Fast Parallel Outlier Detection for Categorical Datasets
using MapReduce

Anna Koufakou, Jimmy Secretan, John Reeder, Kelvin Cardona, and Michael Georgiopoulos

Abstract— Outlier detection has received considerable
attention in many applications, such as detecting network
attacks or credit card fraud. The massive datasets currently
available for mining in some of these outlier detection
applications require large parallel systems, and consequently
parallelizable outlier detection methods. Most existing outlier
detection methods assume that all of the attributes of a dataset
are numerical, usually have a quadratic time complexity with
respect to the number of points in the dataset, and quite often
they require multiple dataset scans. In this paper, we propose a
fast parallel outlier detection strategy based on the Attribute
Value Frequency (AVF) approach, a high-speed, scalable
outlier detection method for categorical data that is inherently
easy to parallelize. Our proposed solution, MR-AVF, is based
on the MapReduce paradigm for parallel programming, which
offers load balancing and fault tolerance. MR-AVF is
particularly simple to develop and it is shown to be highly
scalable with respect to the number of cluster nodes.

I. INTRODUCTION

ETECTING outliers in data is a research field with
many applications, such as credit card fraud detection,
discovering criminal activities in electronic commerce, and
network intrusion detection. Outlier detection approaches
concentrate on detecting patterns that occur infrequently in
the dataset, in contrast to traditional data mining techniques
that attempt to find patterns that occur frequently in the data.
Application examples where the discovery of outliers is
useful include identifying irregular credit card transactions,
indicating potential credit card fraud [1], or patients who
exhibit abnormal symptoms due to their suffering from a
specific disease or ailment [2].

Most of the existing research efforts in outlier detection
concentrate on datasets with attributes that are either
numerical or ordinal (can be directly mapped into numerical
values). In the case where data with categorical attributes are
present, these techniques map the categorical to numerical
values, a task which is not always a straightforward process.

Another issue is that many of the above applications for
the mining of outliers require the mining of very large
datasets (e.g. terrabyte-scale data). This leads to the need for
large, parallel machines and associated parallelizable outlier
detection algorithms, which must scale well with the size
and dimensionality of the dataset. The size of the datasets

Manuscript received March 5, 2008. This work was supported in part by
NSF grants: 0341601, 0647018, 0717674, 0717680, 0647120, 0525429,
0203446, as well as an NSF graduate research fellowship.

Anna Koufakou, Jimmy Secretan, John Reeder, and Michael
Georgiopoulos are with the School of EECS at the University of Central
Florida, Orlando, FL, 32816. Kelvin Cardona is with the Department of
Computer Engineering at the University of Puerto Rico.

978-1-4244-1821-3/08/$25.00©)2008 IEEE

today also demands that the methods developed be
computationally simple and easily balanced over a number
of cluster nodes.

In this paper, we propose a parallel implementation of a
fast and simple outlier detection method for categorical
datasets, called Astribute Value Frequency (AVF). AVF [3]
was shown to have a significant performance advantage over
a number of other competitive outlier detection strategies
that have appeared in the recent literature, and it was also
shown to scale linearly as the dataset size increases, both in
the number of points and number of dimensions. Also, AVF
depends only on one user parameter (the number of desired
outliers, k, needed to be identified), an important advantage,
since it requires minimum user intervention. Furthermore,
given the frequencies of each categorical value in the data,
AVF performs only one dataset scan, thus lending itself to
today’s large and possibly geographically distributed data.

AVF is based on assigning a score to each point in the
dataset using the frequency of each unique attribute value,
thus it is easily parallelizable. In contrast, other techniques
for outlier detection in categorical data (see [4], [5] and [6])
are much more complicated and cumbersome to parallelize,
as they require several scans of the dataset, in order to
extract frequently encountered, and sometimes lengthy,
combinations of attribute values. Moreover, the parallel
version of AVF that is proposed here is based on the
MapReduce paradigm of parallel programming [7].
MapReduce provides the necessary simplicity of parallel
development, while guaranteeing the necessary load
balancing and fault tolerance for the implementation.
It is worth noting that MapReduce has already been
successfully used in parallelizing a number of machine
learning approaches for data mining applications (e.g.
see [8]).

Our contribution is that we introduce MapReduce-AVF
(MR-AVEF) a parallel outlier detection method for categorical
datasets, geared towards identifying outliers in large data
mining problems. MR-AVF is based on AVF, an outlier
detection method that has been shown to perform favorably
compared to other competitive but more complex outlier
detection strategies. Due to its simplicity, AVF is an ideal
method to parallelize, and using the MapReduce approach to
parallelize it guarantees ease of development, load balancing
and fault tolerance of the implementation. Our results show
that MR-AVF exhibits close to ideal speedup with respect to
number of processing nodes in the cluster.

3297

The organization of this paper is as follows: In Section II,
we provide an overview of the previous research related to
outlier detection strategies, as well as a synopsis of the
earlier work based on the MapReduce paradigm. In Section
III, we present the MapReduce paradigm, while in Section
IV we introduce our proposed algorithm for parallel outlier
detection, i.e. the MapReduce-AVF. Finally, we present our
experimental results in Section V, followed by our
conclusions in Section VI.

II. PREVIOUS WORK

The existing outlier detection methods can be grouped
into the following categories.

Statistical-model based methods assume that a specific
model describes the distribution of the data [9]. Limitations
include obtaining the right model for each dataset and
application, and lack of scalability with respect to data
dimensionality [6].

Distance-based approaches (e.g. [10]) essentially compute
distances among data points, thus becoming quickly
impractical for large datasets (e.g., a nearest neighbor
method has quadratic complexity with respect to the number
of dataset points). Bay and Schwabacher [11] propose a
distance-based method based on randomization and pruning
and claim its complexity is close to linear in practice.

Clustering techniques can also be employed to cluster the
data, and the points that do not belong in the formed clusters
are designated as outliers. However, clustering-based
methods are focused on optimizing clustering measures of
goodness, and not on finding the outliers in the data [10].

Density-based methods estimate the density distribution
of the data and identify outliers as those lying in low-density
regions (e.g. [12], [13]). Although density-based methods
detect outliers not discovered by the distance-based
methods, they become problematic for sparse high-
dimensional data [14].

Other outlier detection efforts rely on Support Vector
methods (e.g. [15]), Replicator Neural Networks (RNNs)
[16], or using a relative degree of density with respect only
to a few fixed reference points [17].

Most of the aforementioned techniques are geared towards
numerical data and thus are more appropriate for numerical
datasets or ordinal data that can be easily mapped to
numerical values [18]. Another limitation of previous
methods is the lack of scalability with respect to number of
points and/or dimensionality of the dataset

Outlier Detection techniques for categorical datasets have
recently appeared in the literature (e.g. [5], [14], [19]). For
instance, Otey et al. in [6] presented a distributed outlier
detection method for mixed attribute datasets. Their
approach is linear with respect to the number of data points;
however their running time is exponential in the number of
categorical attributes and quadratic in the number of
numerical attributes.

Furthermore, Koufakou et al. [3] experimented with a
number of representative outlier detection approaches for
categorical data, and proposed AVF (Attribute Value

3298

Frequency), a simple, fast, and scalable method for
categorical sets.

In this paper, we propose a parallel version of the AVF
algorithm proposed in [3]. This parallel method is developed
using MapReduce [7], which is a simplified parallel program
paradigm for large scale, data intensive, parallel computing
jobs. MapReduce hides the parallel machine from the
programmer by simplifying the parallel programming model
to two functions: the map function and the reduce function.
Given a list of keys and associated values, the map function
produces an intermediate set of keys and values. The reduce
function then combines these intermediate values into a final
result.

MapReduce has already found its way into several
machine learning and data mining applications. Chu et al. [§]
present many algorithms in MapReduce form, including
Locally Weighted Linear Regression, k-means, Logistic
Regression, Naive Bayes, Linear Support Vector Machines,
Independent Component Analysis, Gaussian Discriminant
Analysis, Expectation Maximization, and Backpropagation.

III. MAPREDUCE

MapReduce is a parallel programming paradigm,
originally introduced by Google [7], whose central focus is
to simplify the processing of large datasets on inexpensive
cluster computers. These cluster computers often contain
hundreds or thousands of nodes that both store and process
the datasets in a distributed fashion. Typically, a single
master server is used to schedule the data storage and
computation on the nodes. The original MapReduce system
was built on the Google File System (GFS), [20], which is
optimized for storing large, infrequently changed datasets
across standard disks on the cluster nodes. The
MapReduce/GFS combination is built to tolerate regular
node failures through replication of the data and speculative
execution. This system also automatically provides for load
balancing and scheduling associated with the parallel
processing of the data.

Users design a MapReduce program by relying, almost
entirely, on the map and reduce functions. As a
consequence, the wuser is not forced to devise a
parallelization strategy for the task at hand, but is only
required to adapt it to a MapReduce model. The map
function takes as input a set of key-value pairs, designated as
ky and v, provided directly from the user-defined input

files. Within the map function, the user specifies what to do
with these keys and values. The map function outputs

another set of keys and values, designated as k, and v,.
The reduce function sorts the key value pairs by k,. All of
the associated values v, are reduced and emitted as value
v3 . The map and reduce functions are as follows:
map(ky,vi) = (ky,v,)[]
reduce(k, ,v,[]) = (ky,v3)[]

2008 International Joint Conference on Neural Networks (IJCNN 2008)

At the MapReduce run-time level, the map operations are
distributed by the master-server to the chunk-servers. The
scheduler makes an effort to schedule computation on the
same node where the data is stored. Meanwhile, other
chunk-servers assigned to the reduce phase begin to take the

(ky, vy) value pairs and sort them by k,. These sorted

arrays of v, values are passed to the reduce functions on

these same assigned nodes. These outputs are finally saved
on the GFS. It is quite common for an application to string
together many simpler MapReduce operations.

Fault tolerance and load balancing are automatically
provided by the software that supports MapReduce and the
GFS. Because the GFS stores a user-specified number of
copies (usually three) for each chunk of the data on different
chunk servers, and because the GFS monitors the cluster to
maintain these copies, losing a particular chunk of data
should be relatively rare. For fault tolerance of the
MapReduce operations, the master server keeps track of all
running operations and can re-start failed tasks on other
chunk servers that have a copy of the data. By the nature of
operations that are put into the MapReduce framework (map
operations that are independent on each element) they can be
recomputed by any chunk server with the proper data.

A diagram of a typical MapReduce/GFS architecture is
displayed in Figure 1.

Chunk Server (Mapping)
Map() Function
Map and Reduce
Task Assignments/
- Master Server
Ve
e
e /
/ ‘ i
/ Chunk S_erver Storage Requests/
V2 Allocations ‘ MapReduce Jobs
» \
) /F\Ie Chunk
‘W
y , / Client
Reduce() Function /
Map Outputs
Chunk Server (Reducing)

Figure 1: The flow of data in a MapReduce/GFS architecture for file
storage and MapReduce operations. Dashed lines indicate control messages,
and solid lines indicate data transfer.

An often cited MapReduce example is known as
WordCount [7]. Suppose we need to obtain the number of
occurrences of each unique word in a large file. In the
MapReduce paradigm, this computation can be done easily
and efficiently as follows: the map function receives as input
a line from the large input file. Then the map function splits
this line into its component words and emits the word as the
key and ‘1’ as the associated value.

The reduce function takes these word-keys and ‘1’ values

2008 International Joint Conference on Neural Networks (IJCNN 2008)

as input. Because each ‘1’ value is an occurrence of the
same word, they are simply summed together to find the
number of occurrences of the word. When the reduction
operation is complete, there will be a list of words with their
associated occurrence frequency. See Figure 2 for a pictorial
illustration of the WordCount example.

Map Function

“MapReduce is a programming
model and an associated q
(1 I implementation for processing) (

and generating large data sets."

(&, 1)

[“programming’, 1)

{ ‘model’, 1}

{and’, 1)

(" ated” 1)

["implementation” , 1)
(‘for, 1)

Reduce Function

1,1
)=
1,1

t

{
‘MapReduce’,

1,
1 : ‘MapReduce’, 10
1

’
Figure 2: A pictorial illustration of the WordCount example.

IV. AVF AND MR-AVF ALGORITHMS

A. AVF: Attribute Value Frequency

The Attribute Value Frequency (AVF) algorithm is a
simple and fast approach to detect outliers in categorical
data, which minimizes the scans over the data, without the
need to create or search through different combinations of
attribute values or itemsets. Further details are omitted due
to space limitations, and the reader is referred to [3] for
further reading.

It is intuitive that that outliers are those points which are
infrequent in the dataset, and that the ‘ideal’ outlier point in
a categorical dataset is one whose each and every value is
extremely irregular (or infrequent). The infrequent-ness of
an attribute value can be measured by computing the number
of times this value is assumed by the corresponding attribute
in the dataset.

Let’s assume that there are n points in the dataset, x; ,
i=1...n, and each data point has m attributes. We can write
X; = [Xit,.. > Xity ..., Xim], Where x;; is the value of the /-th
attribute of x;. Following the reasoning given above, the
AVF score below is a good indicator of deciding of whether
X; is an outlier:

AVF Score(xi)=iif(xﬂ) M
1=1

where f'(x;;) is the number of times the /-th attribute value of
X; appears in the dataset. A lower AVF score means that it is
more likely that the point is an outlier. Since (1) is
essentially a sum of m positive numbers, the AVF score is
minimal when each of the sum’s terms is individually
minimized. Thus, the ‘ideal’ outlier as defined above will
have the minimum AVF score. The minimum score will be
achieved when every value in the data point occurs just
once.

3299

Input: Dataset — D (n points, m attributes)
Target number of outliers — &

Output: £ detected outliers

Label all data points as non-outliers;
Calculate frequency of each attribute value, f (x;);
foreach pointx; (i=1..n)

foreach attribute / (/= 1..m)

AVF Score (x;) += f(x4) ;

end

Average; (AVF Score (X;));
end
Return top % outliers with minimum AVF Score

Figure 3: AVF Pseudocode

Input: Dataset — D (n points, m attributes)
Target number of outliers — &

Output: £ detected outliers

HashTable H;
map(kl =i, vl = D;=x;,i=1..n) begin
foreach/ in x; (/=1..m)
collect(x;;, 1);

end

reduce(k2 = x;; , v2) begin
Hix) += 2v2;

end

map(kl =i, vl = D; = x;) begin

AVE="%"H(x;);
I=1
collect(k1, AVF);
end
reduce(k2 = AVF,, vl =1i);,

Figure 4: Parallel AVF Pseudocode - MR-AVF

As shown in the pseudocode of AVF (see Figure 3), once
the AVF score is calculated for all the points, the & outliers
returned are the & points with the smallest AVF scores. The
complexity of AVF is O(n*m), where n is the number of
data points and m is the dimensionality of the dataset.

B. Parallel AVF: MR-AVF

The original AVF algorithm calculates the AVF over each
input record independently, making it amenable to easy
parallelization. If the AVF can be expressed in terms of the
MapReduce model, then the parallel algorithm can have the
benefits of automatic load balancing and fault tolerance,
with no additional effort from the user’s perspective.

Using MapReduce, the Map function associates each
distinct attribute value to the Map’s output key. In the
Reduce function, the frequency counts of each attribute
value are computed. Finally, the AVF score of each point is
calculated during a second Map function. The second reduce

3300

is simply a sorting operation of the computed AVF scores.

The pseudocode for MapReduce-AVF, or MR-AVF, is
shown in Figure 4. In the first pair of map and reduce
functions (first phase), the frequency of each attribute value
is extracted from the data set. If the attribute values across
each dimension are unique or (as in our code) the dimension
is concatenated to the attribute value, this pair of functions is
similar to the WordCount problem described in Section II1.

In the second MapReduce phase, the attribute value
frequency table resulting from the first phase is loaded into
the hash table 4 by the map function. The map function
then calculates and emits the AVF score for each individual
input record, by iterating through the dimensions and adding
the frequency of every attribute value. In order to sort the
data points by their outlier score, the AVF score is emitted
as the key, and the input point ID is emitted as the value. At
the end of the MapReduce process, the result is a list of AVF
scores sorted in ascending order with the listed point IDs.
As a result, the top-k points represent the outliers of the
dataset as they have the &£ minimum AVF scores.

V. EXPERIMENTS

A. Experimental Setup

Since the original MapReduce/GFS implementation is
proprietary, we used an open source MapReduce software
called Hadoop [23]. Hadoop allows easy MapReduce
implementation in Java, with support to connect it to other
languages like C++ and Python. The software was installed
on a 16-node cluster, where each of the nodes had dual
Opteron processors, 3GB of RAM, and 73GB disks.
We used Hadoop version 0.15 and Java to implement the
parallel MR-AVF code.

B. Datasets Used

We used the following datasets from the UCI repository
[21]:
- Wisconsin Breast Cancer: This dataset has 699 points and
9 attributes. Each record is labeled as either benign or
malignant. Following the method in [16], we only kept every
sixth malignant record, resulting in 39 outliers (8%) and 444
non-outliers (92%).
- Lymphography: This dataset contains 148 instances and
18 attributes. Classes 1 and 4 comprise 4% of the data, so
they are considered as the outliers.
- Post-operative: This dataset is used to determine where
patients should go to after a postoperative unit (Intensive
Care Unit, home, or hospital floor). It contains 90 instances
and 8 attributes. Class 1 and 2 are the outliers.
- Pageblocks: 1t contains 5,473 instances with 10 attributes.
There are 5 classes, where one class is about 90% of the
data, so the rest of the data can be thought of as outliers. We
discretized the continuous attributes using an equal-
frequency discretization approach, and removed half of the
outliers so that we have a more imbalanced dataset.

2008 International Joint Conference on Neural Networks (IJCNN 2008)

TABLE 1. RESULTS ON THE UCI DATASETS

(a) Breast Cancer (39 outliers)

k AVF Greedy FPOF Otey’s

4 4 4 3 3

8 7 8 7 7
16 14 15 14 15
24 21 22 21 21
32 28 29 27 28
40 32 33 31 33
48 36 37 35 37
56 39 39 39 39

(b) Lymphography (6 outliers)

k AVF Greedy FPOF Otey’s

2 2 2 2 2

4 4 4 4 4

6 4 5 4 4

8 5 6 5 5

12,13 6 6 5 5(6)

15 6 6 6 6

(c) Post-Operative (26 outliers)

k AVF Greedy = FPOF Otey’s

10 3 4 3 1

20 7 7 7 7

30 10 8 9 9

40 11 12 10 10

50 12 13 12 13

60 16 20 17 18

70 21 21 21 21

80 24 24 24 24

(d) Pageblocks (280 outliers)

k AVF Greedy FPOF Otey’s
100 40 45 19 19
200 84 81 42 42
300 120 130 63 63
400 168 157 74 74
500 189 177 80 80
600 201 183 94 94
700 206 213 96 96
800 214 237 110 110
900 223 242 116 116
1000 233 242 121 121

TABLE 2. RUNTIME IN SECONDS FOR THE SIMULATED DATASETS WITH

VARYING DATA SIZE, N, FROM 1K TO 800K DATA POINTS

Data Size Greedy | AVF FPOF Otey’s
(thousands)
1 0.27 0.00 0.81 4.58
10 2.72 0.03 8.13 44.72
30 8.53 0.06 24.02 134.30
50 14.31 0.09 40.19 222.88
100 26.42 0.19 81.06 44539
200 52.75 0.39 165.08 891.28
300 79.39 0.58 241.61 1337.06
400 106.14 0.80 32397 | 1781.78
500 131.75 0.94 404.45 | 2233.74
600 158.70 1.16 484.00 | 2678.73
700 184.94 1.33 564.80 | 3127.22
800 212.08 1.56 667.55 | 3568.55

Most importantly, we conducted experiments with
simulated data in order to showcase the speedup and the
associated scalability of MR-AVF, the parallel algorithm
that we propose in this paper. For that purpose, we created a
sizeable, simulated, categorical dataset that contains 10
million data points, 64 attributes, and 10 categorical values
per attribute. The simulated dataset used in our experiments
was created using available software by Cristofor [22],
which allows for the generation of categorical datasets with
different values for the number of data points, the
dimensionality of the data, and the number of categorical
values per dimension.

C. Results

The outlier detection accuracy and scalability of the serial
version of AVF was shown in [3]. We reiterate some of the
results from [3] in Table 1 for completeness. The algorithms
against which we compared AVF are the Greedy algorithm
[19], the FPOF algorithm from [5], and Otey’s algorithm
from [6]. In Table 1, we denote by k the number of target or
desired outliers that the algorithm is attempting to detect.
Given k, the desired number of outliers, the accuracy of an
outlier detection algorithm is determined by the number of
actual outliers detected by the algorithm.

As can be seen from Table 1, AVF’s outlier detection
accuracy compares very well with the outlier detection
accuracy of the other competitive outlier detection strategies
proposed in the literature. For example, in Table 1(a), all
algorithms converge to the 39 outliers for & equal to 56. The
same goes for Table 1(b), (c) and (d). In Table 1(d), AVF’s
accuracy is higher than two other methods, FPOF and
Otey’s; Greedy’s performance is slightly better, mainly
because it is based on multiple dataset scans, in which
outliers are successively taken out of the dataset one after
another. Given the frequency of each attribute value, AVF
needs only one dataset scan and is based on very simple
computations using the frequencies. In comparison, the three
other methods in Table 1 require multiple dataset scans and
complicated computations for each data point.

Table 2 contains the runtime performance of all
algorithms using a simulated dataset, with varying number
of data points, n. For example, using a simulated dataset of
700,000 data points and 10 attributes (generated with
software from [22]), Greedy took about 185 seconds, Otey’s
about 3,127 seconds, FPOF 564 seconds, while AVF had a
running time of 1.33 seconds. Further experiments
conducted in [3] (omitted due to space limitations)
confirmed AVF’s advantage over the other methods with
respect to running time, and similar results were observed
from experiments in [3] for higher values of dimensionality,
m, and desired number of outliers, k.

The purpose of this paper is to further amplify the
significant computational advantages of AVF, compared to
other competitive outlier detection strategies. In our efforts
for parallelizing AVF (MR-AVF), we relied on the
algorithm’s simplicity and inherent parallelism, as well as
the ease of parallelization that the MapReduce paradigm
offers. To that extent, we ran MR-AVF for the simulated

2008 International Joint Conference on Neural Networks (IJCNN 2008) 3301

dataset for a different number of cluster nodes, i.e., for nodes
equal to 1, 2, 4, 8, and 16. The ‘ideal’ speedup is linear, i.e.
when running an algorithm with linear speedup, doubling the
number of nodes doubles the speed.

As we can see from the algorithm description in Section
1V, there are two main phases in the MR-AVF computation:
the first phase extracts the attribute value frequencies from
the data, and the second phase calculates the AVF scores for
each data point as in Eq. (1) based on the frequencies
obtained from the first phase. The speedup of both phases,
as well as the speedup of the entire algorithm is illustrated
in Figure 5, as the number of cluster nodes increases from 2
to 16.

In the first phase of MR-AVF, i.e. the extraction of
categorical attribute value frequency, the speedup is very
close to linear. In the second phase, where AVF scores are
calculated, there is a sub-linear speedup that levels off
quickly at 8 nodes. This can be explained by the fact that
the frequency extraction involved more keys as the output of
the map phase (one for each dimension of every point, rather
than one per point for the frequency extraction phase) and
thus was more computationally intensive. For the simulated
dataset with which we experimented, the AVF frequency
extraction phase required about 80% of the total time, and
the AVF score phase required 20% of the total time.
Therefore, the overhead of scheduling the map and reduce
tasks was greater for the AVF score phase in comparison to
the amount of time needed to compute the actual scores,
resulting in the lower observed speedup for stage two of the
MR-AVF, shown in Figure 5. It is expected that for larger
datasets, the AVF score phase will exhibit better scaling.
Note though, that because the task is weighted toward the
frequency extraction phase, the speedup of the final
algorithm was relatively close to linear as exhibited in the
corresponding curve of Figure 5.

VI. CONCLUSIONS

We have presented a parallel outlier detection method for
categorical datasets, that exhibited high scalability and
speed-up. Our proposed parallel outlier detection approach,
MapReduce-AVF, or MR-AVEF, is built on AVF, an outlier
detection method that is fast, scalable, makes minimal
dataset scans and requires minimum user intervention (i.e.,
specification of the number of outliers that need to be
extracted).

We based our parallel approach on the MapReduce
paradigm and thus MR-AVF is extremely simple and easy to
develop. MapReduce ensures load balancing and fault
tolerance, and has already been used for parallelization of
many other data mining approaches. We experimentally
showed that the speedup of MR-AVF is very close to linear
as the number of nodes in the cluster increases, thus making
it amenable for large data mining applications.

3302

I'=requenc'y Extraction Phase —e—
Calculate AVF Scores Phase
Total AVF Algorithm —a—

Speedup

0
0 2 4 6 8 10 12 14 16

Number of Chunk Servers

Figure 5: Speedup of our parallel AVF algorithm (MR-AVF) as the number
of servers in our cluster increases from 1 to 16 nodes.

REFERENCES

[1] Bolton, RJ., Hand, D.J., “Statistical fraud detection: A review”,
Statistical Science, 17, pp. 235-255, 2002.

[2] Penny, K.I., Jolliffe, I.T., “A comparison of multivariate outlier
detection methods for clinical laboratory safety data”, The Statistician,
Journal of the Royal Statistical Society, 50, pp. 295-308,2001.

[3] Koufakou, A., Ortiz, E., Georgiopoulos, M., Anagnostopoulos, G.,
Reynolds, K., “A Scalable and Efficient Outlier Detection Strategy for
Categorical Data”, Int’l Conference on Tools with Artificial
Intelligence ICTAL, October, 2007.

[4] Agrawal, R., Srikant, R., “Fast algorithms for mining association
rules”, Proc. of the Int’l Conference on Very Large Data Bases VLDB,
pp. 487-499, 1994.

[5] He, Z., Xu, X., Huang, J., Deng, J., “FP-Outlier: Frequent Pattern
Based Outlier Detection”, Computer Science and Information System,
pp. 103-118, 2005.

[6] Otey, M.E., Ghoting, A., Parthasarathy, A., “Fast Distributed Outlier
Detection in Mixed-Attribute Data Sets”, Data Mining and
Knowledge Discovery, 2006.

[7] Dean, J., and Ghemawat, S., “Mapreduce: Simplified data processing
on large clusters,” Proceedings of OSDI’04: Symposium on Operating
System Design and Implementation, 2004.

[8] Chu, C.-T., Kim, S., Lin, Y.-A,, Yu, Y., Bradski, G., Ng, A. Y., and
Olukotun, K., “Map-reduce for machine learning on multicore,”
Proceedings of NIPS, 19, 2006.

[9] Barnett, V., Lewis, T. OQutliers in Statistical Data. John Wiley, 1994.

[10] Knorr, E., Ng, R., and Tucakov, V., “Distance-based outliers:

Algorithms and applications”, Very Large Databases VLDB Journal,

2000.

Bay, S.D. Schwabacher, M., “Mining distance-based outliers in near

linear time with randomization and a simple pruning rule”, Proc. of

ACM SIGKDD Int’l Conf. on Knowledge Discovery and Data Mining,

2003.

Breunig, M. M., Kriegel, H.-P., Ng, R. T., and Sander, J., “LOF:

Identifying density-based local outliers”, Proc. of the ACM SIGMOD

Int’l Conference on Management of Data, 2000.

Papadimitriou, S., Kitawaga, H., Gibbons, P., Faloutsos, C., “LOCI:

Fast outlier detection using the local correlation integral”,

Proceedings of the International Conference on Data Engineering,

2003.

[14] Wei, L., Qian, W., Zhou, A., Jin, W., “HOT: Hypergraph-based
Outlier Test for Categorical Data”, Proc. of 7th Pacific-Asia
Conference on Knowledge Discovery and Data Mining PAKDD, pp.
399-410, 2003.

(11

(2

(3

2008 International Joint Conference on Neural Networks (IJCNN 2008)

[15]

(16]

(17]

(18]
[19]

(20]

[21]

[22]

(23]

Tax, D., Duin, R., “Support Vector Data Description”, Machine
Learning, pp. 45-66, 2004.

Harkins, S., He, H., Williams, G., Baster, R., “Outlier Detection Using
Replicator Neural Networks”, Data Warehousing and Knowledge
Discovery, 4th International Conference, DaWaKk, pp. 170-180, 2002.
Pei, Y., Zaiane, O., Gao, Y., “An Efficient Reference-based Approach
to Outlier Detection in Large Dataset”, IEEE Int’l Conference on Data
Mining, 2006.

Hodge, V., Austin, J, “A Survey of Outlier Detection
Methodologies”, Artificial Intelligence Review, pp. 85, 2004.

He, Z., Deng, S., Xu, X., “A Fast Greedy algorithm for outlier
mining”, Proceedings of PAKDD, 2006.

Ghemawat, S., Gobioff, H., and Leung, S.-T., “The google file
system,” In Proceedings of 19th ACM Symposium on Operating
Systems Principles, October, 2003.

Blake, C., Merz, C. UCI machine learning repository:
www.ics.uci.edu/~mlearn/MLR epository.html.

Cristofor, D., and Simovici, D., “Finding Median Partitions Using
Information-Theoretical Algorithms”, Journal of Universal Computer
Science, pp. 153-172, 2002 (software at
http://www.cs.umb.edu/~dana/GAClust/index.html)

Hadoop, “Welcome to hadoop!”, http:/lucene.apache.org/hadoop/,
2007.

2008 International Joint Conference on Neural Networks (IJCNN 2008)

3303

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

