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Abstract 

We introduce new geometric concepts regarding categories 
in Fuuy ART (FA) and Fuuy ARTMAP (FAM), which add 
a geometric facet to the process of node selection in the F2 
layer by patterns. Apart from providing the means to better 
understand the training and performance phase of these 

-two architectures, the new concepts, namely the category 
regions, lead us to interesting theoretical results, when 
training either architecture. First, we define the 
Commitment Test as a novelty detection mechanism similar 
to the Vigilance Test. Next we define various category 
regions. Via those definitions and 3 derived lemmas we 
identify areas in the vigilance-choice parameter space, for 
which 4 results are stated that are applicable to both FA 
and the FAM classifier training phase. 

1 Introduction 

Fuzzy-ART (FA) [l]  and Fuzzy-ARTMAP (FAM) [2] are 
two self-organizing, neural network architectures with roots- 
in the adaptive resonance theory developed by Grossberg 
[3]. FA uses categories for data summarization and 
unsupervised learning to accomplish exemplar-based 
clustering. On the other hand, FAM consists of two FA 
networks (modules) interconnected via an inter-ART 
module and is intended via supervised learning to form one- 
to-one associations between clusters of an input and an 
output domain. As a special case, when the output domain 
is a discrete set of class labels, FAM is capable of 
performing classification tasks. The geometric 
representations of FA categories are hyper-rectangles 
embedded in the module’s input domain and may overlap 
with each other or even contain each other. Input patterns 

contained in the same hyper-rectangle are assumed to 
belong to the same cluster (category). The number of 
categories created during learning is determined in a self- 
organizing manner and is influenced by the module’s 
parameters and the evidence sampled from the module’s 
input space. FA and FAM architectures feature some 
interesting properties. First, it is possible to train both in an 
on-line (incremental) or an off-line (batch) fashion. Under 
fast learning rule [ 11, when performing off-line training, 
both architectures feature fast, stable, finite learning, that is, 
training completes after a finite number of list presentations 
(epochs). However, using the aforementioned learning 
mode, the networks suffer the risk of over-fitting, since no 
noise removal mechanism supports the learning process [4]. 
Learning in a FA module occurs by forming new categories 
or by updating preexisting categories in light of new 
information about the input space. Also, FA modules 
feature novelty detection mechanisms that identify patterns 
not typical of previously experienced inputs. It is those 
patterns that will initiate the creation of new categories to 
explain the recently acquired evidence. A characteristic of 
FA modules is that, on occasion, a small fraction of all 
categories created during training may prove redundant. 
Also, there are some interesting features pertaining to the 
performance phase of FA modules. First, owing to the 
network architecture, it is easy to explain a module’s output 
as a response to a stimulus, which comes in contrast to 
other neural architectures, like feed-forward networks, 
where, in general, it is hard to explain why a particular 
input pattern x generated a response y. Secondly, the 
performance phase is identical (as a computational process) 
to the training phase with the exception that no creation of 
new categories and no category updates are permitted. The 
interested reader will find more, detailed properties of 
learning and performance regarding FA modules in the 
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original references [l] and [2], as well as in [5] and [6]. The 
structure of this paper is as follows: in Section 2 we will 
outline some notational conventions used in this paper and 
provide some limited, but necessary background about FA 
modules and FA categories. Next, in Section 3 we introduce 
the concept of the Commitment Test as another novelty 
detection mechanism in FA modules. Section 4 introduces 
the reader to the various category regions and arrives to a 
few useful properties. Results pertaining to FA and FAM 
classifier are given in Section 5. Finally, in Section 6 we 
provide a brief summary of our contributions. 

2 Fundamentals of Fuzzy-ART modules and categories 

Let UM~[0,1IM denote the closure of the M-dimensional 
unit hyper-cube that serves as an input space for any FA 
module (network). A block diagram of such a module is 
featured in Figure 1. 
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Figure 1: Block diagram of a Fuzzy ART module 

Also, let 1.1 denote the L,-norm and let A : U ~ ~ X U ~ ~  +UZM 
denote the fuzzy-min operator; if W I ,  w ~ E U ~ ~  and w3= 

w l ~ w 2 , <  then the mth component w3m of vector w3 is 
w3,=min( wlm? ~ 2 , ) .  If XE uM represents an input pattern, 
then let xe=[x x‘]=[x 1-x] be its complement coded form, 
where 1 is the all-ones vector. All aforementioned and to- 
be-mentioned vectors, are assumed to be row vectors. 
Complement coding of input patterns occurs in a FA 
module’s F, layer. The top-down weights w, associated to 
connections emanating from a node j in the F2 layer and 
terminating to the nodes of the Fl layer are called templates 
and are of the form w,=[u, V;]E U2M, where U,, v , ~  UM. We 
discriminate between two types of nodes in the F2 layer: 
uncommitted and committed. Uncommitted nodes 
correspond to the blank memory of the network, in which 
they participate. Before the commencement of learning, all 
nodes in the F 2  layer are uncommitted. Uncommitted nodes 

feature a template of w,=w,l, where w,2Z is a FA module 
parameter. On the other hand, committed nodes are the only 
ones that define FA categories, which constitute the 
system’s crystallized knowledge about its input 
environment. During the training phase of a FA module, 
uncommitted nodes become committed in an incremental 
fashion in an effort to explain newly presented evidence. 
For a committed node j, its associated category is 
represented by a hyper-rectangle in UM with comer points 
uj and vj. An illustration of such an example for a two- 
dimensional input space is depicted in Figure 2. 

Figure 2: Representation region of a category j in 2 
dimensions 

The boundaries and the interior of the hyper-rectangle 
comprise the representation region of the related category. 
A category also corresponds to the hypothesis that all points 
within its representation region have been observed in the 
past during training. We continue by defining the size s(wj) 
of a category j as 

M 

s ( w j ) = I v j  -u j l=x(v jm - U j m )  (1) 
m=l 

The distance of a pattern x from category j with template wj 
is defined as 

didx ,  w j >  = x [(maxb,,, ,vjm}-vF )+ (U j m  - minkm, U jm})]  

(2) 

M 

m=l 

which is the minimum Ll distance between the pattern and 
the category’s representation region. Notice, that if the 
pattern is contained in the representation region, the 
distance is 0. According to the above we can define the 
representation region of a category j with template wj the 
following subset of U M :  

R ( W , ) = k E u M  I X e A W j = W j )  H 
M (3) 

R ( w j ) = k e  U Id i s (x ,w j )=O)  
At this point, let us turn our discussion back to FA modules 
and roughly describe the way they process input patterns. 
Upon presentation of pattern x, after being complement 
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encoded in the F, layer, all nodes (committed and 
uncommitted) in the F2 layer will compete to select the 
pattem. All nodes compete in terms of category choice 
function (CCF) value T(wlx), where 

IXe A W j l  M - s ( w j ) - d i s ( x , w j )  
(4) 

Here, a>O is another one of the FA module’s parameters, 
called the choice parameter. Uncommitted nodes, in 
specific, have a constant CCF value for every pattem equal 
to 

- T(Wj  I . ) =  - 
Iwi l+a  M - s J w j ) + a  

M 
2Mwu + a  

T ( w ,  I x)  =Tu = 

The node, which features the maximum value of T(wjlx), 
wins the competition for x .  In case of a tie, the winning 
node is the one of lowest index j. 

Next, it is tested if x matches the characteristics of the 
category that corresponds to the winning node. The 
category matchfunction (CMF) value is being computed as 
follows 

l X e  A W l l  - M - s ( w , ) - d i s ( x , w , )  
(6) 

and is compared to the vigilance parameter p ~ [ O , l /  as 
shown below. 

(7) 
The above condition is called vigilance test (VT). Notice, 
that uncommitted nodes always pass the VT (inequality 7 is 
being satisfied), since they feature a constant CMF value 
equal to P(w,lx)=l. If the winning (committed) node fails 
the VT, it i s k i n g  reset via the reset node in Figure 1, and 
the competition process repeats itself without the 
disqualified node, until a winning node is found that also 
passes the VT. Assume that the winning node is committed 
and corresponds to category j. Then, j will expand its 
representation region according to the following learning 
law: 

- 
M M P(w J I = 

P(W I x )  2 P 

- 

Wy = Y ( X c  A W y ) +  (1 - y ) W y  (8)  
In the above equation, y ~ ( O , l ]  is the learning rate 
parameter of the FA module. If the winning node is an 
uncommitted node, the node becomes committed and its 
template is initialized to 

The learning schema described in Equations 8 and 9 is 
called fast-commit slow-recode, when y<I, and fast 
learning, when pl. In the latter case, during off-line 
learning, it can be shown that the FA module exhibits 
finitdstable learning, that is, after a finite number of list 
presentations (epochs) no new category updates will occur 
and no further uncommitted nodes will get committed. 

Wy =xe (9) 

3 The Commitment Test 

The previously described VT simultaneously acts as a node- 
filtering mechanism and as novelty detector. The committed 
nodes are scanned to identify one that not only exhibits the 
highest CCF value, but also one that could explain the 
presence of the pattem being presented. However, the VT is 
not the only novelty detection device utilized by a FA 
module. To demonstrate this statement, assume that p=O, so 
all nodes in the F2 layer pass the VT (in essence, VT’s 
node-filtering mechanism is being disabled). There will be 
occasions, where the node competition process yields an 
uncommitted node as the winner, ,which means that no 
suitable category was found in the FA module to predict the 
presented pattern. Therefore, the competition of a 
committed node against an uncommitted can be viewed as 
an implicit novelty detection mechanism similar in role to 
the VT. 

Definition 1 
We define as commitment test (CT) the comparison of a 
node j ’ s  CCF value to the CCF value of an incommitted 
node 

T(Wj  I x)  2 Tu (10) 
Node j passes the CT, if the above inequality is satisfied. 

It becomes obvious that a pattem x will not choose a 
category j when presented, if j fails either the VT or the CT 
or both. 

4 Category Regions 

In Section 2 we already defined a category region, namely a 
category’s representation region. However, the geometric 
interpretation of the VT and the CT give rise to another 2 
useful category regions. 

Definition 2 
We define as category match (vigilance) region V(w,lp) of a 
category j with template w, for a particular value p of the 
vigilance parameter the following subset of @ 

v(wJ I P )  = bE UM I p(w, I 2 p j e  

V(Wj I P ) = & E U M  I d W x , w , ) l d V ( w ,  Jp) 

d v ( w j  I P ) = M ( ~ - P ) - s ( w , )  

By definition, a category’s match region contains all the 
patterns of the input space, for which the category would 
pass the VT. An example of a match region for a 2- 
dimensional input domain is depicted in Figure 3. The 
quantity ddwjlp) is called the radius of the region. All the 
regions introduced in the sequel feature the same shape as 
the match region and define similar radii.-Notice, that the 
representation region is always going to be a subset of 
almost all category regions. 
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Figure 3: A typical match region in a 2-dimensional input 
space. 

Definition 3 
We define as category choice (commitment) region 
C(w,la,w,) of a category j with template wj for particular 
values a of the choice parameter and w, the subset of U ,  
C ( w j I a , w u ) = ~ E U n n  IT(WjIX)>T,) H 

As was the case with the match region, the choice region of 
a category includes all input patterns, for which the 
category would have passed the CT, i.e. win the 
competition against an uncommitted node. It is interesting 
to observe that the similar nature of the CT and the VT as 
node-filtering process components is also being reflected by 
the similarity among the definitions of the match and choice 
regions in Equations 11 and 12. Next, we define two more 
regions that, although do not correspond to any physical test 
performed in a FA module, will aid towards the derivation 
of the results in Section 5. 

Definition 4 
We define as conservative category choice (commitment) 
region C(wjJa, w,) of a category j with template w, and size 

(2w, - l )M 
S ( W j ) l  

2Mw, + a  
for particular values a‘ of the choice parameter and w, the 
subset of UM 

Definition 5 
We define as optimistic category choice (commitment) 
region C+(wj\a,wi) of a category j with template wj for 
particular values a of the choice parameter and w, the 
subset of U, 

The next definition refers to the last 3 category regions 
presented in this paper. 

Definition 6 
We define as category claim region L(wjlp,a,wu) of a 
categoryj with template wj for particular values p of the 
vigilance parameter, a of the choice parameter and w, the 
following subset of UM 
L(w I p,a,w,) = V(w I p ) n C ( w  I a,w,) H 

i d,(wj ~ p . a . w , ) = m i n @ ~ ( w ~  tp) ,dc(wj l a , ~ , ) }  

If we replace the choice region with the conservative 
(optimistic) choice region in the above definition, then we 
can define a category’s conservative (optimistic) claim 
region L-(wjlp,a, w,) (L+(wjlp,a, w,)). 

A category’s claim region stands for the set of all input 
patterns, for which the category would pass both the VT 
and the CT. From the definitions we have stated so far we 
can show the following 2 lemmas: 

9 (16) 

L(wj I p,a,w,) = +E U ,  I dis(x,w j )  5 d,(w I p,a,w,)  

Lemma 1 
Categoryj will pass VT and the CT with respect to an input 
pattem x, if xgL-(wjlpa, w,) 

The previous statement follows from L-(wj(p,a,wu)c 
L(wjlp,a,w,). On the other hand, the next lemma is derived 
from the fact that Uw,lp,a, w , ) ~  L+(wjlp,a, w,). 

Lemma 2 
Category j will never be chosen by a pattem XE 

L+(wjlp9a, W,). 

Another interesting observation regarding the optimistic 
claim region is given in Lemma 3. Note, that a category’s 
representation region expands, when a new pattem is 
learned by the category. 

Lemma 3 
An optimistic claim region contracts, if its associated 
representation region expands. 
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5 Results regarding Fuzzy-ART and Fuzzy-ARTMAP 

Based on the definitions of category regions and the three 
lemmas presented so far, we can state some results that 
concern the FA network (a standalone FA module) and the 
FAM classifier. For the latter architecture, when we refer to 
the different network parameters p, a, w, and we will 
mean the parameters of the FA module dedicated to the 
input domain (ART, module). The role of the other module 
(ARTb module - corresponds to the output domain) in a 
FAM classifier is trivial. 

Result 1 
Assume a FA network is undergoing off-line training using 
any yz(O,Z] and a training set of cardinality P. For the 
module to complete training by creating N=P categories in 
only one list presentation, a sufficient condition is 

(17) dmin  p > p p  =1-- 
M 

or 

a > a p  =(2w,  -1)M -- (18) 
. [ L n  I) 

where d,, is the minimum distance between the patterns of 
the training set. 

Result 2 
Assume a FA network is undergoing off-line training using 
the fast learning rule ( P I )  and a training set of cardinality 
P. Further assume, that for the size S*S(X,~AX~~A..  AX^') 
of the category containing all the training patterns it holds 

(2w, - l)M 
2Mw, + a  smax 

Then, for the module to complete training by creating only 
one category (N=Z) in only one list presentation, a 
sufficient condition is 

and 
(2w, -l)M 

a l a l  = M  

Figure 4 identifies the areas in the @,a) parameter space, 
which correspond to the two sufficient _. conditions 
mentioned in the above two results. The two functions 
plotted are defined as 

It is worth mentioning that when w,+c-, the only sufficient 
conditions for Results 1 and 2 are Equations 17 and 20 
respectively; for the latter result, no constraint is necessary 
on s-, as in Equation 19. 

Result 3 
Assume a FAM classifier is undergoing off-line training 
using any y~(O,1] and a training set of cardinality P. For 
the module to complete training by creating N=P categories 
in only one list presentation a sufficient condition is 

d inha 

p > p p  =1-- (24) M 
or ' 

(25) a > a p  =(2w,  -l)M 

where d:! is the minimum intra-class distance between 
the patterns of the training set. 

Figure 4: Depiction of sufficient conditions for a FA 
network in the @,a) parameter space. 

Result 4 
Assume a FAM classifier is undergoing off-line training 
using any ye(O,I]. Assume also that d:: < d z - ,  where 

d z  is the minimum intra-class and d z  is the 
minimum inter-class distance between the patterns of the 
training set. For the module to complete training without 
match tracking ever to go into effect, a sufficient condition 
is 

d in,ter 

p > p m  =1-= (26) M 
or 
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Figure 5 shows the areas of the @,a) parameter space that 
are related to the above results. Similarly to the statements 
that we made for Results 1 and 2, when w,+, Equations 
24 and 26 will reflect the sufficient conditions for Results 3 
and 4 respectively. Also, notice that if P r o m i n  h P e r m i n ,  the 
sufficient condition for no match tracking (MT) [2] 
becomes identical to the one mentioned in Result 3, 
is a trivial case. 

which 

Figure 5: Depiction of sufficient conditions for a FAM 
classifier in the @,a) parameter space. 

Results 1 and 3 are based on Lemma 2. Assume that we 
have a training set consisting of P patterns x l ,  x2, ..., xp. 
During the first list presentation, pattern x I  will create 
category 1 with template wI=xle .  Under the conditions 
stipulated by the results, each subsequent pattern will fall 
outside the optimistic claim region of category 1 ,  or in the 
case of Result 3, even if they fall inside, they will be of a 
different class label. Therefore, category I will not expand 
to encode any other patterns except x l .  The same will 
happen for all P-1 remaining patterns. Hence, after the first 
list presentation, there will P categories and learning will 
have been completed. Result 2 can be proven via the use of 
Lemma 1 .  For the conditions mentioned in Result 2, after xl 
creates category 1, x2 will fall inside it’s conservative claim 
region (category 1 will satisfy both the VT and CT with 
respect to x2)  and, thus, the category’s template will be 
updated to wI=xleAx;. The same process will repeat itself 
upon presentation of pattern x3. In turns out that as category 
1 expands by encoding additional patterns, all other 
remaining patterns will remain inside its conservative claim 
region and, therefore, no new, additional category will be 
created. The training phase will complete after all patterns 
have been encoded in category 1, which will occur at the 
end of the first list presentation. Finally, regarding Result 4, 
it can be shown via the use of Lemma 2 and 3 that, for the 

conditions expressed in Equation 26 and 27, no category 
will include patterns of wrong class label in its optimistic 
claim region even if the categories expand to encode 
patterns of the appropriate class label. Therefore, no match 
tracking will occur during the formation and expansion of 
categories performed by the FAh4 classifier. 

6 Summary 

In this paper we defined as commitment test the comparison 
of F2-layer committed nodes against uncommitted nodes in 
a Fuzzy ART module in terms of category choice function 
values. We showed that the commitment test is an 
additional, implicit novelty detection mechanism, similar to 
the vigilance test. Stemming from the geometrical 
representation of those two tests, we defined various 
category regions, whose properties allowed us to state 
results in the form of sufficient conditions applicable to 
training with Fuzzy ART networks and Fuzzy ARTMAP 
classifiers. 
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