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Abstract - Outlier Detection has attracted substantial 

attention in many applications and research areas. Examples 

include detection of network intrusions or credit card fraud. 

Many of the existing approaches are based on pair-wise 

distances among all points in the dataset. These approaches 

cannot easily extend to current datasets that usually contain a 

mix of categorical and continuous attributes, and may be 

scattered over large geographical areas.  In addition, current 

datasets usually have a large number of dimensions. These 

datasets tend to be sparse, and traditional concepts such as 

Euclidean distance or nearest neighbor become unsuitable. 

We propose ODMAD, a fast outlier detection strategy 

intended for datasets containing mixed attributes. ODMAD 

takes into consideration the sparseness of the dataset, and is 

experimentally shown to be highly scalable with the number of 

points and number of attributes in the dataset. 

Keywords: Outlier Detection, Mixed Attribute Datasets, High 

Dimensional Data, Large Datasets. 

 

1 Introduction 

 Detecting outliers in data is a research field with many 

applications, such as credit card fraud detection [1], or 

discovering criminal activities in electronic commerce. 

Outlier detection approaches focus on detecting patterns that 

occur infrequently in the dataset, versus traditional data 

mining strategies that attempt to find regular or frequent 

patterns. One of the most widely accepted definitions of an 

outlier pattern is provided by Hawkins [2]: “An outlier is an 

observation that deviates so much from other observations as 

to arouse suspicion that it was generated by a different 

mechanism”.  

 Most of the existing research efforts in outlier detection 

have focused on datasets with a specific attribute type, and  

assume that attributes are only numerical and/or ordinal, or 

only categorical.  In the case of data with categorical 

attributes, techniques which assume numerical data need to 

first map the categorical values to numerical values, a task 

which is not a straightforward process (e.g., the mapping of a 

marital status attribute (married or single) to a numerical 

attribute). In the case of continuous attributes, algorithms 

designed for categorical data might use discretization 

techniques to map intervals of continuous space into discrete 

values, which can lead to loss of information. 

 A second issue is that many applications for mining 

outliers require the mining of very large datasets (e.g. 

terabyte-scale data).  This leads to the need for outlier 

detection algorithms which must scale well with the size and 

dimensionality of the dataset. Data may also be scattered 

across various geographical areas, which implies that 

transferring data to a central location and then detecting 

outliers is impractical, due to the size of the data, as well as 

data ownership and control issues.  Thus, the algorithms 

designed to detect outliers must minimize the number of data 

scans, as well as the need for excessive communication and 

required synchronization. 

 A third issue is the high dimensionality of currently 

available data. Due to the large number of dimensions, the 

dataset becomes sparse, and in this type of setting, traditional 

concepts such as Euclidean distance between points, and 

nearest neighbor, become irrelevant [3]. Employing similarity 

measures that can handle sparse data becomes imperative. 

Also, inspecting several, smaller “views” of the data can help 

uncover outliers, which would otherwise be “masked” by 

other outliers if one were to look at the entire dataset at once. 

 In this paper, we extend our work in [4] and we propose 

an outlier detection approach for datasets that contain both 

categorical and continuous attributes. Our method, Outlier 

Detection for Mixed Attribute Datasets (ODMAD), uses an 

anomaly score based on the categorical values of each data 

point. ODMAD then uses this score to find similarities among 

the points in the sparse continuous space. ODMAD is fast, 

efficiently handles sparse data, relies on minimal data scans, 

and lends itself to large and geographically distributed data. 

 The organization of this paper is as follows: Section 2 

contains an overview of previous research in outlier detection. 

In Section 3, we present our outlier detection approach, 

ODMAD. Section 4 includes our experimental results, 

followed by our conclusions in Section 5.  



2 Previous Work 

 The existing outlier detection work can be categorized as 

follows. Statistical-model based methods assume that a 

specific model describes the distribution of the data [5], which 

has the problem of obtaining the suitable model for each 

particular dataset and application [6]. Distance-based 

approaches (e.g. [7]) essentially compute distances among 

data points, thus become quickly impractical for large datasets 

(e.g., a nearest neighbor method has quadratic complexity 

with respect to the number of dataset points). Bay and 

Schwabacher [8] propose a distance-based method based on 

randomization and pruning and claim its complexity is close 

to linear in practice. Distance-based methods require data to 

be in the same location or large amounts of data to be 

transferred from different locations, which makes them 

impractical for distributed data. Clustering techniques can 

also be employed to first cluster the data, so that points that 

do not belong in the formed clusters are designated as 

outliers. However, these methods are focused on optimizing 

clustering rather than finding outliers [7]. Density-based 

methods estimate the density distribution of the data and 

identify outliers as those lying in relatively low-density 

regions (e.g. [9]). Although these methods are able to detect 

outliers not discovered by the distance-based methods, they 

become challenging for sparse high-dimensional data [10]. 

Other outlier detection efforts rely on Support Vector methods 

[11], Replicator Neural Networks [12], or using a relative 

degree of density with respect only to a few fixed reference 

points [13].  

 Most of the aforementioned techniques are geared 

towards numerical data and thus are more appropriate for 

numerical datasets or ordinal data that can be easily mapped 

to numerical values [14]. Another limitation of previous 

methods is the lack of scalability with respect to number of 

points and/or dimensionality of the dataset. Outlier detection 

techniques for categorical datasets have recently appeared in 

the literature (e.g. [15]). In [4], we experimented with a 

number of representative outlier detection approaches for 

categorical data, and proposed AVF (Attribute Value 

Frequency), a simple, fast, and scalable method for 

categorical sets.  Otey et al. [6] presented a distributed and 

dynamic outlier detection method for mixed attribute datasets 

that has linear runtime with respect to the number of data 

points; however their runtime is exponential in the number of 

categorical attributes and quadratic in the number of 

numerical attributes. Regarding sparseness in high-

dimensional data, Ertoz et al. [3] use the cosine function for 

document clustering. They construct a shared nearest neighbor 

(SNN) graph, and then cluster together high-dimensional 

points based on their shared nearest neighbors. 

 In this paper, we extend our previous work in [4] and 

propose Outlier Detection for Mixed Attribute Datasets 

(ODMAD), an outlier detection approach for sparse data with 

both categorical and continuous attributes. ODMAD exhibits 

very good accuracy and performance, it is highly scalable 

with the number of points and dimensionality of the dataset, 

and can be easily applied to distributed data. We compare 

ODMAD with the technique in [6] which is the existing 

outlier detection approach for distributed, mixed attribute 

datasets. 

3 ODMAD Algorithm 

 The outlier detection proposed in this paper, ODMAD, 

detects outliers based on the assumption that outliers are 

points with highly irregular or infrequent values. In [4], we 

showed how this idea could be used to effectively detect 

outliers in categorical data. ODMAD extends the work in [4] 

to explore outliers in the categorical and in the continuous 

space of attributes. In this mixed attribute space, an outlier 

can have irregular categorical values only (type a), or 

irregular continuous values only (type b), or both (type c). The 

algorithmic steps of ODMAD are below:  

 In the first step, we inspect the categorical space in order 

to detect data points with irregular categorical values. This 

enables us to detect outliers of type a and type c.  

 In the second step, we ‘set aside’ the points found as 

irregular from the first step, and focus on the remaining 

points, in an attempt to detect the rest of the outliers (type b).  

Based on the categorical values of the remaining points, we 

concentrate on subsets extracted from the data, and work only 

on these subsets, one at a time. These subsets are considered 

so that we can identify outliers that would have otherwise 

been missed (masked) by more irregular outliers. To illustrate 

our point, consider the scenario in Figure 1. Outlier point O2 

is irregular with respect to the rest of the data points, while the 

second outlier, O1, is closer to the normal points. In this case, 

outlier point O2 masks the other outlier point, O1. One 

solution to this problem could be to sequentially remove 

outliers. This implies several data scans, which is impractical 

for large or distributed data. In Section 3.3, we explain in 

more detail how we address this issue by considering subsets 

of the data. 

 
Figure 1: Masking Effect - Outlier O2 is more irregular than 

normal points and outlier O1, therefore O2 will likely mask O1. 



3.1 Categorical Score 

 As shown in [4], the ‘ideal’ outlier in a categorical 

dataset is one for which each and every value of its values is 

extremely irregular (or infrequent). The infrequent-ness of an 

attribute value can be measured by computing the number of 

times this value is assumed by the corresponding attribute in 

the dataset. In [4] we assigned a score to each data point in the 

dataset that reflects the frequency with which each attribute 

value of the point occurs.  In this paper, we extend this notion 

of ‘outlierness’ to cover the likely scenario where none of the 

single values in an outlier point are infrequent, but the co-

occurrence of two or more of its attribute values is infrequent. 

 We consider a dataset D with n data points, xi, i = 1..n.  

If each point xi has  mc  categorical attributes, we write xi =     

[ xi1 , …, xil ,…, ximc ],  where xil  is the value of the l-th 

attribute of xi . Our anomaly score for each point makes use of 

the idea of an itemset (or set) from the frequent itemset 

mining literature [16]. Let I be the set of all possible 

combinations of attributes and their values in dataset D. Let S 

be a set of all sets d such that an attribute occurs only once in 

each set d: 

S = {d :  d ∈ power set (I)  ∧  ∀  l, k ∈ d,  l ≠ k} 

where l and k represent attributes whose values appear in set 

d. We also define the length of d, |d|, as the number of 

attribute values in d, and the frequency or support of set d as 

f(d), which is the number of points xi  in dataset D which 

contain set d. Following the reasoning stated earlier, a point is 

likely to be an outlier if it contains single values or sets of 

values that are infrequent. We say that a value or a set of 

values is infrequent if it appears less than minsup times in our 

data, where minsup is a user threshold. Therefore, a good 

indicator to decide if xi is an outlier in the categorical attribute 

space is the score value, Score1, defined below:  
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Essentially, we assign an anomaly score to each data point 

that depends on the infrequent subsets contained in this point. 

As shown in [6], we obtain a good outlier detection accuracy 

by only considering sets of length up to a user-entered 

MAXLEN. For example, let point xi = [a b c], and MAXLEN = 

3, the possible subsets of xi are: a, b, c, ab, ac, bc, and abc. If 

subset d of xi is infrequent, i.e. f(d) ≤ minsup, we increase the 

score of xi by the inverse of f(d) times the length of d. In our 

example, if f(ab) = 3 and minsup = 5, ab is an infrequent 

subset of xi, and Score1 will increase by 1/(3×2) = 1/6.  

 A higher score implies that it is more likely that the point 

is an outlier. If a point does not contain any infrequent subsets 

its score will be zero. Score1 is inversely proportional to the 

frequency, as well as to the length of each set d that belongs to 

xi. Therefore, a point that has very infrequent single values 

will get a very high score;  a point with moderate infrequent 

single values will get a moderately high score; and a point 

whose single values are all frequent and has a few infrequent 

subsets will get a moderately low score.   

 We note that Score1 is similar to the one in [6]; however 

the latter does not make any distinction between sets of 

different frequency. We use the frequency of the sets to 

further distinguish between points that contain the same 

number of infrequent values. The benefit of our score 

becomes pronounced with larger datasets: for example, 

consider a dataset with a million data points and minsup of 

10%. Also assume two categorical values: a, that appears only 

once in the dataset, and b, that appears in the dataset slightly 

less than a hundred thousand times. Using our score, a data 

point containing value a (very infrequent) will have a much 

higher score than a point with value b. Using the score by [6] 

the two values would add the same to the score. Therefore, 

our score better reflects the amount of irregularity in the data. 

3.2 Continuous Score 

 Many existing outlier detection methods are based on 

distances between points in the entire dataset. In addition to 

the fact that this can be inefficient, especially for large or 

distributed data, it is very likely that in doing so, the algorithm 

might miss points which are not globally obvious outliers, but 

easier to spot if we focus on a subset of our dataset. 

Furthermore, the notion of a nearest neighbor does not hold as 

well in high dimensional spaces because the distance between 

any two data points becomes almost the same [17].  

 In our case of mixed attribute data, it is reasonable to 

believe that data points that share a categorical value should 

also share similar continuous values. Therefore, we can 

restrict our search space by focusing on points that share a 

categorical value, and then rank these points based on 

similarity to each other.  

 One issue that arises is how to identify similarities 

between points in high-dimensional data. The most prevalent 

similarity or distance metric is the Euclidean distance, or the 

L2-norm. Even though the Euclidean distance is valuable in 

relatively small dimensionalities, its usefulness decreases as 

the dimensionality grows. Let us consider the four points 

below, taken from the KDDCup 1999 dataset (described in 

more detail in 4.1): the first two points are normal and the 

second two points are outliers (we removed the columns that 

had identical values for all four points). Using Euclidean 

distance we find correctly that point 1 is closest to point 2 and 

vice versa, but for points 3 and 4 we find that each is closest 

in Euclidean distance to point 1, i.e. the two outliers are more 

similar to a normal point than to each other. 



1 0 0 0.002 0.002 0 0 0 0 1 0 0 0.004 0.004 1 0 1 0 0 0 0 

2 08.2E-6 8.5E-6 0.02 0.02 0 0 0 0 0.9 0.2 0.2 1 0.9 0.9 0.01 0.04 0 0 0 0 

3 0 0 0.002 0.002 0 0 1 1 1 0 0 1 0.004 0 0.5 1 0 0 1 1 

4 0 0 0.002 0.002 1 1 0 0 1 0 0 1 0.004 0 0.99 1 1 1 0 0 
 

 This is mainly because the Euclidean distance assigns 

equal importance to attributes with zero values as to attributes 

with non-zero values. In higher dimensionalities, “the 

presence of an attribute is typically a lot more important than 

the absence of an attribute” [3], as the data points in high 

dimensionalities are often sparse vectors. Cosine similarity is 

a commonly used similarity metric for clustering in very high-

dimensional datasets, e.g. used for document clustering in [3]. 

The cosine similarity between two vectors is equal to the dot 

product of the two vectors divided by the individual vector 

norms. Assuming non-negative values, minimum cosine 

similarity is 0 (non-similar vectors) and maximum is 1 

(identical vectors). In our example with the four points above, 

the cosine function assigns highest similarity between points 1 

and 2, and between points 3 and 4, so it correctly identifies 

similarity between normal points (points 1 and 2) and between 

outlier points (points 3 and 4). 

 In this paper, we used the cosine function to define 

similarities in the continuous space. Consider a data point xi 

containing mc categorical values and mq continuous values. 

The categorical and continuous parts of xi are denoted by   
c
ix  and 

q
ix  respectively. Let a be one of the categorical 

values of xi which occurs with frequency f (a). We identify a 

subset of the data that includes the continuous vectors 

corresponding to all points that share value a: {
q
ix : a ∈ c

ix ,   

i = 1..n}, which contains f(a) vectors. The cosine similarity 

between the mean vector of this set, aµ , and 
q
ix  is below: 
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where x  is the L2-norm of vector x. Finally, we assign the 

following score to each xi, for all categorical values a in 
c
ix : 
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which is the summation of all cosine similarities for all 

categorical values a divided by the total number of values in 

the categorical part 
c
ix . As minimum cosine similarity is 0 

and maximum is 1, the points with similarity close to 0 are 

more likely to be outliers.   

 Even though using the cosine similarity helps us better 

assess distances in a high-dimensional space, its use will not 

vastly improve our outlier detection accuracy in a large 

dataset with many different types of outliers. As we noted 

earlier in this section, we focus on specific subsets of the 

continuous space so as to identify outliers in smaller settings. 

In the next sections, we address the issue of having more than 

one outlier in a subset, and we outline which categorical 

values we use for Score2 in Eq. (3).  

3.3 Improving Accuracy 

 Many methods (e.g. [7]) assume that outliers are the data 

points that are irregular in comparison to the rest of the 

dataset, and that they can be globally detected. However, in 

many real datasets there are multiple outliers with different 

characteristics and their irregularity and detection depends on 

the rest of the outliers against which they are compared. This 

way, there could be outliers in our dataset that are masked by 

other, more irregular outliers (see Figure 1). The solution that 

we propose is to further use the knowledge that we obtain 

from the categorical scores to help alleviate this issue. Based 

on Eq. (1), data points with highly infrequent categorical 

values will have a very high Score1. We can exclude these 

points with high Score1 from the computation of our 

continuous score in Equations (2)-(3). The exclusion of these 

outlier points can be done in the following manner: as we 

compute the frequencies and means for each categorical value 

in our dataset, we identify highly infrequent categorical 

values. Based on this information, we can update the means 

for the rest of the categorical values that co-occur with the 

highly infrequent values. The details on how we select the 

values to exclude from the continuous subsets are given in the 

following sections. 

3.4 Algorithm 

 ODMAD consists of two phases: the first phase 

calculates the necessary quantities for the algorithm 

(categorical values, frequencies, sets, and means); the second 

phase goes over each point in the dataset and decides if each 

point is an outlier or not, based on the scores described in 

Section 3.1 and 3.2. The pseudocode for the two phases is 

given in Figures 2 and 3, respectively.  

 As shown in Figure 2, for the score calculation from Eq. 

(1), we only gather the frequencies of certain sets: the pruned 

candidates. Pruned candidates are those infrequent sets such 

that all their subsets are frequent. These are the sets that are 

pruned at each phase of a Frequent Itemset Mining algorithm 

such as Apriori [16].  The reason behind this is that as 

mentioned in section 3.1, we are interested in either single 

categorical values that are infrequent, or infrequent sets 

containing single values that are frequent on their own. This 

makes ODMAD faster as shown in the following example. 



Input:     D – dataset (n points, mq and mc attributes) 

                  minsup, MAXLEN  

Output:    G - Pruned Candidates & their frequencies;   

                  A  - Categorical values, means & frequencies 

foreach point xi    ( i = 1..n)   begin 

 Add the categorical values of xi ,  their frequencies,          

&  their means to A; 

     foreach  len = 2..MAXLEN   begin 

          Create candidate sets and get frequent itemsets; 

          Add pruned sets & their frequencies to G ; 

     end 

end 

Figure 2:  First Phase of our Outlier Detection Approach ODMAD 

 
Input:   D - dataset (n points, mq and mc attributes) 

               G, A , minsup, MAXLEN , 

                window, ∆scorec,q, low_sup, upper_sup 
Output:  outliers 

 foreach  point xi   ( i = 1..n)   begin 

     foreach categorical value a in  xi
c
   begin 

          If   f(a) < minsup  

              Score 1 (xi)  +=   1/ f (a); 

          end 

          If  low_sup   <   f(a) ≤  upper_sup  

              Score 2 (xi)  += cos (
q
ix ,

aµ ); 

          end 

     end 

     foreach  pruned set  d  in G found in c
ix    begin 

          Score 1 (xi)  +=   1/  ( f (d) × | d | ); 
     end 

 If  Score1 > ∆scorec × average Score1 in window  or  
      Score2 < ∆scoreq × average Score2 in window 
      flag(xi) = outlier; 

 else 

          normal, add  Score1,2  to window scores; 

      end 

 end 
Figure 3:  Second Phase our Outlier Detection Approach ODMAD 

 

Example.  Assume we have two points, each with three 

categorical attributes: x1 = [a b c] and x2 = [a b d].  If only 

single values a, c are infrequent with frequency equal to 5, the 

score is as follows:  
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Since a and c are infrequent, we do not check any of their 

combinations with other values because they will also be 

infrequent. The sets we will not check are: ab, ac, ad, bc, cd. 

However, bd consists of frequent values, b and d, so we check 

its frequency. Assuming bd is infrequent, and f (bd) = 4, we 

increase the score of x2:    

.325.0))((12.0)( 21 =×+= bdbdfScore x   

Note that at this point we stop increasing the score of both x1 
and x2, because there are no more frequent sets. Therefore, in 

this scenario, we only need to check sets a, c, and bd, instead 

of all possible sets of length 1 to 3 contained in x1, x2.  ■ 

 As we identify categorical values and sets, we also 

update the corresponding mean vectors as discussed in 

Section 3.3. We use a user-entered frequency threshold, called 

low_sup, to indicate what values we consider ‘highly 

infrequent’; then categorical values with frequency ≤ low_sup 

are ‘marked’ as ‘highly infrequent’. As we described in 3.3, 

we exclude points that contain these ‘highly infrequent’ values 

from the mean in Eq. (2) of all other categorical values they 

co-occur with. For example: assume point x contains 

categorical values a, f(a) ≤ low_sup, and value b, f(b) > 

low_sup. We exclude point x as follows: 
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 In the second phase in Figure 3, we first find all 

categorical values in each point and update Score1 in Eq. (1) 

accordingly. We do the same for all the pruned sets contained 

in the current point. Also, for each categorical value, we 

compute Score2 using the updated mean we computed in the 

first phase. The continuous vectors we use are those that 

correspond to categorical values with frequency in (low_sup, 

upper_sup]. If a point has a value with frequency less than 

low_sup, its Score2 will be 1, as it contains a highly infrequent 

categorical value. If a point has no values with frequency in 

(low_sup, upper_sup] it will have a Score2 of 0. By applying a 

lower bound to the frequency range we exclude values with 

very infrequent categorical values, and by applying an upper 

bound we limit the amount of data points to which we assign a 

score in the continuous domain. 

 Finally, as we scan and score the data points, we 

maintain a window of categorical and continuous scores. We 

also employ a delta value for the detection of abnormal 

scores: ∆scorec for the categorical scores and ∆scoreq for the 
continuous scores. As we go over the points in the second 

phase, if a point has a score larger (smaller in the case of 

Score2) than the average score of the previous window of 

points by the corresponding ∆ value, it is flagged as an outlier. 
Otherwise, the point is normal, and its non-zero scores are 

added to the window we maintain.  

 If each of the mc categorical attributes has an average of 

v distinct values, the complexity upper bound is below: 
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TABLE  1. DETECTION RATE ON THE  KDDCUP 1999 TRAINING DATASETS 

(10% Training Set and Entire Training Set) 

 10% training set Entire Training set 

Attack Type ODMAD Otey’s ODMAD  Otey’s 

Back  50 50 75 100 

Buffer overflow 91 36 91 91 

FTP Write  75 75 100 100 

Guess password 100 100 100 100 

Imap  100 100 50 50 

IP Sweep  60 30 92 76 

Land  83 100 100 62 

Load Module  100 40 100 80 

Multihop  100 75 75 75 

Neptune  100 67 100 90 

Nmap  100 100 88 63 

Perl  100 67 100 67 

Phf  0 75 0 0 

Pod  75 50 87 53 

Port Sweep  100 67 100 64 

Root Kit  60 40 80 40 

Satan  100 67 100 50 

Smurf  57 43 88 63 

Spy  100 100 100 100 

Teardrop  100 44 100 11 

Warez client  21 4 9 36 

Warez master  100 33 67 100 

 
TABLE  2. EXECUTION TIME (SECONDS) FOR ODMAD VERSUS OTEY’S 

APPROACH ON THE KDDCUP 1999 TRAINING DATASETS 

 ODMAD Otey’s Approach 

10% Training Set 3.7 617.4 

Entire Training Set 38 6014.9 

 

Therefore ODMAD scales linearly with the number of data 

points, n, and with the number of continuous attributes, mq, 

but seems to be scaling exponentially with the number of 

categorical attributes mc. In practice our algorithm runs faster 

because we are using only the pruned candidates for the 

categorical value-based score. Otey’s method in [6] has 

exponential time with respect to categorical attributes, and 

quadratic with the number of continuous. Moreover, the 

method in [6] requires a covariance matrix for each possible 

itemset in the dataset, while our method only requires a vector 

of length mq (the mean vector) for each categorical value. 

4 Experiments 

4.1 Experimental Setup 

 We implemented our approach and Otey’s approach [6] 

using C++.  We ran our experiments on a workstation with a 

Pentium 4 1.99 GHz processor and 1 GB of RAM.  We used 

the KDDCup 1999 intrusion detection dataset [18] from the 

UCI repository [19]. This dataset contains records that 

represent connections to a military computer network and 

multiple intrusions and attacks by unauthorized users. The raw 

binary TCP data were processed into features such as 

connection duration, protocol type, number of failed logins, 

etc. The KDD dataset contains a training set with 4,898,430 

data points and a dataset with 10% training data points. There 

are 33 continuous attributes and 8 categorical attributes. Due 

to the large number of attacks in these datasets, we preprocess 

them such that attack points are around 2% of the dataset, and 

we preserve the proportions of the various attacks. We follow 

the same concept as in [6]: since network traffic packets tend 

to occur in bursts for some intrusions, we look at bursts of 

packets in the data set. Our processed dataset based on the 

entire training set contains 983,550 instances with 10,769 

attack instances, and similarly for the 10% training dataset. 

 We compare our method with the one proposed in  [6] as 

it is the only existing distributed outlier detection approach 

for mixed attribute datasets that scales well with the number 

of data points. We evaluate both algorithms based on two 

measures: outlier detection accuracy, or the outliers correctly 

identified by the approach as outliers, and the false positive 

rate, reflecting the number of normal points erroneously 

identified as outliers. We also compare the execution time of 

the two algorithms using the same data. 

4.2 Results 

 The outlier detection accuracy or detection rate reflects how 

many points we detect correctly as outliers. In the KDDCup 

set, if we detect one point in a burst of packets as an outlier we 

mark all points in a burst as outliers, as in [6]. The false 

positive rate is how many normal points we incorrectly detect 

as outliers versus total number of normal points. 

 In Table 1, we depict the detection rate achieved from 

ODMAD versus the approach in [6] (better rates are in bold). 

In Table 2 we show the execution time in seconds for the two 

approaches. We used window = 40 for all experiments. We 

experimented with several values for the Otey’s approach 

parameters, and in Table 1 we present the best results (we 

used: δ = 35; minsup = 50% for the 10% set, and 10% for the 

entire training set; ∆score = 2). For our approach we used: 
upper_sup = minsup = 10%; low_sup  = 2%; ∆scorec = 10, 
∆scoreq = 1.27 (10% set); and ∆scorec = 10, ∆scoreq = 1.18 
(entire training set).  As can be seen in Table 1, ODMAD has 

equal or better detection rate than Otey’s approach for all but 

two of the attacks on the 10% training set, and all but three of 

the attacks for the entire training set. Moreover, the detection 

rates in Table 1 for the 10% dataset were achieved with a 

false positive rate of 4.32% for ODMAD and 6.99% for 

Otey’s, while the detection rates for the entire training set 

were achieved with a false positive rate of 7.09% for 

ODMAD, and 13.32% for Otey’s. Execution time for our 

approach is significantly faster as well, e.g. ODMAD 

processed the KDDCup 10% dataset in 38 seconds while it 

took Otey’s approach 100 minutes for the same task. We 

attribute this mainly to the fact that the method in [6] creates 



and checks a covariance for each and every possible set of 

categorical values, while ODMAD looks at single categorical 

values and the mean of their continuous counterparts.  

 We observed similar accuracy and performance for the 

KDD Test set, and we also conducted experiments to explore 

how ODMAD’s performance varies with respect to the 

parameters (results not shown here due to space). Detection 

and false positive rates decrease as ∆score increases, as it 
reflects the magnitude of difference between scores in the 

data. The larger ∆score is, the higher the score difference 
needs to be for a point to be an outlier, and ODMAD will 

return less and less outliers. Also, the overall results indicate 

that good values for upper_sup are close to the value for 

minsup, and for low_sup close to 1-3% depending on the 

dataset size.   

5 Conclusions 

 We proposed Outlier Detection for Mixed Attribute 

Datasets (ODMAD), a fast outlier detection algorithm for 

mixed attribute data that responds well to sparse high-

dimensional data. ODMAD identifies outliers based on 

categorical attributes first, and then focuses on subsets of data 

in the continuous space by utilizing information from the 

categorical attribute space. We experimented with the 

KDDCup 1999 dataset, a benchmark outlier detection dataset, 

in order to demonstrate the performance of our approach. We 

found that ODMAD in most instances exhibits higher outlier 

detection rates (accuracy) and lower false positive rates, 

compared to the existing work in the literature [6].  

Furthermore, ODMAD relies on two data scans and is 

considerably faster than the competing work in [6]. Extending 

our work for distributed data is the focus of our future work. 
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