  , === nnpn R0dxm .

Set 0:)( =ns w
Set N:=N+1.

// The following line applies only to EAM
Assign the class label of xp to the new category n.

Log that at least one category creation has happened.
Empty the Candidate Set, i.e. S :=∅ .

}
Else, if J≠none
{ // An existing category was found that is eligible to encode xp.

// Test if xp is outside the chosen category and an update is necessary.
If 0),( >Jpdis wx

{ // Category J will be updated with pattern xp

Update 
2

),(
: JpJ

J

disR
R

mx+
=

Update )(
2

),(
: Jp

J
JJ

dis
mx

wx
mm −+=

If xp is the second pattern to be encoded into category J
{ // Note that in this case mJ is the first pattern encoded in J.

Set 

2

:
Jp

Jp
J

mx

mx
d

−

−
=

}
Set JJ Rs 2:)( =w
Log that at least one category has been updated/modified.

}
}

} // End of pattern loop
} // End of list presentation loop
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APPENDIX B
The algorithm below implements EA/EAM (EAM for classification) performance phase. N is the number of existing
categories in EA/EAM , P is the number of training patterns, M is the dimensionality of the input patterns, S is the candidate
set and {D,ρ, a} are the network parameters. If CT-option is TRUE (FALSE) the CT will (not) be performed during
performance phase, that is, the uncommitted node is (not) allowed to compete along with the committed nodes for pattern
selection. Lines starting with double back-slashes (“//”) represent comments.

// Initialization

Set const1:=D+a, const2:=Mρ, 
aD

D
Tu +

=
2

: .

// If CT-option=TRUE, CT is performed.
Set the CT-option to TRUE or FALSE.
Set the Candidate Set to empty, i.e. S :=∅  .

// Test pattern loop
For each test pattern xp p:=1..P
{

// Calculate the category match function values.
For each category j:=1..N

{ Calculate
J

jpjpdis
C

mxmx −=:),(

Calculate jjpjp Rdisdis −= ),(:),( mxwx

// If xp is outside the category’s representation region
If 0),( >jpdis wx

{ Calculate the scaled vigilance ),()(:)|()|(*
jpjjpjp dissDD wxwwxwx −−== ρρ

// Perform a test equivalent to VT.

If 1
* )|( constjp ≥wxρ , then include category j in S.

}
Else, if 0),( ≤jpdis wx

{ // Pattern xp lies inside the representation region of category j,
// therefore it is guaranteed that j passes the VT for xp.
Include category j in S.
Set 0:),( =Jpdis wx

}
} // End of category loop

// If at least one existing category passed the VT
If S ≠ ∅
{ // Calculate the category choice function values.

For each category j in S

Calculate the CCF value 
)(

)|(
:)|(

2

*

j

jp
jp sconst

T
w

wx
wx

−
=

ρ

// Find the category with the maximum category choice function value
Determine the maximum value Tmax of T(xp|wj) from the categories in S. Simultaneously,
find the category with the smallest index j, for which T(xp|wj)=Tmax. Assume that it is category k.
Set J:=k.
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If CT-option is TRUE
{ // The uncommitted nodes participate in the node competition.

// Perform the CT for category k.
If Tmax<Tu

{ // No existing category passed the CT, thus, no category is chosen.
Set J:=none

}
}
Empty the Candidate Set, i.e. S :=∅ .

}
Else, if S =∅
{ // No existing category passed the VT.

Set J:=none.
}

If J=none
{ // No existing category tested eligible to encode xp. This means that xp did not fit the cluster

// characteristics of any existing category in EA/EAM. Hence, it is treated as a non-typical
// pattern, an outlier.

Report that xp is an outlier.

// In the case of EAM, xp cannot be classified.
// The following line applies only to EAM.
Assign a class label of “unknown” to xp.

}
Else, if J≠none
{ // An existing category was found that is eligible to encode xp.

Report that xp seems to belong to the cluster formed by category J.

// The following line applies only to EAM.
Assign the class label of category J to xp.

}
} // End of pattern loop
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