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Analyzing the Fuzzy ARTMAP Matchtracking mechanism with
Co-Objective Optimization Theory

Jose Castro and Michael Georgiopoulos and Jimmy Secretan

Abstract- In the process of learning a pattern I, the Fuzzy
ARTMAP algorithm templates (i.e., the weight vectors corre-
sponding to nodes of its category representation layer) compete
for the representation of the given pattern. This competition
can induce matchtracking: a process that iterates a number of
times over the template set searching for a template w* of the
correct class that best represents the pattern I. In this paper, we
analyze the search for a winning template from the perspective
of bi-criterion optimization and prove that it is actually a walk
along the Pareto front of an appropriately defined co-objective
optimization problem. This observation allows us to propose the
basis for an implementation variant of Fuzzy ARTMAP that
(a) produces exactly the same network as Fuzzy ARTMAP, (b)
avoids matchtracking by explicitly keeping track of a subset of
the Pareto front, (c) finds the correct template to represent an
input pattern through a single pass over the template set and
(d) eliminates the need for the Fuzzy ARTMAP parameter £

I. INTRODUCTION

Fuzzy ARTMAP [2] is a supervised neural network learn-
ing algorithm that has many desirable properties. This ar-
chitecture exhibits incremental on-line learning capabilities,
has a learning process that is guaranteed to converge to
a solution, possesses a novelty detector feature that rec-
ognizes novel inputs (inputs that are significantly different
from inputs that the architecture has seen before). It can,
under analysis, provide explanations for the answers that it
produces, and as a result it can address the neural network
opacity problem (i.e., inability to explain the answers that
they produce) for which most neural networks have been
criticized for [3]. Also, Fuzzy ARTMAP neural networks
have the property that they can dynamically increase their
size as the learning process progresses and only when
the learning task at hand requires it, a characteristic that
eliminates the need to specify an arbitrary neural network
architecture prior to the initiation of the learning process.

Fuzzy ARTMAP can be used both for classification as
well as function approximation problems but it has been
almost exclusively used for classification problems. Kasuba
[5], with only classification problems in mind, developed
a simplified Fuzzy ARTMAP structure (called simplified
Fuzzy ARTMAP) that is faster than the original. Further-
more, Taghi, et al., in [6], describe variants of simplified
Fuzzy ARTMAP, called Fast Simplified Fuzzy ARTMAP,
that reduce some of the redundancies of Simplified Fuzzy
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ARTMAP and speed up its convergence to a solution, even
further. One of the Fuzzy ARTMAP fast algorithmic vari-
ants, presented in [6], is called SFAM2.0 and it has the
same functionality as Fuzzy ARTMAP [2] for classification
problems. In this article we are interested in the behavior
of Fuzzy ARTMAP's matchtracking mechanism, but this
mechanism is used in most of ARTMAP's descendants, of
which Fuzzy ARTMAP is one. Nevertheless, in order to
put the marchtracking mechanism in a concrete context we
will only use Taghi's SFAM2.0 as the basis of our analysis.
From now on, we will refer to SFAM2.0 as FS-FAM, and
occasionally as Fuzzy ARTMAP. Keeping this in mind, the
results presented here are applicable to any neural network
that uses the matchtracking mechanism.
More to the point, when Fuzzy ARTMAP is in the process

of learning an input pattern I, the templates in its category
representation layer compete to represent this pattern, and
eventually one of these templates learns the pattern. This
competition can induce matchtracking: a mechanism that
iterates over the template set searching for a template w* of
the correct class that best represents the input pattern I. It is
our experience that this matchtracking induced iteration does
not have a high computational cost, and therefore, we believe
that this is the likely reason why it has not been subject
of a rigorous analysis for optimization. Nevertheless, there
is theoretical value and insight obtained by analyzing the
behavior of matchtracking. Furthermore, there are instances,
where matchtracking implemented as an iterative process can
become a liability, such as when using a processor pipeline
for parallel implementation of Fuzzy ARTMAP or in a
distributed sensor network Fuzzy ARTMAP implementation.
In this case it is best if the template that is to represent
the input pattern is found with a single pass through the
Fuzzy ARTMAP template set, but this can only be done if
we develop a non-sequential mathematical characterization
of the matchtracking mechanism.

The main contribution of this article, proven in section IV,
is that finding the winner of the matchtracking competition
is actually a walk along the Pareto front of an appropri-
ately defined co-objective optimization problem. This insight
allows us to propose in section V an implementation vari-
ant of Fuzzy ARTMAP that addresses the previous issues.
For one, and most importantly, it leads us to a Fuzzy
ARTMAP implementation that discovers the correct template
to represent an input pattern through a single pass over the
template set (a desirable property when Fuzzy ARTMAP
is implemented in a pipeline). As an added bonus, this
implementation discovers the correct template to represent
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Fig. 1. Block Diagram of the FS-FAM Architecture.

an input pattern without making use of the matchtracking
parameter E of Fuzzy ARTMAP (see main part of the paper
for the explanation of E's utility).

To make the article self contained we present the Fuzzy
ARTMAP architecture and FS-FAM algorithm in section
II. Special emphasis should be paid to the matchtracking
description, presented in subsection II-A, since it is the focus
of our work. The basic co-objective optimization theory is
outlined in section III and can be found in many optimiza-
tion textbooks. Our contribution is described in Section IV
through an example and appropriate theorems. Conclusive
remarks are made in Section V.

II. THE Fuzzy-ARTMAP NEURAL NETWORK
ARCHITECTURE

A block diagram of the FS-FAM components relevant
to our discussion is shown in figure 1. This architecture
has three major layers. The input layer (F1) where the
input patterns (designated by I) are presented; the category
representation layer (F2), where compressed representations
of these input patterns are formed (designated as wj); and
the output layer (F2b) that holds the labels of the categories
formed in the category representation layer. All input patterns
I presented at the input layer (F1) of FS-FAM have the
following form:

I (a, ac) = (a,, a2.... am,a, ac, ... a

where,
ac = 1-ai; ViC {l, 2,..., M}

The assumption here is that the input vector a is such that
each one of its components lies in the interval [0, 1]. The
above operation that creates I from a is called complemen-
tary coding and it is required for the successful operation of
Fuzzy ARTMAP.

FS-FAM can operate in two distinct phases: the train-
ing phase and the performance phase. In this paper we
are only interested in the training phase of FS-FAM, and
we omit any references to its performance phase. The
training phase of FS-FAM can be described as follows:
Given a set of PT inputs and associated labels pairs,
{ (I, label(I )), ... (IPT, label (IPT )))}, we want to train
FS-FAM to map every input pattern of the training set to
its corresponding label. To achieve this goal we present the
training set to the FS-FAM architecture repeatedly. That is,
we present IV to F1, label(1l) to F2b, 12 to F1, label(I2) to
Fb, and finally IPT to F1, and label(IPT) to Fb. We present
the training set to FS-FAM as many times as it is necessary
for FS-FAM to correctly classify all these input patterns.
The task is considered accomplished (i.e., the learning is
complete) when no new weights are created and the weights
do not change during a training set presentation. This training
scenario is called off-line learning. There is another training
scenario, the one considered in this paper, that is called on-
line training, where each one of the input/label pairs are
presented to FS-FAM only once. FS-FAM's training phase
is described in Taghi's et al., paper [6], and repeated below.

1) Find the nearest category in the category representa-
tion layer of FS-FAM that "resonates" with the input
pattern.

2) If the labels of the chosen category and the input
pattern match, update the chosen category to be closer
to the input pattern.

3) Otherwise, we reset the winner, temporarily increase
the resonance threshold (called vigilance parameter),
and try the next winner. This process is called match-
tracking.

4) If the winner is uncommitted, create a new category
(assign the representative of the category to be equal
to the input pattern, and designate the label of the new
category to be equal to the label of the input pattern).

The nearest category to an input pattern I presented to FS-
FAM is determined by finding the category that maximizes
the function:

(1)T(I, wj, 6X) = I A wj

This equation introduces two operands, one of them is the
fuzzy min operand, and designated by the symbol A. The
fuzzy min operation of two vectors x, and y, designated
as x A y, is a vector whose components are equal to the
minimum of components of x and y. The other operand
introduced is designated by the symbol . In particular, Ixl
is the size of a vector x and is defined to be the sum of
its components. The above function is called the bottom-
up input (or choice function value, or activation value)
pertaining to the F2 node j with category representation
(template) equal to the vector wj, due to the presentation
of input pattern I. This function obviously depends on an
FS-FAM network parameter a, called choice parameter, that
assumes values in the interval (0, oc). In most simulations of
Fuzzy ARTMAP the useful range of a is the interval (0, 10].



The resonance of a category to a given input pattern I
is determined by examining if the function, called vigilance
ratio, and defined below

p(I,wj) = I A wj

satisfies the following condition:

p(I,wj) > p

(2)

(3)
If the above equation is satisfied we say that resonance is

achieved. The parameter p is called the vigilance parameter
and assumes values in the interval [0,1]. As the vigilance
parameter increases, more category nodes are created in the
category representation layer (F2) of Fuzzy ARTMAP. At
the beginning of training with an input, output label pair the
value of p is set equal to the value of the baseline vigilance,
p, which is a value chosen in the interval [0, 1]. If the label of
the input pattern (I) is the same as the label of the resonating
category, then the category's template (wj) is updated to
incorporate the features of this new input pattern (I). The
update of a category's template (wj) is performed as depicted
below:

w <- wj A I (4)
The update of templates, illustrated by the above equation,

has been calledfast-learning in Fuzzy ARTMAP. Our paper

is concerned only with the fast learning FS-FAM, although
using slow learning as found in [2] would not compromise
the algorithms proposed in this paper.

At the beginning of the FS-FAM training the choice pa-

rameter (chosen in (0,10)), the baseline vigilance parameter
(chosen in [0, 1]) and the uncommitted node wo (chosen to be
equal to an all ones vector) are initialized. In FS-FAM, w0

is the only template that exists when training commences.

Given it's value (all ones vector) it is guaranteed to pass

vigilance. Also, a new template w equal to the input pattern
I will be created whenever the uncommitted node w0 wins
the activation competition. In FS-FAM, the uncommitted
node w0 is never eliminated or changed and is used as a

placeholder to identify when to create new templates.

A. The Matchtracking mechanism

When the situation for a given input pattern is that the
category template w; is chosen as the winner, it is not the
uncommitted node wo, and the label of this template wj
is different than the label of the input pattern I, then this
template is reset and the vigilance parameter p is increased
to the level:

p p(, wj) + E (5)

In the above equation E takes very small values. Increasing
the value of vigilance as shown in equation 5 guarantees that
in the next activation competition the last template winner

wj is excluded from competition. It is difficult to correctly
set the value of E so as to guarantee that after category resets
no legitimate category templates are missed by FS-FAM.
Nevertheless, in practice, typical values of the parameter E

are taken from the interval [0.00001, 0.001]. After the reset of

FAM-LEARNING({I1,. ..,IPT};p,, )
1 wo < (1,1, ...,1)

2M
2 templates <- {wo}
3 for each I in {I1 , I2 , ... , IPT}
4 dop<-p
5
6
7
8
9
10
11
12
13
14
15
16

repeat
S <- {wj: p(I,wj) > p}
jmax <- maxargj {T(I, wj, a): wj C S}
if label(I) 7t label(wjmax )

then p < p(I, wjmaJ + E

until (wj. = wo) or (label(I) = label(wjma ))
if wj #w07t °

then
Wj < wj A I

else
templates <- templates U {I}

return templates

Fig. 2. FS-FAM on-line training phase algorithm

template j (if that's the case), other templates are searched
to find the one that maximizes the bottom-up input while
satisfying the vigilance constraint. This process continues
until the uncommitted node w0 wins or a category template is
found that maximizes the bottom-up input, satisfies vigilance
and has the same label as the input pattern presented to FS-
FAM. Once this happens, the corresponding creation of a new
template or update of the template as indicated by equation
(4) ensues.

This iterative process of increasing the p parameter and
searching again for a competition winner is called match-
tracking and will be the segment of the FS-FAM algorithm
that will interest us in our analysis.

Pseudocode for the FS-FAM algorithm (on-line training
phase) is shown in Figure 2. In the on-line training phase of
the network the learning process (lines 3-15) passes through
the data once. We present the on-line version because it is
simpler and the iteration over the training set is irrelevant
for the analysis of the matchtracking mechanism. The match-
tracking mechanism itself is presented in lines 5-10.

III. PARETO FRONTS AND CO-OBJECTIVE OPTIMIZATION

In the multi-objective optimization (MOP) model of inter-
est to us we will be dealing with a vector of decision variables
x = (x1, ... , xC) that optimize the vector y, comprised from
a series of objective functions fi, as shown below

f(x) = y = (fl (x), , fkc (X))
subject to a set of general inequality constraints

gi(X) > O , cfI{... PI
The functions fi form a mathematical description of

performance criteria that usually conflict with each other.
Therefore optimizing the vector means finding a compromise



between the values of the fi that form an acceptable balance
to the decision maker.

Since we now have a number of objective functions to
optimize, the notion of optimum, as we usually understand
it, has to change. The first to recognize this fact was Francis
Ysidro Edgeworth in 1881. This notion was latter generalized
by Wilfrido Pareto, and therefore it is now called Edgeworth-
Pareto optimum or simply Pareto optimum.

To introduce the Pareto front concept we will start with a
number of definitions. But before we do so it's important to
note that in optimization we can decrease a cost function or
increase a gain function. We will take the point of view of
increasing a gain (activation) function, since this approach is
consistent with FS-FAM's approach of choosing the template
achieving the highest activation. Many optimization texts
take the opposite approach.

Definition 3.1: A vector u = (U1, ...,Uk) is said to
(pareto) dominate another vector v = (v,..., k) if and
only ifVie {1,... k}, ui > vi, and j {1,...,k} such
that uj > vj. If this is the case, we write u >- v.

Definition 3.2: In a MOP problem we say that a point
x C X, is a strongly dominated solution if and only if there
does not exist another point x' such that fi(x) < fi(x') for
all i and fj(x) < fj(x') for some j.

Notice that the definition of a strongly dominated solution
is very similar to pareto dominance. The difference being that
in pareto dominance we compare the vectors themselves, but
in strongly dominated solutions we compare the objective
function vectors. This takes us to the formal definition of
Pareto optimality, pareto optimal set, and pareto front.

Definition 3.3: A vector of decision variables x
(Xl *... Xn) is Pareto optimal if there does not exist another
x' C X, where F is the feasible region, such that fi (x) <
fi(X') for all i, and fj(x) < fj(x') for at least one j. Or
more succinctly stated, there does not exist an x' such that
f(x') >- f(x).

This definition basically states that a vector is pareto
optimal if it is not dominated by another vector from the
feasible region. This definition usually does not produce a
single optimal value, giving rise to the following definition.

Definition 3.4: Given a MOP with objective function vec-
tor y = f(x), the pareto optimal set 1P* is defined as:

P = {x C F:-3x'eCF f(x ) -f(x)}

Or simply stated as: the set of pareto optimal points.
Definition 3.5: Given a MOP with a designated P* , the

pareto front P¶* is defined as f(P*), or as

P¶* = {f(x): x C }

A. Co-Objective Optimization
Co-Objective optimization is a special case of multi-

objective optimization where the vector f(x) = (Yl, Y2) =

(fi (x), f2(x)). Under these circumstances we can easily
graph and visualize the co-objective optimization problem
and its pareto front. For example, in Figure 3, the pareto
front points can be identified by simple observation (i.e.,

f2 (x)

0

0 fi (x)

Fig. 3. Plot of co-objective optimization points with pareto front points
designated as open circles.

these points do not have other points that dominate them in
the way that was stated in definition 3.1). In Figure 3, the
pareto front points are designated as open circles, the dashed
lines converging to these pareto front points define a region
in the objective space that encloses all the points that these
pareto front points dominate.

IV. MATCHTRACKING AND PARETO FRONTS

It is clear from the explanation of the FS-FAM algorithm,
and the pseudo-code in Figure 2, that the process of searching
for a winning template is NOT co-objective optimization. It
is the iterative process of finding:

max {T(I, wj, a)}
wj Ctemplates

subject to the constraint p(I, wj) > p. When the maximum
is found, and only if this maximum does not belong to the
correct class will the process iterate, increasing the value of
p as presented in equation 5 and thereby excluding the last
winning template from the competition.
FS-FAM is more correctly modeled as a single valued

optimization problem subject to an inequality constraint.
Nevertheless, the iteration produced by matchtracking con-
stantly changes the feasible region of the problem. And it
is in the context of the match-tracking mechanism that it
becomes valuable to model the FS-FAM optimization as a
two dimensional co-objective optimization problem with a
fixed feasible region.

Consider the graph in Figure 4. This graph plots the value
of vigilance against activation for templates in the benchmark
circle within a square square problem, also mentioned in [2].
The circle within a square is a famous benchmark problem
where the classifier is trying to discriminate whether a point
in the input space is in a circle (located within a square)

.....................................................................................................
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Fig. 4. In this example, the dots (solid and empty) represent templates in the
circle within a square problem. The big solid dot represents the uncommitted
template. Eligible templates are located in the northeastern quadrant defined
by the lines of vigilance equal to 0.5, and activation value of approximately
equal to 0.5. In the figure the template identified (empty dot with the dashed
lines converging to it) is the template that was first chosen during the
presentation of the input pattern I = (0.13207, 0.661587), which resides
inside the circle. The winner template is not of the correct class (i.e., it is
template representing patterns that are outside the circle) so matchtracking
will ensue.

or outside the circle; the circle is centered at the center of
the square and its area is half of the area of the square.
In Figure 4, solid dots are templates that represent input
patterns located in the circle and empty dots are templates
that represent input patterns located outside of the circle.
The large dot at the top of the vertical dotted line represents
the uncommitted node, whose vigilance is equal to one but
whose activation is less than one half. The horizontal dotted
line (at level=0.5) represents the baseline vigilance p, which
for this example has been chosen equal to 0.5. Eligible
templates (i.e., templates that are likely to code the presented
input pattern) are all inside the north-eastern quadrant defined
by the dotted lines at p = 0.5 and T - 0.5.

It is worth observing from Figure 4 that there is a positive
correlation between vigilance values and activation values.
This relationship is to be expected (see equations 1 and 2).
Within the region of eligible templates (i.e., northeastern
quadrant of Figure 4) the winner of the competition will
be the template with highest activation T(I, wj, a) value.
This template winner is shown with dotted lines leading to
it; these lines define a region of points (templates) that are

pareto dominated by this template. This template winner is
not of the correct class, so matchtracking will happen. This
process increases the value of p as shown in equation 5, so
if E is small enough, all the templates above the horizontal
dotted (marked by the current template winner) line will be
the only eligible templates during the second pass through

Fig. 5. Scatter plot ofthe co-objective vector, f(w) = (T(I, w, a), p(I, w)),
values. The w's correspond to the FS-FAM templates in the circle in the
square problem, and the input pattern I, located inside the circle, is equal
to (0.13207, 0.661587). In the figure the pareto optimal points (templates)
that FS-FAM examines are shown (these points have dashed lines converging
to them). Of these templates two are of the incorrect class (empty dots) and
one is of the correct class (solid dot) that eventually encodes the input
pattern.

the template set. As this process continues we will eventually
obtain a template winner that is of the correct class or we

will obtain the uncommitted node as the template winner. In
this example, the final winner is of the correct class and it is
shown in Figure 5 as a solid dot with dashed lines converging
to it.

Notice that the winners of the matchtracking competition,
shown in Figure 5, lie in a pareto front of an appropriately
defined co-objective optimization problem. The example (in
Figures 4 and 5) allows us to visualize the main contributions
of our article, presented as a sequence of theorems (Theorem
4.1 and Theorem 4.2):

Theorem 4.1: The winner of FS-FAM competition (lines
6-13 of Figure 2) for a given input pattern I will al-
ways be the uncommitted node or a member of the pareto
front of the co-objective optimization problem f(w)
(T(I, w, a), p(I, w)) with the constraint p(I, w) > p-.

Proof: We could make the statement of the theorem
more concise by stating that the winner of the competition
is a member of the pareto front, since an uncommitted node
is on the pareto front. This is true because the vigilance of
the uncommitted node for any input pattern is equal to one

which is the maximum vigilance value attainable. Hence, it
is impossible for another template to pareto dominate the
uncommitted node.
Now let us consider the template wj that has won the

competition loop (lines 6-13 of figure 2). And let us also
consider another arbitrary template wk. Template wk either
complies or does not comply with the vigilance constraint.

........................................................ .......................... °.9
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If it doesn't comply then it cannot pareto dominate wj since
its vigilance is less that that of w;. If it complies with the
vigilance constraint then its activation T(I, wk) < T(I, wj)
because wj won the competition in the presence of wk; thus,
once more, it cannot pareto dominate wj. Consequently, since
an arbitrary template wk cannot pareto dominate the winner
of the competition in lines 6-13 of Figure 2, then wj is pareto
optimal. U

Theorem 4.2: The template winner of FS-FAM for the
whole algorithm in Figure 2 will always be the uncommitted
node or a member of the pareto front of the co-objective
optimization problem f(w) = (T(I, w, a), p(I, w)) with the
constraint p(I, w) > p.

Proof: The proof here is an obvious repetition through
the arguments presented in the proof of the previous theorem.
If no match-tracking happens, during the presentation of an
input pattern, the previous theorem and its proof suffice to
prove this theorem. If match-tracking happens the vigilance
threshold is increased and the arguments presented before
(in Theorem 4.1) that the winner template has to be on the
pareto front are still valid. U

V. DIscusSION

The previous result can be used to implement a variant of
the Fuzzy ARTMAP algorithm that has particular advantages
over the original. However, care must be taken to implement
this variant in an efficient way. In this variant implementation
of Fuzzy ARTMAP the algorithm must keep track of the
pareto front points lying in the northeastern quadrant of
Figure 4. Although keeping track of the pareto front points
might seem expensive computationally, two factors make
this process computationally reasonable. For one, there is a
positive correlation between activation values and vigilance
ratio values which makes the templates spread out along
the vicinity of the identity line of the graph (see Figure
4). On the contrary, the pareto front, cuts across a curve
with a negative slope. This combination produces a small
number of points in any pareto front for a Fuzzy ARTMAP
problem compared with the total eligible points that pass the
baseline vigilance threshold. Secondly, our experience with
Fuzzy ARTMAP on a variety of problems is that the number
of matchtracking instances for an input pattern, output label
pair presentation rarely exceed five (5). Furthermore, it is
important to notice that the only templates that we need
to keep track of are the members of the pareto front that
belong to the same classification category as the presented
input pattern, since these templates are the only ones that
might eventually be modified by the algorithm. For all the
other pareto front templates we simply need to retain their
activation and vigilance ratio values, a two-dimensional real-
valued vector for each such template. Thus, the amount of
storage corresponding to pareto front templates is not as
excessive as keeping track of all the template values of FS-
FAM.
By keeping track of the aforementioned needed informa-

tion regarding the pareto front templates we can select the

correct FS-FAM template, during an input-pattern/output-
label pair presentation, in only one pass through the FS-
FAM template set. This has an advantage in certain FS-
FAM implementation scenarios. For example, in a related
article [4] we propose a pipelined parallel implementation of
the FS-FAM algorithm, to speed-up its training phase. This
pipelined implementation permitted efficient parallel on-line
FS-FAM training with large databases. However, since it is
not trivial to parallelize the matchtracking mechanism, a no-
match tracking FS-FAM was only considered there (see [4]).
To use an analogy, the pipeline structure can be compared to
a product assembly line, and the process of matchtracking
as the process of returning products back to the starting
point of the assembly, a procedure that clearly disrupts the
pipeline. Matchtracking is an intrinsically sequential process,
and in order to parallelize it a global non sequential char-
acterization of the matchtracking mechanism is needed. The
work presented in this paper (pareto front structure of match-
tracking) achieves precisely this feat. Furthermore, it is worth
mentioning that the results obtained here can be generalized
to other ART architectures, such as Ellipsoidal ARTMAP
[1], Gaussian ARTMAP (see [7]), that have incorporated the
match-tracking mechanism in their design.
As a last note and added bonus, since we know that the

winners of the Fuzzy ARTMAP competition lie in the pareto
front the need for an E parameter is removed. The E parameter
is chosen a-priori in Fuzzy ARTMAP, but its a-priori setting
might lead into problems such as omitting eligible templates
or even ending up with an out of bounds value of p (p> 1)!
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