
Interactively Evolved Modular Neural Networks for Game Agent
Control

John Reeder, Roberto Miguez, Jessica Sparks, Michael Georgiopoulos, and Georgios Anagnostopoulos

Abstract— As the realism in games continues to increase,
through improvements in graphics and 3D engines, more focus
is placed on the behavior of the simulated agents that inhabit
the simulated worlds. The agents in modern video games
must become more life-like in order to seem to belong in the
environments they are portrayed in. Many modern artificial
intelligence approaches achieve a high level of realism but
this is accomplished through significant developer time spent
scripting the behaviors of the Non-Playable Characters or
NPC’s. These agents will behave in a believable fashion in the
scenarios they have been programmed for, but do not have the
ability to adapt to new situations. In this paper we introduce
a modularized, real-time evolution training technique to evolve
adaptable agents with life-like behaviors. Online performance
during evolution is also improved by using selection mechanisms
found in temporal difference learning methods to appropriately
balance the exploration and exploitation of control policies.
These methods are implemented and tested using the XNA
framework producing very promising results regarding effi-
ciency of techniques, and demonstrating many potential avenues
for further research.

I. INTRODUCTION

Developing realistic and adaptable agent behavior is an
important problem in Artificial Intelligence. A particular
application is found in video games. In contemporary video
games AI behavior is scripted. A poorly scripted AI often
leads to predictable and easily exploited agent behavior. This
can lead to decreased entertainment, replay value, and game-
play bugs or errors. A well scripted AI takes significant time
to develop, causing product delay and excessive expenditure
of resources. Even if AI is well scripted, it is still very
difficult or impossible to have a scripted AI generalize and
adapt to new situations. Machine Learning techniques can
be utilized to provide the adaptability needed to produce
convincing artificial intelligence in games.

A particular area of machine learning that shows promise
in game agent control is neuroevolution. Neuroevolution uses
genetic algorithms to evolve artificial neural networks, which
can then be used to solve reinforcement learning problems
[1]. The concept of implementing neuroevolution in a game
was pioneered by Dr. Kenneth Stanley and his group with
NeuroEvolving Robotic Operatives (NERO) [2]. NeuroEvo-
lution of Augmenting Topologies, or NEAT [1], was used to
evolve the behavior of the robots in the game. The object of
the game is to evolve capable agents to compete against other
teams by providing positive and negative reinforcement for

John Reeder (jreeder@mail.ucf.edu), Roberto Miguez and Michael Geor-
giopoulos are with the University of Central Florida. Jessica Sparks is with
Purdue University. Georgios Anagnostopoulos is with the Florida Institute
of Technology.

specific actions taken by the robots. This was the beginning
of a new genre of games called Machine Learning Games[2].

This paper expands on the methods introduced by NERO
in certain key aspects. In particular, the agent control problem
is broken down into sub problems, and a modular neural
network architecture is used to increase convergence rates
and efficacy of evolution. Furthermore, we implemented
techniques from on-line evolutionary computation, as intro-
duced in [3] to increase on-line performance.

In our work, in order to introduce a finer grain of control
for agent development, the paradigms of reinforcement learn-
ing and interactive evolution have also been integrated. To
facilitate this effort, an approach was taken where every agent
is composed of an individualized population. In this manner,
individualized populations within the game develop differ-
ent policies and thus behave differently for similar states.
This enables the use of an ε-greedy selection mechanism
to search for an optimal policy. It also allows promising
solutions to be further investigated while improving online
performance during evolution. Furthermore, by involving
human interaction it is hoped that evolution will be led to
more promising paths earlier in the evolutionary cycle. The
integration of reinforcement learning from the environment
and human interaction is expected to achieve more desirable
agent behaviors in a more efficient manner.

II. BACKGROUND

This section contains the necessary background on the
many building blocks of our application. Here reinforcement
learning, NEAT and its modifications, interactive evolution-
ary computation, the tools and code bases used in our
application, as well as terms used throughout the rest of the
paper, are described.

A. XNA and Net Rumble

XNA [4] is a set of tools for game developers designed
to take the tedium out of game developing. Designed by
Microsoft, XNA contains a comprehensive list of libraries to
promote code reuse through all levels of game development.
XNA also provides a community [5] in which games can be
reviewed by fellow developers. The games created with XNA
can be distributed to either XBOX or Windows machines.

Net Rumble [6] is a 2D game in which the player operates
a space ship and tries to shoot other space ships in a free-for-
all style battle (see Figure 1). The player can move, shoot,
and lay mines. The objective of the game is to be the first
to attain a specified number of points. Points are earned by
killing another space ship in the game. However, points can

978-1-4244-2974-5/08/$25.00 ©2008 IEEE 167

be subtracted if the player causes their own destruction (such
as by flying into an asteroid).

Fig. 1. A screen shot of the Net Rumble game.

B. Reinforcement Learning

Reinforcement Learning [7] is a type of machine learning
approach in which an agent takes actions that will maximize
its reward or reinforcement. The reward given is based on the
agent’s action and the current state of the environment. No
other information about how to solve the problem is given
to the agent. It must learn through trial and error. A policy
in Reinforcement Learning is a complete mapping of states
to actions. NEAT can be viewed as an example of policy
search reinforcement learning. NEAT evolves networks that
map the states to the action an agent should take, and thus
comprise a policy for an agent.

In Reinforcement Learning there is always a tradeoff
between exploration and exploitation. In exploration an agent
will take an action that it has no information about. When the
agent does not know much about its environment, exploration
allows it to gather information about what actions and
environment states lead to reinforcement. Exploitation, on
the other hand, is when the agent uses the information from
previous actions to choose the action to take in the current
situation. If an agent always explores then it will never
maximize reward, and if it never explores it may not find
actions that lead to big payoffs. There is a delicate balance
between how much exploration and how much exploitation
to use and the optimal ratio is different for each problem.

C. On-Line Evolutionary Computation

In order to better balance exploration and exploitation
in real time evolutionary systems, the concept of on-line
evolutionary computation was introduced in [3]. On-line evo-
lutionary computation borrows selection mechanisms from
Temporal Difference (TD) learning methods in order to
achieve better performance during on-line evaluation.

In this paper, ε-greedy selection is used when choosing
a network to evaluate. Selection through ε-greedy works
by choosing the best policy from a set of policies with a
probability of (1 − ε) (exploitation), and a random policy
with a probability of ε (exploration).

D. NeuroEvolution of Augmenting Topologies

NeuroEvolution of Augmenting Topologies (NEAT) [1]
is a neuroevolution method that overcomes some common
problems with the neuroevolution methods that preceded it.
NEAT evolves both the weights and connections of a neural
network to find a solution (see Figure 2 for a representa-
tion of an artificial neural network). One of the problems
neuroevolution methods face is the competing conventions
problem. The problem is that when two neural networks
provide a solution to a problem but have different encodings,
these different encodings cause important information to
be lost during crossover. To remedy this problem NEAT
introduced innovation numbers. Innovation numbers are a
system of historical markings that ensure that all genes in
a neural network are encoded the same way. If a gene was
derived from the same historical origins as another gene then
it will have the same innovation number. When crossover
occurs only genes with the same innovation number are
crossed. Innovation numbers that are not common to both
parents (disjoint and excess genes) are inherited from the
more fit parent.

Another problem that NEAT solves is the problem of how
to prevent new structures from dying off before they have
a chance to optimize. NEAT’s solution to this issue is to
separate the population of neural networks into species of
similar structures. Each species then competes among its own
members. Each member of the species must share its fitness
with other members of the species. This creates fitness peaks
and each species is limited in size by the size of their peak.
This way no one species is allowed to take over the entire
population. This prevents innovations from dying out too
quickly and keeps the population of neural networks diverse.

NEAT also uses the design principle of starting off neural
network topologies minimally. Some neuroevolution meth-
ods before NEAT started topologies randomly. This led to
nonfunctional structures being implemented into the neural
networks that could never be removed. However, this was
necessary for these methods because otherwise innovations
would not survive. Since NEAT has solved the problem of
preserving innovations through speciation, it can start off
networks minimally with no hidden nodes. Therefore NEAT
can add structure only as it is necessary,which minimizes the
solution and solution search throughout the entire evolution-
ary process.

E. Real-Time NeuroEvolution of Augmenting Topologies

In a real-time situation, such as a game, NEAT has some
drawbacks. If an entire population of game agents is chang-
ing at the same time, a human user is likely to notice the
difference, which leads to an unrealistic or even disorienting

168 2008 IEEE Symposium on Computational Intelligence and Games (CIG'08)

Fig. 2. An example of a neural network representation. The input
nodes are shown at the top labeled 0-2. Output node, labeled 3, is at the
bottom. There are 4 hidden nodes between these. The color and thickness
of the lines connecting the nodes represent the weight of that particular
connection. Taken from the SharpNEAT GUI. Source code is available at:
http://sharpneat.sourceforge.net/index.htm.

game experience. In order to combat this problem real-time
NEAT (rtNEAT) [2] was created.

The idea behind rtNEAT is that the population should
be evolved gradually so the change in population is largely
unnoticed by the user. This is done by adapting the NEAT
techniques to a steady state genetic algorithm by replacing
only one member of the population at a time. In each loop
of the algorithm the fitness of each individual is calculated,
the two most fit individuals are crossed over to form an
offspring, and the least fit individual that has had enough
time to optimize is replaced by this offspring. This provides
a more gradual evolution that is more suited to gameplay.

F. NeuroEvolving Robotic Operatives

NeuroEvolving Robotic Operatives or NERO [2] is a game
that uses rtNEAT to evolve “robotic” game agents that are
suited to fighting in different situations. NERO is part of a
new genre of game known as a Machine Learning Game
(MLG) [2] in which Machine Learning is used to train the
agents in the game. In MLGs the user’s role is to define the
best fitness function for the game agents. The game starts
in training mode where the user trains an army of robots.
The user specifies the strategy the robots should use through
a reinforcement interface in the lower right corner of the
screen When the robots have trained to the user’s satisfaction
they can be pitted against another player’s army in battle. In
our paper we used key ingredients of the work conducted in
NERO [2].

G. Modular NeuroEvolution of Augmenting Topologies

Problems with a large search space can be difficult for
NEAT to solve. If there are too many inputs and outputs
to search through, NEAT can take a long time to converge
to a good solution. Modular NEAT [8] provides a counter

to this problem. Modular NEAT breaks down problems
into subproblems by evolving reusable NEAT modules. By
evolving reusable modules, modular neat abstracts the search
space allowing more complex solutions to be searched more
efficiently. However, this abstraction leads to a coarser
search, which can cause some solutions to be missed.

Modules are evolved using the NEAT algorithm with
the addition that input and output nodes can be added
through mutation as long as their numbers never exceed that
of the total solution. The modules are then bound to the
overall solution through blueprints or evolved mappings of
modules to the solution’s inputs and outputs. The modules
and blueprints are co-evolved until a solution is reached.

H. Interactive Evolutionary Computation

Interactive Evolutionary Computation (IEC) [9] uses evo-
lutionary computation and subjective human input to produce
results that don’t have discrete, well defined solutions. In
IEC the user input becomes the fitness function to which the
solution is being optimized. In this manner, the solutions
produced can be based on artistic preference, emotional
understanding, impressions or biases that the user has. These
types of solutions cannot easily be defined by equations or
discrete states, so using a human evaluator is often the only
way to quantify the goodness of solutions to these types of
problems.

III. METHODOLOGY

The XNA Starter Kit Net Rumble [6] was used to provide
a framework and testing ground for experimentation. The li-
braries provided by the XNA framework reduced the amount
of time needed to begin working with a fully functional
environment and saved considerable development time and
effort.

Net Rumble also provides networked game play allowing
multiple players to be involved in the game simultaneously.
This also allows multiple human players to be involved in
the interactive evolutionary process at the same time.

A. Bot Integration

The Net Rumble Starter Kit only provides functionality
for human players. In order to implement our methods,
computer controlled ships, or bots, needed to be added into
the game. A Bot Factory was developed to handle all facets
of bot creation. The bots were necessarily identical to human
controlled ships in all respects, except of course, their method
of control.

In order to allow for more than one human individual
to play alongside the bots and take part in their evolution
(Section II-H), networking functionality was maintained.
This caused a shift in the game’s network architecture to
a client-server model, where the host is in charge of bot
creation and transmitting bot updates to all other machines.

1692008 IEEE Symposium on Computational Intelligence and Games (CIG'08)

B. Sensors

No intelligent decisions could be made without having
knowledge of the current state of the environment. A sensor
class was created to sense the environment. The sensor class
is able to sense other ships, asteroids, projectiles, and power
ups. It is only able to sense a given amount of any of these
objects at any point in time, and a parameter is passed to
specify this amount. For example, a sensor package can be
created such that a bot can sense a maximum of 5 closest
ships, 3 closest asteroids, and 1 closest power up at any point
in time.

Ship, asteroid, and power up sensing is done by iterating
through the position of each world object, and taking the
Euclidean distance from the bot’s position to the object’s
current position. If it is less than a given parameter, then it
is considered as within sight of the bot, and is sensed. This
is equivalent to every bot having a circle, of radius r, where
if a particular object is within the circle, it is sensed (see
Figure 3). If it is sensed, positional information is saved by
the bot. This information is either relative Cartesian coordi-
nates, or relative Polar coordinates. Either system provides
translational invariance of input to the network, while relative
polar coordinates provides rotational invariance. This will be
important later on, since it minimizes the amount of inputs
that the network must learn to provide output for.

Projectile sensing is handled differently from other game
objects. In normal game play scenarios there are many
projectiles in space at any given time, and sensing these in the
same way as other objects would overload the sensors with-
out providing very useful information because large numbers
of projectiles are likely to pass through the sensor radius of
our bots while flying through the game environment. In the
case of projectiles we are only really concerned with the ones
that are on a collision course with our bots. Since our bots
are able to change direction at any time, and projectiles have
a fixed heading, it is easier to calculate which projectiles
are heading for the bots from the projectiles perspective. For
each projectile a cone of influence is calculated and each
bot that falls inside that cone of influence is alerted to the
position of that projectile.

The relative positions are saved into a dynamic sorted
list, where the keys are relative distances, and the values
are positional information. This enables the bot to sense the
most pertinent ships, in accordance to its field of vision. For
example, if only 3 ships can be sensed at once, and 5 ships
are within r, the ship will sense only the 3 closest ships
in its sense radius. Note, that this also allows indiscriminate
sensing of ships, that is, there is no difference between human
gamers and other bots.

C. Intelligent Control

In order to create competent agents for game control, it
is necessary to begin from an algorithm that is capable of
learning from its environment in a reinforcement learning
framework, as well as being able to generalize well to deal
with unknown states. One such algorithm that has been

Fig. 3. A screenshot from the Net Rumble game that shows the sense
radius of a non-playable character.

shown to have these traits is NEAT. For this reason it was
chosen as the basis for our current approach. It is used in the
context of a Reinforcement Learning problem, of which agent
control can easily be interpreted. Elements of Interactive
Evolution are also introduced to allow the human users to
affect the direction the agents take in their learning.

Initially, NEAT was integrated into the Net Rumble code
without any modification. The outputs of the bot sensors were
fed as inputs to a particular network, forward propagation
occurred, and then the outputs of the network were fed as
inputs to bot control. Although this worked as expected,
evolution was found to hinder gameplay. This is because each
generation of NEAT alters the population, and immediate
changes in every bot’s behavior is easily noticed. This
problem is one of the issues that rtNEAT (Section II-E)
addresses.

Our implementation was modified to follow the rtNEAT
paradigm of evolving a static population in order to decrease
the noticeable effect in generational changes. In rtNEAT only
a single network, the weakest individual in the population,
is replaced during evolution. As this occurs the bot routinely
transitions between population members. This makes evolu-
tion fairly transparent to the user.

In order to facilitate an encapsulated agent design and
incorporate intelligent selection mechanisms, it was also
decided that each bot would maintain a unique population
during gameplay. These populations represent a collection
of policies that control the agent behavior. Net Rumble,
being a free-for-all game, allows each of the bots to compete
with each other to stay alive and accumulate points. This in
turn means that each of the populations controlling the bots
are competing against each other, giving the agents another
source of information to learn from.

Since each bot maintains an independent population, this
means that the total population consists of a series of distinct
and independent sub-populations, where each sub-population
corresponds to a specific bot. This allows each population to
evolve a particular policy for the environment, where these
policies may be distinct. Having each population of bots
learning a certain policy is useful, since this will facilitate
integration of both reinforcement learning and interactive
evolution into the algorithm. Just as in the single population
case, rtNEAT is applied to every sub-population.

170 2008 IEEE Symposium on Computational Intelligence and Games (CIG'08)

Real world control problems can be difficult to learn
because of high input/output count. Modular NEAT showed
that breaking a problem down into subproblems and evolving
networks to solve the subproblems can increase average
fitness as well as convergence times. For this reason our
agents are controlled by multiple networks designed to han-
dle separate agent tasks. For example, two networks, one for
movement and one for shooting, instead of a single network,
are used to control a bot. One network can be removed
independently of the other, hence the term modular. Note,
that our modularization is not the same as Modular NEAT
(Section II-G) since we do not use blueprints to bind the
networks to a total solution. Instead the domain knowledge
of a human user is used to decide how the problem can be
divided into subproblems. In future work, the game interface
will allow the user to select how many, and in what fashion
the networks are combined to control the agent.

In order to examine the real-time modular approach,
mentioned above, a test case was designed in which one
neural network handles moving, while another one handles
shooting. Currently, both networks receive the same inputs,
the outputs from the bot’s sensors. Each network provides 9
outputs. Outputs correspond to each direction a bot can move,
that is the cardinal directions and their respective diagonals,
and to the command of not moving at all. In order to choose
the action of the bot, all of the outputs are polled and the
output with the highest activation is selected. This is then
mapped to an action of the agent. In order to keep the sensors
and actions rotationally independent in the 2-D space of the
game, the chosen action is transformed to be relative to the
bot’s current reference frame.

D. Policy Selection

To simulate a single population where each individual
is constantly being evaluated, the bot switches between
networks, or policies, at regular intervals.

Two selection methods were evaluated. The first method
simply iterates through the population in a linear fashion
choosing each network to be evaluated in turn. This mech-
anism would be similar to selecting a policy at random to
evaluate since the agents will be at arbitrary positions when
the networks are put in control. Also each network gets
evaluated an equal number of times throughout the agents
lifetime. The second method uses ε-greedy selection, where
a random policy is chosen for exploration with probability
ε, and the best policy is exploited with probability (1 − ε).
This method is expected to increase the overall performance
of the agent, since the more proficient networks are given
control of the agent more frequently. This however will
mean that some of the networks will have few evaluations
than better performing networks, and thus fewer chances to
increase their fitness. Both methods are compared in the
results section.

Although selection of the network for evaluation differs,
the evaluation of any given network is the same. Since the
ship itself is in direct contact with the environment, the
ship accumulates fitness during gameplay. Negative actions,

Fig. 4. Reinforcement Interface of the Net Rumble game. The size of the
red and green bars can be changed by clicking and dragging. Green bars
correspond to positive reinforcement and red bars correspond to negative
reinforcement.

such as bumping into an asteroid or getting shot, are given
negative reinforcement by decreasing fitness, while positive
actions, such as scoring a kill or shooting another bot, are
given positive reinforcement by increasing fitness. When a
ship switches networks, it dumps its fitness to the network
that was just controlling it, resets its fitness, and then takes
on a new network to control it. In essence, the brains are
switched in and out while the body remains the same. This
abstraction allows us to replace or extend intelligent control
without worrying about bot interaction with the environment.

E. Interactive Evolution

An interactive screen was added to the game to allow the
user to provide their input to the behavior of the bots. This
screen would allow the user to provide positive and negative
reinforcement values for specific actions in the game. A
visual of our interface is shown in Figure 4. The height of the
red and green bars correspond to the reinforcement given for
particular actions and this information is fed into the neural
networks. This screen can be accessed at any time during
gameplay through the pause menu.

Human players are also able to have a direct role in the
evolution of the bots by playing amongst them. This can
take the form of a single individual playing against bots, or
a group of individuals doing so. There are no constraints on
human to bot ratios, thus equal or more humans than bots
can play at any given round and affect evolution collectively.
In this manner, evolution is directed by both the bots and
the humans simultaneously. By altering the bot to human
ratio, either co-evolution or interactive evolution can be
emphasized.

F. Storing and Loading Genomes

A database was created where one can both save and
load bot populations that have been evolved. Not only can
certain desirable populations be archived, but one can stop
and then resume evolution at a later time. Also, since the
bot populations can be stored on a centralized server, users
can retrieve existing populations and evolve them. Due to
this feature, the process of interactive evolution is extended

1712008 IEEE Symposium on Computational Intelligence and Games (CIG'08)

from being confined to a single individual to a collaborative
process, allowing multiple individuals to play a role in
evolving the agent behaviors. These features allow the agents
to benefit from greater exposure to training time than would
be expected from a normal single users play time. This is im-
portant since evolutionary processes take advantage of large
population sizes and high evaluation counts to effectively
search for more robust solutions. This is a disadvantage that
real-time applications often face, since they can not run faster
than real-time simulations, and a large amount of time is
required to reach high evaluation counts.

Due to the existence of modular networks, shooting
networks and moving networks from different populations
can be combined to form a single population. To further
extend modularity, one could also pick and choose genomes
from different populations to form a single population that
will control a bot. Perhaps a population whose policy is
aggressive can be combined with a defensive population to
evolve a hybrid.

IV. RESULTS

In this section we detail the initial experiments conducted
using the Net Rumble game environment. Experiments were
run to test the validity of the modular network approach, and
the ε − greedy selection approach. Experiments to validate
the human interaction, and the agent performance against
humans and scripted agents will be carried out in future work.

A. Experimental Design

To test the modular design, the game was run with the
same settings with only a single neural network controlling
the bots and with modular neural networks controlling the
bots. The average fitness of the bot (the ship itself) per
evaluation was tracked, as well as the total fitness of the
population driving the bot, in both approaches. The same
experiment was conducted for both simple iterative selection,
and ε − greedy selection to compare the two. Only the
selection mechanism was changed from one experiment to
the other.

Five experiments were run for each setup, for a total of ten
experiments. Due to the stochastic nature of the gameplay,
the five experiments were run on five different machines,
making for a total of 25 experiments per control setup. Each
experiment was run for 200 evaluations, where each evalua-
tion was defined by the completion of an episode for every
network for every bot in the game. An episode was defined
to be the entire interval of time that a network was present
in the environment and its fitness was being determined, that
is, the entire time a ship was being controlled by a particular
network.

Each game had 10 bots present, with a population com-
posed of 20 networks. In the modular approach setup, there
were 10 networks to control shooting and 10 networks to
control moving. In the single network setup, all 20 networks
controlled both actions. A bot switched between networks
every 8 seconds, and evolution of its population occurred
every 40 seconds. All networks had 18 inputs, with a sensing

radius of 500 pixels. The single network had 18 outputs
(9 options for shooting and moving respectively), while the
modular networks had 9 outputs each, since each network
controlled a single action.

For all experiments, fitness was defined by adding positive
or negative scalars to a ship’s fitness depending upon the
actions it took. Positive reinforcement was given for a bot
damaging other bots (+2), and for killing another bot (+2).
Negative reinforcement was given for taking shield damage
(−.25), for having shields completely down (−.5), for hitting
an asteroid (−1), and for committing suicide (−1). Accuracy
was tracked by keeping count of how many projectiles a
bot shot, and how many connected. Unlike the other fitness
changes which were immediate, accuracy was analyzed at
the end of an episode. If accuracy was above (50%) then
positive reinforcement was given (+5) and if it was below
this threshold negative reinforcement was given (−5). This
constant is significantly higher than the others since it only
impacts fitness once per episode. It is important to note
here that in the modular experiment setup, both the moving
network and the shooting network shared fitness updates.
This was done in order to have both networks evolve towards
a similar goal. The idea was to co-evolve both networks
so that although their function and composition are distinct,
their behavior complements each other.

B. Experimental Results

The results from the tests were averaged over each exper-
iment to show the expected fitnesses as the agents progress.
The results are summarized in Figures 5(a) and 5(b). Figure
5(a) shows average fitness of the first four individual bots
averaged over every experiment, and Figure 5(b) shows
the average fitness of all of the bots averaged over every
experiment. It is important to note that the maximum fitness
in this type of scenario is not readily available as the fitness
happens in real-time from a non-deterministic world. These
figures indicate the differences in achieved fitness between
the modular and single network approach.

From Figure 5(b), it is evident that the modular approach
outperforms the single network approach. This gives cre-
dence to the hypothesis that the modular approach would
reach a higher asymptotic fitness and that it would reach
the same level of fitness as the singular case in fewer
evolutionary steps. This result mirrors the findings of the
Modular NEAT approach used in self similar board game
domain [8]. The speed to convergence is an important factor
in a real-time scenario since each evaluation below optimal
has a cost on the agents overall fitness level.

The initial fluctuations found in the individual fitness
curves in Figure 5(a) is also an interesting phenomenon,
and likely due to the competing agent sub-populations. The
figure shows the fitness of Terminator 1 jumping up very
early and then settling to a lower level at later evaluations.
This is an interesting result that demonstrates the increasing
complexity of the problem as other agents learn and become
more dangerous adversaries. This way the whole population,
consisting of all the agents’ individual populations, learns

172 2008 IEEE Symposium on Computational Intelligence and Games (CIG'08)

how to play efficiently. It is also important to realize that
these results are dependent on the particular fitness function
defined for the experiment as well as the size of the arena
and number of bots in the game. In future testing the effects
of competing against live human players will be examined.

The results from these experiment indicate that the mod-
ular network approach would perform well in different
scenarios, including against humans, as a result of its fast
convergence. It is important to note here that the modular
networks achieved their performance through co-evolution.
This was attained by making sure that the fitness that both
of the modular neural networks were trying to maximize was
linked. This avoided the potential problem of a bot knowing
how to move, and knowing how to shoot, but not knowing
how to both move and shoot at the same time. Therefore,
both networks evolved by learning how to work with each
other, not independently.

The experiments carried out using ε-greedy selection in-
dicate that the overall performance of both the single and
multi-networked cases are improved. This result matches
our expectation that exploiting the best performing networks
of a population some of the time increases the on-line
performance of the population without negatively affecting
evolutionary process. Figure 6 shows that the ε-greedy selec-
tion method increases the maximum fitness attained for both
architectures. In the multi network case, ε-greedy selection
improves maximum fitness to level 36.76 compared to level
30.05 attained with iterative selection, while in the singular
network case the improvement is more profound increasing
fitness to level 33.5 from level 22.01, attained with iterative
selection.

V. CONCLUSIONS

In this paper, the novel approach of user defined modular
networks for game agent control was introduced. Agents
within the 2D space fighter game Net Rumble were trained
and controlled with the modular network approach, and
tested against the singular network approach, to verify the
effectiveness of the modular technique.

This application was built upon the XNA game frame work
and sharpNEAT libraries to facilitate rapid development and
prototyping. These frameworks provided a foundation and
testing environment for the approach implementation, and
saved significant development time. The XNA framework
provides many avenues for AI development, in the form of
freely available game code and development tutorials, that
allow AI researchers to try their algorithms in simulated
environments with a minimal amount of development effort.

The modular network approach was formulated by taking
key aspects of prior work, namely NERO [2] and Modular
NEAT [8], and combining them to achieve better perfor-
mance, as was shown by the experimental results. This
work shows that the modular neural network paradigm’s
performance, as shown in Modular NEAT, transfers to a real-
time reinforcement scenario. This modification of rtNEAT
to follow the modular paradigm as well as the introduction
of encapsulated agent populations is a novel approach in

0 50 100 150 200
10

15

20

25

30

35
Terminator 1

0 50 100 150 200
10

15

20

25

30

35
Terminator 2

0 50 100 150 200
10

15

20

25

30

35
Terminator 3

0 50 100 150 200
10

15

20

25

30

35
Terminator 4

Modular
Single

(a)

0 20 40 60 80 100 120 140 160 180 200
12

14

16

18

20

22

24

26

28

30

32
Modular vs Single

Evaluations

F
itn

es
s

Modular
Single

(b)

Fig. 5. (a) Fitness Function values for Modular versus singular networks in
individual NPCs (Terminators 1-4) (b) Fitness Function Values for Modular
networks versus singular networks averaged over all bots. (Evaluations are
for the NPC not individual networks)

game agent control and shows significant promise for future
research avenues.

By using intelligent selection mechanisms such as ε-
greedy, exploration of policies can be appropriately balanced
with exploitation. This prevents on-line performance from
degrading needlessly, and also enables a deeper search into
current optimal policies. The combination of real-time NEAT
and on-line evolutionary computation prevents the evolution
of game agents from being obvious or even apparent to a
user, and thus provides a more realistic gaming experience.

The inclusion of human players in the game world, as well
as the ability of the user to modify the fitness weights of
the agents, allows the evolution of the agents to be affected
by a human user. This offers the human the opportunity to

1732008 IEEE Symposium on Computational Intelligence and Games (CIG'08)

0 20 40 60 80 100 120 140 160 180 200
15

20

25

30

35

40
Modular Network − Iterative vs ε−greedy

Evaluations

F
itn

es
s

0 20 40 60 80 100 120 140 160 180 200
10

15

20

25

30

35

40

Evaluations

F
itn

es
s

Single Network − Iterative vs ε−greedy

Iterative
ε−greedy

Fig. 6. The fitness values for ε-greedy vs. iterative selection for Multi and
Singular networks

guide the agent toward desired behaviors. The quick conver-
gence of this modular approach will complement the human
interaction well, allowing the agents to quickly learn from
the human participants. Finally, the promising results given
by ε-greedy selection demonstrates that on-line evolutionary
computation for game agent control is not only possible, but
can prove to be more effective.

The results of this application are very encouraging, and
indicate that the modular approach combined with intelligent
selection mechanisms is a fruitful design choice in real-time
agent control. It is expected that additional testing and the
pursuit of future work discussed below will lead to more
effective agent control and more life like game AI.

A. Future Work

Future work on this project will include more detailed
experiments to show how well the agents perform compared
to scripted agents, as well as performance against human
players. Also experiments will be carried out to show the
benefits of the human interaction, and the value of on-
line storage allowing many people to be involved in the
evolutionary process.

Although the modular network approach outperformed
the single network approach, it still remains to be seen
exactly how tightly knit the different modules need to be
in terms of learning. In our experiment, both the moving
and shooting networks shared the same fitness. However, it
might be possible that improved performance could result
from an independent evolution of separate networks, where
each network would specialize in a respective action.

Further work integrating reinforcement learning tech-
niques from NEAT-Q into real-time evolution is planned to
increase agent effectiveness in the game environment. These
techniques are desired since they will enable more finely
tuned control over evolved behavior. By working at the level
of state-action pairs, one possesses a finer grain of control
over behavior in any given situation. This will also signifi-
cantly enhance the ability to introduce real-time interactivity
into evolution, since a human can modify single actions or
value functions at the state level. It is hoped that combin-
ing techniques from these three paradigms (Reinforcement
Learning, Neuroevolution, and Interactive Evolution) will
provide a good level of control during evolution, and will
lead into achieving satisfactory results faster.

ACKNOWLEDGMENTS

This work is a result of the AMALTHEA NSF REU
program. This program is a 10 week research experience
for undergraduates interested in Machine Learning. For more
information visit http://cygnus.fit.edu/amalthea. This work
was supported in part by the NSF grants: 0647018, 0717674,
0717680, 0647120, 0525429, and 0806931

REFERENCES

[1] K. O. Stanley and R. Miikkulainen, “Evolving neural networks through
augmenting topologies,” Evolutionary Computation, vol. Vol. 2, no. No.
10, pp. 99–127, 2002.

[2] K. O. Stanley, B. D. Bryant, and R. Miikkulainen, “Real-time neuroevo-
lution in the NERO video game,” IEEE Transactions on Evolutionary
Computation, vol. Vol. 9, no. No. 6, December 2005.

[3] S. Whiteson and P. Stone, “Evolutionary function approximation for
reinforcement learning,” Journal of Machine Learning Research, vol.
Vol. 7, pp. 877–917, May 2006.

[4] “XNA,” http://www.xna.com/, 2007.
[5] “XNA Creators Club Online,” http://creators.xna.com/, 2008.
[6] “Net Rumble download page,” http://creators.xna.com/en-

us/starterkit/netrumble, December 2007.
[7] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement

learning: A survey,” Journal of Artificial Intelligence Research, vol.
Vol. 4, pp. 237–285, May 1996.

[8] J. Reisinger, K. O. Stanley, and R. Miikkulainen, “Evolving reusable
neural modules,” Springer-Verlag Berlin Heidelberg, pp. 69–81, 2004.

[9] H. Takagi, “Interactive evolutionary computation: Fusion of the capa-
bilities of EC optimization and human evaluation,” IEEE, 2001.

174 2008 IEEE Symposium on Computational Intelligence and Games (CIG'08)

