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Abstract

As massively multi-player gaming environments become
more detailed, developing agents to populate these virtual
worlds as capable non-player characters poses an increas-
ingly complex problem. Human players in many games must
achieve their objectives through financial skills such as trad-
ing and supply chain management as well as through com-
bat and diplomacy. In this paper, we examine the problem
of creating intelligent trading agents for virtual markets. Us-
ing historical data from EVE Online, a science-fiction based
MMORPG, we evaluate several strategies for buying, sell-
ing, and supply chain management. We demonstrate that us-
ing reinforcement learning to determine policies based on the
market microstructure gives trading agents a competitive ad-
vantage in amassing wealth. Imbuing agents with the ability
to adapt their trading policies can make them more resistant
to exploitation by other traders and capable of participating
in virtual economies on an equal footing with humans.

Introduction
Managing virtual markets is a relatively new but impor-
tant aspect of maintaining an immersive multi-player gam-
ing environment. It is no longer enough to create a world
with interesting strategic and tactical gameplay opportuni-
ties; many players want the additional option of achieving
their goals through financial means such as buying, sell-
ing, investing, and supply chain management. Although the
game designers can exert control over item scarcity, fees,
and wealth generation mechanisms, much of the economy
is dictated by the collective will of the players in the vir-
tual markets. In some virtual worlds, the participants use
the virtual world as an alternate means for advertising and
selling real-world goods. For instance, Second Life, by Lin-
den Labs, is inhabited by over 1.2 million regular visitors,
performing $600,000 of business transactions per day (Kirk-
patrick 2007). In other virtual worlds, such as World of War-
craft, the electronic marketplace is used as a mechanism for
players to satisfy in-game needs such as equipment, food, or
trade goods.

In this paper, we investigate the potential of introducing
autonomous trading and supply chain management agents
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into these virtual financial ecosystems. The goal of the agent
is to buy components, manufacture goods, and sell finished
products while maximizing accrual of wealth in a fluctuat-
ing market. However, unlike the autonomous agents devel-
oped for AI competitions in trading agent and supply chain
management (Greenwald & Stone 2001), we want these
agents to cope with a marketplace created by a vast num-
ber of transactions by human players rather than markets
dictated by financial models or transactions with other au-
tonomous agents. Previous work on developing autonomous
agents for game environments has focused on issues such as
game replayability (van Lent et al. 2005) and agent variabil-
ity (Wray & Laird 2003).

We selected the multi-player online game EVE Online,
as a testbed for our trading agent. EVE Online, developed
by CCP, has a very sophisticated player-controlled economy
that is actively regulated by a professional economist who
monitors inflation, deflation, commodity indicies, and pro-
duction levels within the virtual world. At the end of 2007,
there were 220,000 active subscribers and 460,000 player
characters, trading billions of units every month (EVE On-
line 2007). Since strategic battle planning is heavily in-
fluenced by logistics and access to resources, supply chain
management is an important operational problem for EVE
players.

In this paper, we focus on the problem of creating agents
with good “financial tactics” in buying, selling, and supply
chain management. We evaluate several strategies and show
that a reinforcement learning approach based on the market
microstructure can give a trading agent a competitive advan-
tage in amassing wealth over standard fixed policies. An
additional consideration for developers of trading agents is
protecting their agents from player exploitation; the intro-
duction of easily duped trading agents in the virtual market
would create an easy avenue for smart players to cheaply
acquire rare items. We believe that imbuing agents with the
ability to learn trading policies from recent historical data
will make them potentially more resistant to predatory trad-
ing practices.

Related Work

Previous work on developing agents for simulated
economies has centered around the Trading Agent Competi-
tion, which provides a standardized competitive benchmark
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for the agents community. There are two different competi-
tion environments of interest:
TAC Classic: agents procure items in multiple simultane-

ous auctions for hotel reservations, flights, and event tick-
ets while trying to maximize utility functions for a group
of simulated clients. Agents compete against other au-
tonomous agents bidding for items offered by simulated
vendors in a variety of auction styles; certain items are
directly traded between autonomous agents in a continu-
ous double-side auctions. The agent that obtains the travel
itineraries with the highest client utility wins the compe-
tition. The agents developed for this competition must
be able to rapidly calculate the marginal utility of acquir-
ing the items in the various auctions to determine good
bidding strategies (Greenwald & Stone 2001). There has
also been some work on the problem of learning pricelines
predicting the future cost of market resources, based on
bidding in previous rounds (Greenwald & Boyan 2004).

TAC Supply Chain Management: agents act as computer
manufacturers in a market with simulated customers and
part suppliers. Agents outbid other agents for customer
orders, buy components from simulated supplier with
fluctuating prices, and manage their factories produc-
tion schedule (Pardoe & Stone 2006b). The agent that
makes the most profit over the course of the competition
wins. TacTex-06, the winner of TAC SCM 2006, used
various prediction techniques for anticipating future sup-
plier prices and the likelihood of client bid acceptance to
improve the performance of its supply chain (Pardoe &
Stone 2006a).
The supply chain management scenario faced by agents

trading in EVE Online markets differs in several key ways
from these competition scenarios. First the volume of units
and number of transactions in the EVE Online markets is
significantly larger than the number of trades executed in
the competition settings. Moreover, there is a constant flow
of traders entering and leaving the EVE markets, whereas
each competition round occurs with a fixed group of agents
and simulated vendors. Because of the large and open na-
ture of the EVE markets, it is basically always possible to
obtain commodities by paying a higher price, whereas the
TAC agents cannot always obtain items even by paying a
higher price.

EVE Online

EVE Online is a space-based MMORPG (massively multi-
player online role playing game) in which the players play
Pod Pilots, immortal demi-gods capable of flying starships.
The players affect the EVE universe through market trades,
player vs. player (PVP) combat, and political maneuvering.
Although some commodities are supplied by non-player
character (NPC) agents, the EVE market is predominantly
player-controlled. Ships, modules, ammunition, and drones
are all built by player manufacturers; rare items are sold by
players who obtained the items through NPC pirate hunting.
Production in EVE is a multi-step process that takes as in-
put raw materials and gives as output a module or ship. The
first step of the process is the acquisition of raw minerals

through mining. These materials can be mined by the player
or purchased through the market from other player miners.

Once the player obtains the necessary minerals they can
install a manufacturing job at a station using a blueprint.
These blueprints are acquired from the market and are one
of the few items offered by the NPC agents. The blueprint
describes what materials are necessary and what item will
be produced. With the blueprint and the minerals in hand,
the player installs the job in a manufacturing slot at either
an NPC station or a player-owned structure, and after a set
build time the item is returned. Nearly all goods in the game
are produced through this process. Technology Level 2 ships
and modules follow a very similar process, with the addition
of Tech 2 component materials that are required for the man-
ufacturing process. These Tech 2 component materials are
manufactured in much the same way as normal materials,
but the base materials needed to make the components are
acquired through a different production method.

In this paper, we examine the problem of Tech 2 com-
ponent production. Tech 2 components require a four step
process to manufacture. First the base materials are mined
from a moon. This requires the use of a Player Owned Struc-
ture and can only be done in low security and null security
space. Next the base materials are processed by a simple re-
actor into a simple material. Two or more simple materials
are combined in an advanced reactor to produce an advanced
material. Finally two or more advanced materials are used
to produce the T2 component through the normal blueprint
manufacturing process. It is not necessary for a single indi-
vidual to handle every step of the process, and in most cases
players will focus their attention on an individual part of the
process, by buying the materials they need from the market
and selling their product back to others doing the same thing.

We designed our agent to handle the purchasing of simple
materials to fill an advanced reaction chain. A single ad-
vanced reactor can be configured to produce any of six dif-
ferent advanced materials without significant configuration
changes. The agent must determine which of the six differ-
ent materials would be most profitable to produce, based on
the market value of the base materials and the final advanced
material. The prices of these materials fluctuate because of
other participants in the market also trying to choose the
most profitable reaction. Each of the materials go through
cycles of increased supply causing the prices to fall, then in-
creased demand so the prices rise again. The ebb and flow of
the market for these materials is a direct effect of the players
involved switching between the available reactions.

Approach

The large number of players involved in the EVE market
is one of the reasons we selected EVE as a testbed for our
trading agent. Due to the high level of human participation,
the market in EVE appears to exhibit strong similarities to
real-world markets (Seller 2008). CCP hired an economist
to study and report on the health of the market in a se-
ries of quarterly economic newsletters similar in scope to
shareholder reports released by major companies. With this
in mind, we considered trading and simulation approaches
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that had been proven successful in real-world financial mar-
kets (Nevmyvaka 2005). Since the underlying assumptions
behind the motivations of actors in real-world markets, we
turned our attention to empirical models—how observable
variables such as prices, volumes, and spreads affect prices.

According to the theory espoused in market microstruc-
ture, real-world markets are constantly engaged in the pro-
cess of price discovery, in which the actual value of the
item is revealed through repeated negotiations between the
market agents. In an order-driven market, unlike the quote-
driven market in TAC SCM, these interactions occur in the
form of sell orders and buy orders placed by market par-
ticipants. There are two basic types of orders that traders
can make: market or limit orders. A market order transac-
tion occurs immediately at the best price currently offered,
whereas in a limit order a reservation price is specified for
the transaction. In a buy limit order, the agent indicates
a willingness to buy a certain volume at a fixed price (or
lower); in a sell limit order, the agent will accept no price
lower than the limit. All market transactions which can be
satisfied immediately occur, leaving an order book of re-
maining orders, arranged by price, that are used to fulfill
incoming market orders. The two main approaches used to
analyze the relationship between sequences of these trans-
actions and the success of future transactions are: (1) using
time-series analysis to characterize the relationship between
stochastic processes; (2) machine learning to learn optimal
transaction policies. In this paper, we focus on the second
approach—learning bidding policies from data of past trans-
actions.

Simulating an EVE Market

The EVE market interface has the ability to record a snap-
shot of available orders for an item and export them to a file.
This user interface function was used to collect four weeks
of hourly data from the EVE market for every item related
to our Tech 2 supply chain. Data collection was restricted
to the Jita 4-4 market hub to simplify logistics. In this form,
the data is useful for retrieving statistics about the prices of
the items over time, but it is not useful for simulating the
agent’s interactions with the market. To simulate the agent’s
interactions with the live EVE market it is necessary to in-
fer the transactions occurring between market snapshots by
comparing successive snapshots and determining the differ-
ence between them.
• For orders that are on the market in both snapshots, the

volumes are monitored and changes are attributed to mar-
ket order interactions.

• When an order disappears between snapshots it is as-
sumed that the order has been consumed and thus a mar-
ket order is inferred.

• When a new order has appeared in the second snapshot it
is assumed that a new limit order has been placed during
the interval.

In this way a list of transactions for each snapshot are built
and stored in the database. With these transactions it is now
possible to simulate interactions with the market by build-
ing the order book at each time step and then simulating

the following transactions. By placing an order into the or-
der book prior to applying the transactions, it is possible to
simulate that orders’ performance in the market. Using our
assumptions, we can reconstruct which transactions have oc-
curred, but the order and timing of the simulated transactions
can differ from the actual transactions, which cannot be ex-
tracted with the tools currently available in the EVE Online
client. Based the length of time between successive snap-
shots, it is expected that some orders have been placed and
consumed in the interval that are not reflected in the data
collected, but this problem can be mitigated by increasing
the data collection frequency.

Although it would be preferable to have direct access to
the sequences of transactions, simulating the market in this
way provides a close approximation of the true nature of
the market in question. We chose this approach because it
fits well with the data collected from the live market, and
has shown good results as a basis for training a RL algo-
rithm (Nevmyvaka 2005). It allows for an analysis of true or-
der books from the market to be incorporated into the agent’s
decision process and for the evaluation of the simulated or-
ders against real transactions. The main drawback of this
method is that the simulated market does not react to the new
order placed by the agent as a real market would. However,
it is reasonable to assume that an autonomous agent that is
continuously monitoring the market can place transactions
to counter unexpected shifts in the market more rapidly than
the typical human traders who interact with the market on a
daily basis.

Trading and Production Scenario

We evaluated our trading agent on the amount of wealth
amassed over the course of the scenario. To be successful,
the agent must minimize the costs associated with purchas-
ing the supplies that serve as the input for the manufacturing
process and maximize the gains associated with the selling
the product. Additionally, the agent uses market information
as an input for identifying which manufacturing process is
likely to result in the most profit.

When buying items from the market, the agent has the op-
tion of placing a market order to buy directly from the limit
sellers or placing a limit buy order. When buying directly
from the sellers the buyer is essentially paying a premium
above the perceived price of the item for the privilege of im-
mediate satisfaction. When placing a limit order the agent
is providing liquidity for someone else and forcing them to
pay the premium, but runs the risk of the buy order not being
fulfilled. The agent’s task is to identify the optimal policy
specifying which order to place at every timestep.

The most relevant features affecting the agent’s decision
are:

Timesteps: timesteps remaining, ranging from t − 1 to 0
where t is the time horizon.

Volume: the volume left to be bought ranging from V to 0
where V is the initial volume.

Order Book Spread (OBS): size of the order book spread,
BestAsk − BestBid. We discretize the order book
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Table 1: Agent trading options (ISK: EVE Currency)
Agent Action Description

0 Do Nothing
1 Bid 10% lower than the current Best Bid
2 Bid 1 ISK below the current Best Bid
3 Bid 1 ISK above the current Best Bid
4 Bid 10% higher than the current Best Bid
5 Place a Market Buy order

spread into −1, 0, 1 for low, average, and high, based on
the average and standard deviation of past values.

Immediate Market Order (IMMO): the cost of placing
an immediate market order.

Signed Volume (SV): This features denotes whether the
buy volume is increasing (-1), remaining constant (0), or
whether the sell volume is increasing(+1).

Learning Trading Policies

We use an offline version of the reinforcement learning algo-
rithm described in (Nevmyvaka 2005) to learn a set of trad-
ing policies for the agent based on historical data. The trad-
ing policy describes the optimal sequence of transactions to
buy or sell a particular item, assuming that the agent has pre-
viously decided which item to acquire. Based on the training
data, we exhaustively search all possible actions and update
our cost estimate of taking various actions using the follow-
ing rule:

c(s, a) = αc(s, a) + (1 − α)[cim(s, a) + arg min
a

p(s′, a)],

where s is the initial state, a is the action taken, s′ is the
new state, p(s′, a) is the expected cost of an action in the
new state, n is the number of times a has been tried in s,
α is n

n+1 , and cim is the immediate cost of the action. The
immediate cost cim is calculated by placing the bid associ-
ated with the action and simulating the market until the next
time step. If the order is fulfilled or partially fulfilled the
cost is calculated as: cim = p−p0

p0
, where p is the average

price per volume and p0 is the initial perceived price. The
perceived price is calculated based on the order book spread,
(BestAsk − BestBid)/2.

As the state-action pairs are visited, their costs are up-
dated according to the update rule; this process is repeated
for all the combinations of t and v for all of the training data.
The Q-table is updated in reverse order since logically at the
final timestep the only option to successfully complete the
task is to place a market order for all of the remaining vol-
ume (action #5). This state is a terminating state and its
only costs are the immediate costs. Under the assumption
that our state space is Markovian, we use dynamic program-
ming to construct the Q-table. The only features that have
an effect on the algorithm’s run time are t and v. The other
market-based feature variables are only affected by the sam-
ple data, hence it is possible to add more features without
substantially increasing the amount of time required to learn
the Q-table.

We make the assumption that our orders do not have a
large enough effect on the market between timesteps to sig-
nificantly change the state of the market. With this assump-
tion we can determine the next state by simulating the results
for each action and updating the remaining volume accord-
ingly. In this situation the next state will be the state at t + 1
and v volume, where v is the amount traded because of the
action, and the market variables remain fixed for that point
in time.

To learn a trading policy using our RL approach, buying
and selling policies for each of the items being studied are
trained on three weeks of live game data, with one week
of live data held in reserve for testing purposes. Buying
and selling are treated separately because the cost associated
with each action is reversed. When selling an item it is de-
sirable to sell above the perceived price, while when buying
the reverse is true.

Results

To evaluate the effectiveness of the trading policies learned
by the RL algorithm, we compared it to the following trading
strategies: spread market order (SMO), upfront market order
(UFMO), last minute market order (LMMO), and variable
weight average pricing (VWAP). SMO, LMMO, UFMO, are
all methods that place direct market orders, and differ in the
timing of the orders. VWAP places both limit orders and
market orders. At the beginning of the time step VWAP
places a limit order slightly better than the current best limit
order price, and at the end of the time step whatever vol-
ume is left over is placed in a market order. To compare the
strategies the test data is divided up into five step epochs.
For every item, each strategy is evaluated for every epoch in
the test data. The average cost associated with each strat-
egy is listed in Table 2. The costs are normalized against
the perceived price of each item so that comparison between
items is possible. Negative costs indicate that prices better
than the perceived price were attained. Table 2 shows the RL
performance of the best performing set of market variables
and which market variables were used.

In all cases of the buying task, RL outperformed all other
strategies for every combination of the market variables.
However in the selling task there were some combinations
of the market variables that were slightly outperformed by
the VWAP strategy, but in every item the best market vari-
ables outperformed all other strategies.

It is also apparent from Table 2 that selling and buying are
asymmetric and experience different levels of cost. In every
item in the sell group the average cost of the RL and VWAP
strategies is negative. This indicates that they both trade for
better than the perceived price of the items. However, in the
buy group only carbon polymers and hexite trade for better
than perceived price. These differences can be attributed to
the different styles of market behavior in the EVE market. In
most situations EVE players who are buying are looking for
immediate transactions while players who are selling items
are willing to be patient and place limit orders. This leads
to a large amount of market buy orders, a large amount of
limit sale orders, and low amounts of limit buy orders and
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market sell orders. Hence limit sale orders have a high prob-
ability of transacting. This is also the cause of the VWAP
strategy performing much closer to the RL strategy on the
sell task, because the limit orders placed by VWAP are con-
sumed much more frequently than they are in the buy task.

In most cases the RL learns a policy of placing limit or-
ders at slightly better than best limit price at all time steps
but the last, and then placing a market order for the remain-
ing volume. This strategy mimics a strategy commonly fol-
lowed by many human participants in the EVE market. The
RL also learns when to place orders inside the order book
in order to reduce costs further. It learns this strategy more
frequently in the sell case, as a result of the high volatility
on the sell side of the order book. Figure 1 shows the ac-
tions chosen by the RL agent for titanium carbide using the
OBS, and IMMO market variables. As shown the RL agent
chooses to place a limit order just above or just below the
BestAsk most of the time while choosing to place a mar-
ket sell or to do nothing in just a few cases. The policies
learned by the RL approach are effective in buying or sell-
ing in terms of the simulation techniques used, and should
transition well to the live EVE market since they are based
on data from the market.

Supply Chain Management

In the supply chain scenario, a single factory is simulated
over the course of four weeks. The trading agent must decide
which of six reactions to run. Each of these reactions takes
as input items from the buy group, and produce items from
the sell group.

Some experiments were carried out to ascertain the use-
fulness of predicting which reaction will produce the most
profit based on the market data. Greedy reaction choice was
compared to an oracle with perfect knowledge of the future
market prices to evaluate the potential worth of prediction
techniques. For the three day cycle being simulated having
the oracle’s prediction only affected one decision over the
course of a month. This result is expected, since the short
cycle time leaves very little time for the prices of the items
involved to shift significantly in relation to each other. We
believe that over a longer period of time the oracle’s choices
would diverge more from the greedy choice and thus the
profit acquired by the oracle would be greater. For the short
cycle times studied here and the relatively short timeframe
of the test data, prediction of the market does not give sig-
nificant gains.

Discussion

There are several roles that autonomous trading agents can
fulfill in MMORPG marketplaces. They can provide liq-
uidity for human players in less active markets in the same
way that NPC vendors serve as a reliable outlets for play-
ers to obtain and sell items at fixed prices. Also, introduc-
ing a population of trading agents can be a market control
mechanism for the game designers to subtly manage mar-
kets and deflate prices. Even though trading agents in a vir-
tual marketplace do not function as “adversaries” for the hu-
man players, it is equally important for them to be adaptive

(a)

(b)

Figure 1: (a) The total profit gained over the course of the
scenario using the RL approach vs. SMO.(Greedy Selection)
(b) The distribution of actions in the policy learned by the
RL agent for selling titanium carbide.

and robust to player exploitation. Giving the agents multi-
ple strategic options and enabling them to learn from market
data has the potential of making them both adaptive and ro-
bust. There are two types of events that occur in EVE On-
line that cause large market shifts. Periodically the design-
ers introduce game patches that change resource scarcity or
modify the wealth generation mechanisms and cause dra-
matic shifts in the relative value of items. For instance, one
game patch was the addition of “invention” into EVE as a
mechanism for producing blueprint copies for manufactur-
ing items. These blueprint copies (BPCs) enabled players
to produce limited numbers of items at a reduced efficiency
and deflated the artificially high prices caused by blueprint
original (BPO) monopolies. Market shifts can also be ini-
tiated by players that decide to wage economic “war” by
using their wealth to deny others profit rather than maximiz-
ing their own gain. By entering and systematically under-
cutting a market, a wealthy player can take consistent but
manageable losses while completely denying others profit
generation opportunities. This strategy can be as effective
at crippling other players as destroying their manufacturing
facilities. Frequent retraining on recent market data can in-
crease the resiliency of a reinforcement-learning based trad-
ing agents to these externally instigated market shifts.

Conclusion and Future Work

The line between virtual and real-world economies is blur-
ring. Economists routinely create computer simulations of
real-world economies, and virtual MMORPG economies
like the one in EVE Online are beginning to approach the
size of real-world markets. Virtual worlds such as Second
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Table 2: Average normalized cost for all buying and selling policies.
Item OBS IMB0 SV RL (best) VWAP SMO UFMO LMMO

Buying

Carbon Polymers 0 0 1 -0.028504579 0.082028063 0.14643748 0.158661913 0.133918673
Ceramic Powder 1 0 0 0.002357998 0.094899403 0.145539648 0.15691056 0.127830972
Crystallite Alloy 1 0 0 0.159725478 0.201720732 0.219629257 0.228338457 0.222763274
Fernite Alloy 1 0 1 0.109048314 0.145763227 0.165234565 0.16647955 0.167223286
Hexite 0 1 0 -0.00674535 0.052654967 0.102081265 0.102325669 0.096176695
Platinum Technite 1 0 0 0.026604871 0.053103663 0.066995723 0.065303677 0.066490438
Rolled Tungsten 0 0 1 0.109001374 0.213010068 0.250940359 0.261046177 0.248051276
Silicon Diborite 1 0 0 0.14209394 0.293296089 0.396878418 0.368555284 0.398358207
Sulfuric Acid 1 0 1 0.035423585 0.086367207 0.108323317 0.111466645 0.102229287
Titanium Chromide 0 0 1 0.03438384 0.066614538 0.080647685 0.083648374l 0.076908795

Selling

Crystalline Carbonide 0 0 0 -0.042070845 -0.031703087 0.059422992 0.058534444 0.058171544
Fernite Carbide 1 0 0 -0.022444448 -0.008468892 0.037583333 0.03736483 0.039398718
Fullerides 0 0 0 -0.025773631 -0.021543334 0.032569338 0.029058182 0.03510464
Sylramic Fibers 0 0 0 -0.03238247 -0.030585387 0.04085 0.044264554 0.0448763
Titanium Carbide 1 1 0 -0.030455756 -0.020375989 0.041083696 0.04590129 0.035326763
Tungsten Carbide 1 0 0 -0.03466989 -0.003565254 0.05535917 0.055273444 0.054097885

Life and Entropia Online use currencies that can be traded
for real-world dollars. Within EVE Online, players can use
real-world money to buy virtual objects (time cards) that are
traded in the EVE marketplace. These time cards can be
used to offset the cost of game subscription fees so a player
who is sufficiently financially successful can play EVE On-
line for free. Even purely virtual objects have some intrinsic
real-world value based on the investment of real-world re-
sources such as playing time and membership fees. Ded-
icated MMORPG players are willing to spend real-world
money purchasing virtual items through eBay or other ven-
dors to enhance their gaming experience.

As these virtual markets approach the complexity of real-
world markets, developing agents to populate these virtual
worlds as capable, autonomous, non-player characters poses
a daunting research problem. In this paper, we have demon-
strated some initial steps towards the problem of developing
adaptive trading agents for inhabiting virtual marketplaces.
Our reinforcement-learning approach for learning a trading
policy from a short time-window of market data, outper-
forms standard trading policies such as VWAP (variable-
width average price). Over the time intervals considered in
this study, price prediction, even through the use of a market
oracle, did not prove to be a decisive advantage for supply
chain management, although we believe that in cases where
the market is not exhibiting a stable downward trend it is
likely that the use of prediction would outperform the greedy
scheduling strategy.

In future work, we are interested in addressing the fol-
lowing problems. First we will evaluate the use of different
function approximators as a replacement for our Q-table,
since exactly calculating a Q-table for a large state space
is intractable (Sutton & Barto 1998). Second, we are inter-
ested in expanding the agent’s supply chain management op-
tions, including allowing the use of more complicated sched-
ules and calculating logistics for moving materials between
markets. Finally, we are interested in evaluating the per-

formance and resiliency of our agent in real-time trading
against human players.
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