Knowl Inf Syst
DOI 10.1007/s10115-010-0343-7

REGULAR PAPER

Non-derivable itemsets for fast outlier detection
in large high-dimensional categorical data

Anna Koufakou - Jimmy Secretan -
Michael Georgiopoulos

Received: 7 June 2009 / Revised: 30 April 2010 / Accepted: 4 September 2010
© Springer-Verlag London Limited 2010

Abstract Detecting outliers in a dataset is an important data mining task with many
applications, such as detection of credit card fraud or network intrusions. Traditional meth-
ods assume numerical data and compute pair-wise distances among points. Recently, outlier
detection methods were proposed for categorical and mixed-attribute data using the concept
of Frequent Itemsets (FIs). These methods face challenges when dealing with large high-
dimensional data, where the number of generated FIs can be extremely large. To address this
issue, we propose several outlier detection schemes inspired by the well-known condensed
representation of FIs, Non-Derivable Itemsets (NDls). Specifically, we contrast a method
based on frequent NDIs, FNDI-OD, and a method based on the negative border of NDIs,
NBNDI-OD, with their previously proposed FI-based counterparts. We also explore outlier
detection based on Non-Almost Derivable Itemsets (NADIs), which approximate the NDIs
in the data given a § parameter. Our proposed methods use a far smaller collection of sets
than the FI collection in order to compute an anomaly score for each data point. Experiments
on real-life data show that, as expected, methods based on NDIs and NADIs offer substan-
tial advantages in terms of speed and scalability over FI-based Outlier Detection method.
What is significant is that NDI-based methods exhibit similar or better detection accuracy
compared to the FlI-based methods, which supports our claim that the NDI representation is
especially well-suited for the task of detecting outliers. At the same time, the NDI approx-
imation scheme, NADIs is shown to exhibit similar accuracy to the NDI-based method for
various § values and further runtime performance gains. Finally, we offer an in-depth discus-
sion and experimentation regarding the trade-offs of the proposed algorithms and the choice
of parameter values.

A. Koufakou (<)

U.A. Whitaker School of Engineering, Florida Gulf Coast University,
Fort Myers, FL 33965, USA

e-mail: akoufakou@fgcu.edu

J. Secretan - M. Georgiopoulos

School of Electrical Engineering and Computer Science,
University of Central Florida, Orlando, FL, USA

Published online: 08 December 2010 @ Springer

A. Koufakou et al.

Keywords Outlier detection - Anomaly detection - Frequent itemset mining -
Non-Derivable itemsets - Categorical datasets

1 Introduction

The task of detecting outliers in a dataset has received significant attention in many applica-
tions, such as network intrusion detection [10] or outlying points in engineering data [11].
Outlier detection methods aim to detect patterns that occur infrequently in the data. One of
the most widely accepted definitions of an outlier pattern is provided by [13]: “An outlier is
an observation that deviates so much from other observations as to arouse suspicion that it
was generated by a different mechanism”.

Most of the previous research in outlier detection has focused on datasets that contain
numerical attributes or ordinal attributes that can be directly mapped into numerical values.
However, in categorical data, methods that assume numerical attributes must first map each
categorical value to a numerical value, a task which is not a simple process; for example,
mapping a marital status value, married or single, to a numerical value [22].

A second issue is that many current applications for outlier detection involve very large
datasets; e.g. Wal-Mart had 460 terabytes of data in 2004 [14], and multi-terabyte time series
data are usual in astronomy [29]. Therefore, the proposed methods must scale well with the
number of data points and the dataset dimensionality [1,22]. Data points may also be dis-
tributed over various geographical sites; this makes the transferring of data difficult, due to
data size, as well as ownership and control issues. Therefore, the proposed algorithms must
require minimal data scans.

Recently, outlier detection methods for categorical and mixed-attribute data were pro-
posed, (e.g. [20,22]). Some of these methods use the concept of Frequent Itemset Mining
(FIM). FIM has attracted substantial attention since the seminal paper by [2], which intro-
duced Apriori, today recognized as one of the ten most influential data mining algorithms
[26]. FIM extracts patterns or sets of items (categorical values) that co-occur frequently in
the dataset. Then, outlier points are likely to be the points that contain relatively few of the
frequent patterns (itemsets).

FI-based outlier detection methods [16,20,22] first extract all frequent itemsets from the
data and then assign an outlier score to each data point based on the frequent sets it contains.
However, FIM algorithms have been known to face problems for dense data, e.g. census
data [30]. Dense datasets contain many strong correlations and are typically characterized by
items with high frequency and many frequent patterns [30]. As a result, there might be a large
number of FIs to generate and store. In general, outlier detection in large high-dimensional
data with many categorical values will also face issues if based on frequent sets. As we show
in Sect. 4, this issue persists even if we constrain the maximum length of generated sets
[20,22]. To alleviate this issue, many methods have been proposed such as using condensed
representations of the FI collection (CFIs) [9], or approximating the number of FIs in dense
data [6].

In this paper, we use a smaller collection of sets instead of frequent sets, in order to detect
outliers efficiently given large high-dimensional data. Specifically, we use Non-Derivable
Itemsets (NDI) that have been shown to present large gains over FIs [8]. As shown in Sect. 3,
the way sets are pruned in the NDI algorithm makes the NDI concept well-suited to the outlier
detection algorithm. Furthermore, we also explore the use of a method that approximates the
NDIs in the data using a § parameter, called Non-Almost Derivable Itemsets (NADIs) [28].

@ Springer

Non-derivable itemsets for fast outlier detection

We summarize the significance of our work as follows:

— We employ a condensed representation of FIs, NDI, in outlier detection, which has not
been proposed before to the best of our knowledge; we believe our findings can easily
be transferred to other areas, such as clustering or summarization of categorical data.
Moreover, we discuss how NDI as a CFI suits the task of detecting outliers especially
well.

— We propose two algorithms for detecting outliers: one based on the frequent NDIs,
FNDI-OD, and one based on the negative border of the frequent NDIs, NBNDI-OD.
The negative border of Fls consists of all sets X such that X is infrequent but all subsets
of X are frequent. We compare the two NDI-based outlier detection methods with their
FI-based counterparts given several datasets and parameter values.

— We explore the effect of an approximation scheme for NDIs, based on a § parameter,
called Non-Almost Derivable Itemsets (NADIs). We propose an outlier detection algo-
rithm based on the Frequent NADIs, FNADI-OD. We also conduct experiments to explore
the trade-off between accuracy and runtime performance of the outlier detection algorithm
for various § and o value combinations.

— Our proposed methods are shown to be much faster and have similar detection accuracy
compared to their FI-based Outlier Detection counterparts. Specifically, FNDI-OD is sig-
nificantly faster than the FI method, even with large high-dimensional data and low o
values. More importantly, FNDI-OD exhibits higher or similar detection accuracy rates
compared to FI-OD for the data and o values we tested. Finally, FNADI-OD presents
more runtime gains compared to FNDI-OD usually at a small cost of detection accuracy
for various § values. Finally, we offer an in-depth discussion of our findings regarding the
advantages and weaknesses of the presented algorithms, and the effects of the parameter
values, o and §, on the detection accuracy given different datasets.

The organization of this paper is as follows: In Sect. 2, we provide a literature review. In
Sect. 3, we describe the FI-based, NDI-based and NADI-based outlier detection algorithms.
Section 4 contains our experiments and results. Finally, in Sect. 5, we summarize our work
and provide concluding remarks.

2 Previous work

Existing outlier detection work can be categorized as follows.

Statistical-model based methods assume that a specific model describes the distribution
of the data [3]. This leads to the issue of estimating a suitable model for each particular
dataset and application. Also, as data increases in dimensionality, it becomes increasingly
more challenging to estimate the multidimensional distribution [1].

Distance-based methods do not make any assumptions about the data and instead com-
pute pair-wise distances among data points [18]. These methods can easily have quadratic
complexity with respect to the number of data points and thus become impractical for large
data [22]. A distance-based method based on randomization and pruning in [4] has complex-
ity close to linear in practice. Clustering techniques assume that outliers are points that do
not belong to formed clusters; however, these methods focus on optimizing the clustering
process, not on detecting outliers [18].

Density-based methods identify outliers as those lying in relatively low-density regions.
In [7], a degree of anomaly, local outlier factor (LOF), is assigned to each point based on the
local density of the area around the point and the local densities of its neighbors. Although

@ Springer

A. Koufakou et al.

these methods can detect local outliers that may be missed by distance-based methods, they
face a challenge with sparse high-dimensional data.

Other examples of outlier detection work include Support Vector methods [24] among
others. Finally, most of these methods require data to be in the same location and cannot
easily be applied to geographically distributed data.

Most of these techniques are suitable for numerical or ordinal data that can be easily
mapped to numerical values; in the case of categorical data, there is little sense in ordering
the data in order to map them to numerical values and compute distances [22]. Another
limitation of previous methods is the lack of scalability with respect to number of points
and/or data dimensionality. An entropy-based outlier detection method for categorical data
is proposed in [15], and a fast and scalable method for categorical data, AVF, is presented
in [21].

The methods in [16,20,22] use FIs to assign an outlier score to each data point based
on the subsets this point contains. [22] propose a distributed and dynamic outlier detection
method for data with both categorical and continuous attributes. For each set of categorical
values (itemset), X, the method isolates the data points that contain set X, then calculates
the covariance matrix of the continuous values of these points. A point is likely to be an
outlier if it contains infrequent categorical sets, or if its continuous values differ from the
covariance. ODMAD [20], an outlier detection method for mixed-attribute data, can handle
sparse high-dimensional continuous data. ODMAD first inspects the categorical space in
order to detect data points with irregular categorical values or sets. Second, it sets aside these
points and focuses on specific categorical values and the points that contain these values
one at a time. ODMAD exhibits significant performance gains and lower memory require-
ments compared to [22], and its distributed version achieves linear speedup for distributed
datasets [19].

The Fl-based methods do well with respect to runtime performance and scalability with
the tested data. Nevertheless, these techniques rely on mining all FIs and face problems with
performance and memory requirements when applied to large high-dimensional data. This
is a well-known issue for FIM, not restricted to a specific algorithm (e.g. Apriori [2]). Spe-
cifically, FIM algorithms perform well with sparse datasets, such as market-basket data, but
face problems for dense data. The resulting FIs might still be numerous, an issue exacerbated
when these sets contain millions of items or the o threshold is too low. In the case of outlier
detection, we observed that this happens when a large high-dimensional dataset is used that
contains several highly-frequent categorical values.

To solve this issue, much work has been conducted toward Condensed representations of
FIs (CFIs). The goal of these methods is to generate a smaller collection of representative
sets, from which all FIs can be deduced. Many CFIs have been proposed, e.g. maximal,
closed, §-free, non-derivable (see [9] for a CFI survey). In this paper, we use Non-Deriv-
able Itemsets (NDIs) [8], and an approximation of NDIs, Non-Almost Derivable Itemsets
(NADIs) [28] based on a § parameter. As we discuss in the next section, the way itemsets
are used in previously proposed FI-based outlier detection methods (e.g. [20,22]) indicates
that these previous methods can benefit from the NDI generation and pruning process. This
is verified in our experimental results, not only in the large runtime performance gains but
also in terms of similar outlier detection accuracy rates.

Besides condensed representations, other types of techniques have been proposed and used
as a step prior to data mining tasks, such as clustering. For example, [27] uses highly corre-
lated association patterns to filter out noisy objects, resulting in better clustering performance
and higher quality associations. Summary sets [25] are proposed to summarize categorical
data for clustering, while a support approximation and clustering method is presented in [17].

@ Springer

Non-derivable itemsets for fast outlier detection

3 Algorithms

As shown in [21], the ‘ideal’ outlier point in a categorical dataset is one for which each and
every value in that point is extremely irregular (or infrequent). The infrequent-ness of an
attribute value can be measured by computing the number of times this value is assumed by
the corresponding attribute in the dataset. The algorithm in [21] assigns a score to each data
point, which reflects the frequency with which each attribute value of the point occurs. In
[20], this notion of ‘outlierness’ is extended to cover the likely scenario where none of the
single values in an outlier point are infrequent, but the co-occurrence of two or more of its
values is infrequent.

We consider a dataset D which contains n data points, X;, i = 1...n (see Table 1
for the notation used in this paper). If each point x; has m attributes, we write x; =
[xi1, ..., Xil, ..., Xim], where x;; is the value of the [-th attribute of x;. Note that each point
or record in D has exact dimensionality m, and, in this sense, D is not the traditional FIM
transactional database where the length of each transaction (row) may vary.

Given dataset D, a support threshold o, and a number of target outliers, k, the goal is to
detect the k outlier points in D. The algorithms presented here have two main phases: (1)
Extract a collection of patterns or sets in the data and (2) compute an anomaly score for
each data point and use the scores to detect outliers. In the following sections, we present
the following methods to detect outliers: a method that uses all FIs in the dataset, FI-OD; a
method that uses the negative border of the FIs, NBFI-OD; a method based on frequent Non-
Derivable Itemsets (NDIs), FNDI-OD; a method that uses the negative border of the NDIs,
NBNDI-OD; and finally a method that uses the frequent Non-Almost Derivable Itemsets
(NADIs), FNADI-OD.

3.1 Outlier detection based on frequent itemsets

Since frequent sets correspond to the “common patterns” which are found in many of the
data points, outliers are likely to be the points that contain relatively few of these frequent
patterns [16,20]. Likewise, normal data points will contain frequent categorical values, or
frequent sets of these values.

Table 1 Notation used in this

paper Term Definition
D Dataset
n Number of data points in D
m Dimensionality of D
r Number of single distinct items in D
X; The i-thpointinD, i =1...n
Xi] The /-th value of x;, [=1...m
1 Itemset
|1] Length of itemset
o Minimum support
k Number of target outliers
8 Parameter in NADI algorithm
MAXLEN Maximum length of itemset /

@ Springer

A. Koufakou et al.

LetZ = {iy, i»,...,i,} beasetof ritemsin a database D. Each data point (row) x; € D
contains certain of these r items. Given X, a set of some items in Z, we say that x; contains
X if X C x;. The support of X, supp(X), is the percentage of rows in D that contain X. We
say that X is frequent if it appears at least o times in D, where o is a user-defined threshold.
The collection of frequent itemsets is denoted by FZ:

FI =get {X ST |supp(X)=>o}

3.1.1 Outlier detection based on Fls: FI-OD

Using the frequent set information, one can define an outlier factor or score for each data point,
X;, i = 1...n. The equation for the outlier score based on FIs is designated as FIODScore,
given in Eq. 1 below:

Z supp(X)

FIODScore(x;) = x|

()]

XCx;AN XeFT

where | X| denotes the length of set X or the number of items (attribute values) in X.

The function in Eq. 1 is based on FindFPOF [16]. It assigns a high score to data points
that contain many frequent values or frequent sets. The lower the score in Eq. 1 the more
likely the point is an outlier. The lowest possible score is 0; this score is assigned to a point
that does not contain any frequent values or sets. Note that in [16], the summation term is
divided by the total number of frequent sets in D, but this does not affect the detection of
outlier points.

Also, in Eq. 1, we divide the support of a set by the length of the set, following the concept
in [22]: essentially the longer a set is, the less it contributes to the score of a point. This
is because longer frequent sets contain subsets that are themselves frequent, and they have
already been added to the score of a point. Finally, as shown in [20,22], we obtain a good
outlier detection accuracy by only considering sets of length up to a user-entered MAXLEN.

Example 3.1 Let point X = [a b c], and MAXLEN = 3, the possible subsets of x are: a, b,
¢, ab, ac, bc, and abc.

If subset I of x is frequent, i.e. supp(I) > o, we increase the score of x by supp (1) divided
by the length of /. In our example, if supp(ab) = 0.3 and ab is frequent, FIODScore(x) will
increase by 0.3/2 = 0.15.

The pseudocode for the FI-OD method is shown in Algorithm 1. The first step is to mine
the frequent sets from the data using a FIM algorithm such as Apriori [2], but other FIM
algorithms could be used instead. FI-OD goes over each data point x; and checks the frequent
sets against point x; . For each set in the frequent itemset lattice that is a subset of point x;, we
update the outlier score corresponding to x;. If a categorical value (item) a does not belong
in x;, none of a’s supersets are checked against x;, and so on. Finally, the k data points with
the lowest score are returned as outliers.

3.1.2 Outlier detection based on the negative border of FlIs: NBFI-OD
In contrast to the previous section, the algorithms in [20,22] use the infrequent subsets of a

point to compute its outlier score. Here we present part of the Outlier Detection for Mixed
Attribute Datasets algorithm (ODMAD) [20] which assigns a score to a point according to

@ Springer

Non-derivable itemsets for fast outlier detection

Input : Database D, target outliers k, minimum support ¢, maximum itemset length MAXLEN
Output: k detected outliers

1 G =Get FI (D, o, MAXLEN);

2 FIODScore[|D|), outliers[k] := 0;

3 foreachx; € D,i < 0..ndo

4 foreach ser f € G A f C x; do

5 | Update FIODScoreli];
6 end
7 end

8 outliers[k] <— x; with min FIODScore;
Algorithm 1: FI-OD Pseudocode

[a5] [B&4] [ea3] [a&3]

|ab:4| |ac:3|

[ad:3]

[bc:3] cd 1]

[labe:3 | [abd:2| |acd: 1] [bed: 1

Frequent

Infrequent

Fig. 1 Example of frequent sets, infrequent sets, and sets on negative border

its categorical and its continuous values. Since in this context we focus on categorical data,
we only describe the categorical score function of ODMAD.

The method in [22] generates FIs and then assigns a score to each point x; based on the
length of all infrequent sets that exist in x;. However, this method does not take into consid-
eration the frequency of the infrequent values. Enumerating all possible infrequent sets and
their support in the data is extremely expensive especially for large data.

Instead of considering all infrequent subsets of a point, ODMAD only considers the sets
that belong in the negative border of the frequent sets, 37 (FI). A set X belongs in B~ (FI)
if all its subsets are frequent but X itself is infrequent:

B (FI)=qef I CZ|VJCI:JeFINI¢FI}

Figure 1 depicts an example for frequent sets and negative border sets. For example, set
bd is on the negative border, but set abd is not, as it contains subset bd that is infrequent.

By only considering the 5~ (FI) sets, we are able to include the frequency of these sets
in our outlier detection score. We assign an anomaly score to each data point that depends on
each set d € B~ (FI) thatis also contained in this point. The score is inversely proportional
to the support and the length of the infrequent set. We name this algorithm NBFI-OD for
Outlier Detection based on the Negative Border of FIs. As in the previous section, we stop
generation of frequent sets longer than MAXLEN. The outlier score is shown in Eq. 2 below:

1
NBFIODScore(X;) = _— 2
o) e 2 @< @
Cx;A deB(FI)
A higher score implies that it is more likely that the point is an outlier. A point with very
infrequent single values will get a very high score; a point with moderate infrequent single
values will get a moderately high score; and a point whose single values are all frequent and

@ Springer

A. Koufakou et al.

has a few infrequent subsets will get a moderately low score. The pseudocode for NBFI-OD
is shown in Algorithm 2. To construct B~ (F 1), we maintain a table with the pruned candidate
sets, i.e. sets which are found infrequent after the Apriori generation process [2].

Another reason for using only the sets in the B~ (F) is that we are more interested in
either single categorical values that are infrequent, or infrequent sets containing single values
that are frequent on their own. Also, considering only these sets, i.e. the ones on the negative
border of FIs, makes our method faster than a method that uses all infrequent sets such as
[22]. This is shown in the following example.

Example 3.2 Assume we have two points, each with three categorical attributes: x; = [a b c]
and xo = [a bd]. If only single values a and ¢ are infrequent with support equal to 0.5, the
score is as follows:

1 1

supp(a) * supp(c) B

NBFIODScore(x1) =

NBFIODScore(x3) = ———— =
supp(a)

Since a and c are infrequent, we do not check any of their combinations with other val-
ues because they will also be infrequent. The sets we do not check are ab, ac, ad, bc, cd.
However, bd consists of frequent values, b and d, so we check its frequency. Assuming bd
is infrequent, and supp (bd) = 0.4, we increase the score of x,:

NBFIODScore(x3) = 2 + 3.25.

supp(bd) x |bd| —
This value still reflects that point x; is more likely to be an outlier than x5, since it has two
single irregular values and x; has a lower score since it contains one irregular or infrequent
value and one infrequent combination of values.

This score was shown to have a very good accuracy in [20], and similar findings are shown
in the Experiments Section.

3.2 Outlier detection based on Non-Derivable Itemsets

As noted earlier, FI-based methods may face challenges for large high-dimensional data. In
the case of such data, many FIs will be generated that are spurious combinations of the same
categorical values with the same or similar support. One proposed solution for this issue is
the Non-Derivable Itemsets (NDI) representation [8]. The NDI representation is well-suited
for the task of outlier detection because it prunes sets whose support can be derived from their

Input :D, k, o, MAXLEN
Output: k detected outliers
1 B™(FI) = Get Negative Border of FZ (D, 0, MAXLEN);
2 NBFIODScore[|D|], outliers[k] := &;
3 foreachx; € D,i < 0..ndo
4 foreach setd € B~ (FI) Ad C x; do

5 | | Update NBFIODScorelil;
6 | end
7 end

8 outliers[k] <— x; with max NBFIODScore;
Algorithm 2: NBFI-OD Pseudocode

@ Springer

Non-derivable itemsets for fast outlier detection

subsets (derivable sets). Basically, the NDI algorithm retains sets and support information
for 1-sets and 2-sets (i.e. single values and combinations of two values) and prune sets of
longer length that do not provide additional information.

3.2.1 Background on NDI

In this section, we present background on the NDI representation and algorithm from [8].

[8] showed that itemsets whose support can be deduced or derived from their subsets,
i.e. derivable sets, can be pruned, and that this can dramatically reduce the amount of sets
generated.

Let a general itemset, G, be a set of items and negations of items, e.g. G = {abc}.
The support of G in this case is the number of rows where items a and b are present while
item c is not present. We say that a general itemset G = X UY is based on itemset I if
I = X UY. The deduction rules in [8] are based on the inclusion-exclusion (IE) principle
[12]. For example, using the IE principle, we write the following for the support of a general
itemset {abc}):

supp(abc) = supp(a) — supp(ab) — supp(ac) + supp(abc).

Based on supp (abc) > 0, we can write the following:

supp(abc) > supp(ab) + supp(ac) — supp(a).

The above is an upper bound on the support of set abc. [8] extend this concept to computer
rules in order to derive the upper and lower bounds on the support of itemset /. Let L B(I)
and UB([) be the lower and upper bounds on the support of /. Also, let Rx (1) denote a rule
(such as the inequality above) that computes a bound on the support of / based on X C I.
The lower and upper bounds on the support of / are

LB(I) = max{§x (1), |[I\X]| odd}
UB(1) = min{dx (1), |I\X| even}

where §x (1) denotes the summation in rule Rx (/) and is shown below:

sx(h= D (D" lsupp().
XcJcl

An itemset [is derivable if LB(I) = UB(I). An example for set abc is given below.

Example 3.3 Therules Ry (abc) are shown for X equal to abc, ab, ac, be, a, b, ¢,), respec-
tively. The support interval for abc is [1,1]; therefore abc is derivable.

tid Items

1 a supp(abc)y > 0

2 b;c < supp(ab) = supp(ac) =2, sup(bc) =3

3 c > supp(ab) + supp(ac) — supp(a) =0

4 a; b > supp(ab) + supp(bc) — supp(b) =1

5 a;c > supp(ac) + supp(bc) — supp(c) =0

6 b;c < supp(ab) + supp(ac) + supp(bc)

7 a; b;c —supp(a) — supp(b) — supp(c) + supp(?) = 1.

@ Springer

A. Koufakou et al.

Given database D and threshold o, the NDI algorithm produces the condensed represen-
tation NDIRep(D, o). The NDI representation contains only the non-derivable frequent sets
as defined below:

NDIRep(D, o) =gt {I CT|1€FI A LB(I) # UB(I))}.

The NDI algorithm uses Apriori-gen to generate candidate sets, and then prune infrequent
candidates. If a set is NDI, i.e. LB(I) # UB(I), the algorithm needs to count the support
of I; if it is found that supp(I) = LB(I) or supp(I) = UB(I), all strict supersets of /
are derivable and they can be pruned. The process terminates when candidate sets cannot be
generated further.

Several properties of the NDIs were presented in [8], which we briefly summarize below.

Monotocity: If I and J are itemsets, J C I, and J is derivable, then [is derivable.

[8, Theorem 3.1] Given itemsets /, J € Z and J C I. The interval width of 7 will be at
most half of the interval width of J:

UB(I)— LB(I) < % (UB(J) — LB(J)). 3)

Therefore, the NDI collection cannot be very large, because the width of support intervals,
UB(I) — LB(I), decreases exponentially with the cardinality of itemset /. Also, every set
I with cardinality larger than the logarithm of the size of database, i.e. [I| > log,(n) + 1,
must be derivable.

3.2.2 Motivation for outlier detection using NDIs

The motivation behind selecting NDIs for outlier detection is mainly to handle high-
dimensional categorical data in an efficient manner. As we see in Sect. 4, when detect-
ing outliers using Fls, we are scanning through a much larger number of sets than the ones
generated by the NDI algorithm. Also, the sets generated by traditional FIM methods are
much longer than the ones generated by NDI. It is shown in [8] that with certain datasets,
the number and length of frequent itemsets generated by the Apriori algorithm was so large
that the execution of the algorithm had to be terminated. Our experiments also support these
results (see Sect. 4).

What is more important is that using only NDIRep greatly speeds up the outlier detection
process, while not seriously impacting the accuracy of outlier detection. The reasons behind
this are based on the score in Sect. 3.1.1, as well as the NDI pruning process.

From Sect. 3.1.1, we know the following: (1) shorter sets are more important to the
FIODScore than longer sets; and (2) as a consequence of (1), sets longer than a user-entered
MAXLEN value can be ignored.

Regarding (1), both NDI and Apriori (or other FIM) algorithms generate almost identi-
cal sets of length 1 and length 2. Therefore, NDI preserves the shorter sets which are more
important to the score. The sets of length greater than 2 not maintained by NDI, i.e. the
frequent derivable sets, do not provide significant additional information when compared to
their subsets. In fact, as the o threshold decreases, most of the DIs, especially those of longer
length, are increasingly longer combinations of highly frequent items. This implies that it is
not necessary to continue adding the support information of every possible combination of
these items for the outlierness score, because it will be repeatedly adding the same support
number for most of the normal points.

With respect to (2), using MAXLEN also speeds up the algorithm. e.g. the collection of sets
with length less than 4 is also much smaller than all FIs that can be generated. Still, MAXLEN

@ Springer

Non-derivable itemsets for fast outlier detection

is another parameter that the user needs to set, whose value may vary for each dataset and
application. Even after using MAXLEN, the NDI collection is smaller than the FI collection
for MAXLEN > 2. Therefore, using NDI increases the performance of the algorithm, while,
at the same time, freeing the user from the responsibility of choosing an arbitrary value for
the maximum length of a set. We further experiment with this parameter in Sect. 4.3.

Another avenue is to use any CFI scheme, e.g. NDI or closed sets [23], to generate all FIs
and then proceed with outlier detection based on FIs. However, the issue we are addressing
is that a very large number of Fls is generated either way. In this case, if we used a CFI in
order to generate all Fls, the computation of the outlier scores for each point would still be a
very slow process. Therefore, it is imperative to use a representative set of FIs instead of all
FIs for the computation of our score.

On the other hand, other condensed representations could be used instead of NDIRep in
Eq. 1. Another successful and popular CFI is closed sets [23]. A closed set is a set with
support such that there is no superset with support equal to it [23]. This way, the closed
representation is a different collection than NDIRep. Although there are datasets for which
the closed representation is smaller than NDIRep, the former is not as straightforward as
the latter to use in Eq. 1. Mainly, the closed representation does not preserve the support
information of all single frequent values (items) or shorter itemsets in the data. That is
because the closure of a single-item set might be a longer set. For example, given two
itemsets, a and abcw, abcw might be the closure of a, so the closed representation only
contains abcw. However, as discussed in the previous section, shorter irregular or infre-
quent itemsets are more important to the outlier score than longer sets. Therefore, a score
function similar to Eq. 1, using the closed representation rather than NDIRep, is more likely
to assign similar scores to normal as to outlier points. This can be seen in the following
example.

Example 3.4 Given the five-point four-dimensional database, D, and o = 3/5, we have the
following collections:

1 abcd

2 abcw FI={a4,b4,c3,d3, ab:4,ac3, bc:3, abc:3}
3 abcz NDIRep ={a:4, b:4, c:3, d:3, ab:4, ac:3, bc:3}

4 abyd ClosedRep ={d:3, ab:4, abc:3}

5 ogxd

We see that, in this example, ClosedRep is smaller than NDIRep. Also, there is little differ-
ence between NDIRep and FZ. We note that this example is used to illustrate the suitability
of these CFlIs for the outlier detection score, and not their efficiency. As we see in Sect. 4,
there are significant performance gains from using NDIRep instead of FZ.

Given the above collections, the scores based on previous sections are as follows—
ClosedOD refers to Score in Eq. 1 using the frequent closed sets instead of NDIRep:

Point FIOD FNDIOD ClosedOD

1 20 19 6
2 17 16 3
3 17 16 3
4 13 13 5
5 3 3 3

According to the above computations, the FlI-based and NDI-based score maintain the
ordering of these five points. Using ClosedRep, the fifth point has the same score as the

@ Springer

A. Koufakou et al.

second and third points. However, the fifth point has only a single frequent item, d, and its
remaining values and their combinations are infrequent, so according to Sect. 3.1, it is more
likely to be an outlier than the rest of the points.

Therefore, as the NDI representation preserves more smaller sets and their support, it is
straightforward to apply to outlier detection. NDIRep also preserves those longer sets that
cannot be derived from their subsets, as they do provide new information for the outlier
score. Thus, NDI-based outlier detection provides a good trade-off between accuracy and
efficiency, which can also be seen in Sect. 4.

3.2.3 Outlier detection based on NDIRep: FNDI-OD

Given a database D and the NDIRep(D, o) set, we propose an algorithm named FNDI-OD
to find outliers as follows. For each data point in the database, X; = [x;1, ..., Xin], Wwe assign
an outlier score based on the itemsets in NDIRep(D, o) that are subsets of x;. Every time
an itemset in NDIRep(D, o) is found to be a subset of x;, we update the score of x; as
follows:

supp (1)

FNDIODScore(x;) = Z N

1Cx; A IeNDIRep

“

where / is a non-derivable frequent set, i.e. it belongs in NDIRep (instead of X, a frequent
set, in Eq. 1). Therefore, only those frequent sets in NDIRep are used to find outliers (thus
eliminating the need to use all frequent sets as previously with FI-OD). Finally, the algorithm
finds the k lowest scores and labels the respective data points as outliers, where k is a positive
integer provided as input. The pseudocode for FNDI-OD is in Algorithm 3.

3.2.4 Outlier detection based on the negative border of NDIRep: NBNDI-OD

As with NBFI-OD, we also propose an outlier detection method based on NDI infre-
quent sets. This method uses the sets that are generated and then pruned during the NDI
algorithm because they are infrequent. These sets are in the negative border of the NDI
tree:

B (NDI) =g {I ST |VJ C1I:J e NDIRep A1 ¢ NDIRep}

Notice that in the case of NDI, sets may be pruned because they are derivable or because
they are infrequent. Therefore, the NDIRep negative border contains even less sets than the
FI-negative border.

Input : D, k, o, MAXLEN
Output: k detected outliers

1 NDIRep = Get Frequent NDIs (D, o, MAXLEN);
2 FNDIODScorel|D|], outliers[k] := 0;

3 foreachx; € D,i < 0..ndo

4 foreach set I € NDIRep A1 C x; do

5 | | Update FNDIODScorelil;
6 | end
7 end

8 outliers[k] <— x; with min FNDIODScore;
Algorithm 3: FNDI-OD Pseudocode

@ Springer

Non-derivable itemsets for fast outlier detection

The pseudocode for the Negative Border NDI-OD, NBNDI-OD, is shown in Algorithm 4.
The score for NBNDI-OD is given in Eq. 5:

1
NBNDIODScore(x;) = > —)

ISx; A [€B~(NDI) supp() x 1|

3.3 Outlier detection based on approximation of NDIs
3.3.1 Non-almost derivable itemsets (NADIs)

NDIRep includes all frequent itemsets / such that UB(I) # LB(I). However, on closer
inspection, some of the NDIs have a small support interval, W (I) = UB(I) — LB(I). This
means that the lower and upper bound for the support of itemset / are very close. We may
also wish to eliminate such sets / with small W B(/), because the support of I is close to
being derivable from the supports of the subsets of I, X C 1.

In [28], given a user-defined error-tolerance threshold 4, an itemset / is Almost Derivable
(ADD) if UB(I) — LB(I) < §. Otherwise, [is called a non almost derivable itemset (NADI).
As shown in [28] if set X is an ADI and X C Y, Y is also ADI.

The NADIRep is the collection of all NADIs that are also frequent:

NADIRep(D, 0, 8) =aef {I €I |1 € FI A UB(I)— LB(I) < 8}

Property 3.1 If set J is non-almost derivable and |8x(J) — supp(J)| < §, where éx(J)
is the closest bound to supp(J), then set I O J is almost derivable (ADI).

Proof [8] observe the following: Given an itemset J such that J is a subset of /, and the
difference between the support bound of J, §x(J) and the actual support of J, supp(J) is
minimal across all such subsets J of /. Then, the difference between the closest bound of J
and the support of J actually defines the width of the support interval for set /:

16x (J) = supp(J)| = supp(XY) = UB(I) — LB(I).
Given that
16x(J) —supp(J)| <&
we have UB(I) — LB(I) < é and [is §-DI.]

This property implies that we stop generating sets after the estimated support, i.e. the
closest support bound, of a set J is within § of the actual support of set J.

Input :D, k, o, MAXLEN
Output: k detected outliers
1 B~ (NDI) = Get Negative Border of NDIRep(D, o, MAXLEN);
2 NBNDIODScore[|D|], outliers[k] := 0,
3 foreachx; € D,i < 0..ndo
4 foreach setd € B~ (NDI) Ad C x; do

5 | | Update NBNDIODScoreli];
6 | end
7 end

8 outliers[k] <— x; with max NBNDIODScore;
Algorithm 4: NBNDI-OD Pseudocode

@ Springer

A. Koufakou et al.

Table 2 Dataset details: number

5 .. Dataset Rows Columns Items Outlier %

of rows, columns, single distinct

items, percentage of outliers in BC 483 9 87 .00

the dataset ’
Mushroom 4,644 22 113 9.40
KDD1999-10 98,587 39 1,179 1.30
KDD1999-U2R 97,330 39 1,080 0.05
KDD1999-Entire 98,3550 39 1,542 1.10
pumsb 49,046 74 2,113 -
connect 67,557 43 129 -
Artif-500-50 500,000 50 1,750 -
USCensus1990 2,458,287 86 396 -

3.3.2 Outlier detection based on NADIRep: FNADI-OD

Finally, we propose to use all frequent NADIs instead of frequent NDIs to detect outliers. This
algorithm, called FNADI-OD, follows Algorithm 3 with the exception of using NADIRep
instead of NDIRep. The following equation displays the score for FNADI-OD:

supp(I)
1]

As shown in [28], the NADI representation contains a smaller number of sets than the NDI
representation. However, as the § value increases, the accuracy of the algorithm is expected
to drop. Since we are interested in detecting outliers and not extracting frequent sets, we
can allow larger & values than the ones presented in [28]. As we see in the next section, we
can expect similar accuracy to FNDI-OD with larger performance gains in the algorithm’s
efficiency.

FNADIODScore(x;) = > (©)

ICx;AN IeNADIRep

4 Experiments
4.1 Experimental setup

We conducted all experiments on a Pentium 2- GHz processor with 1 GB RAM. We used the
NDI code available online,' and implemented the rest in C++. Pruned sets (negative border)
are stored in a vector, while frequent sets are stored as in Goethals implementation. Also,
as we go over each point in D to compute FI/FNDI-OD scores, we only keep the frequent
values in each point and then search only for frequent values in the trie.

4.1.1 Datasets

All datasets were obtained from the UCI Repository [5] and the FIMI repository? (see Table 2
for a summary). The datasets that were selected had one or more of the following character-
istics: large number of rows; large number of attributes (columns); large number or distinct
items; and/or potential for generating large number of frequent sets (i.e. dense dataset).

1 http://www.adrem.ua.ac.be/goethals/software.
2 http://fimi.cs.helsinki.fi.

@ Springer

http://www.adrem.ua.ac.be/goethals/software
http://fimi.cs.helsinki.fi

Non-derivable itemsets for fast outlier detection

Wisconsin Breast Cancer (BC): The attributes in BC are computed from an image of a
fine needle aspirate (FNA) of a breast mass, and describe characteristics of the cell nuclei
(e.g. radius or texture). The original set contains 444 benign points and 212 malignant. As in
[21], to make the dataset more imbalanced, we kept every sixth malignant record, resulting
in 39 outliers (malignant), 444 non-outliers (benign).

Mushroom: This set represents samples for 23 species of gilled mushrooms. The set con-
tains 8,124 points and 22 categorical attributes. Mushrooms are poisonous (48.2%) or edible
(51.8%). To make the dataset more imbalanced, we kept every tenth poisonous record. The
final set contains 113 unique categorical values, 4,644 total points, and 436 outliers (poison-
ous) or 9.4% of new set.

KDD1999: This set represents connections to a military computer network and multiple
intrusions and attacks by unauthorized users. The raw binary TCP data were processed into
features such as connection duration, protocol type, etc. There are three available sets: train-
ing set, test set, and 10% of the training set. For our experiments, we used the 10% training
set and the entire training set. All KDD1999 sets contain 33 continuous attributes and 8
categorical attributes.

Due to the large number of attacks, we preprocessed the data such that attack points are
a small percentage of the data, and these points were chosen randomly from the collection
of attack points. Network traffic packets tend to occur in bursts for certain intrusions. While
we preserved the proportions of the various attacks in the data, we selected outlier points at
random without necessarily preserving the burst length. We followed [20,22] and detected
bursts of packets in the data. Our resulting 10% training set contains 98,587 points, 1,309
attacks; our resulting entire training set contains 983,550 rows and 10,769 attacks. We dis-
cretized continuous attributes using equal-width discretization (20 intervals) and removed 2
attributes that contained the same value for all records. Both resulting sets have 39 columns;
the 10% set has 1,179 distinct categorical values (single items) and the entire training set
has 1,542.

KDD1999 (U2R): We also performed experiments with a dataset identical to the KDD1999
10% training set except that the new set only contains attacks of type “U2R”. The resulting
dataset has 97,330 total points out of which 52 are attacks (of type “U2R”).

pumsb: This set is based on census data and it is a benchmark set for evaluating the perfor-
mance of FIM algorithms on dense datasets. One of its characteristics is the skewed support
distribution, e.g. 81.5% of the items in this set have support less than 1%, while 0.95% of
them have support greater than 90%. It contains 49,046 rows, 74 attributes, and 2,113 total
distinct items. The instances in this set are not labeled, and therefore we only performed
experiments to compare the runtime performance of all proposed algorithms.

Connect: This set contains all legal 8-ply positions in the game of connect-4 in which
neither player has won yet, and in which the next move is not forced. Connect is also a dense
dataset; it contains a total of 67,557 instances with 42 categorical attributes, and a total of
129 distinct items. This dataset does not contain labeled instances.

USCensus1990: This set is a discretized version of the USCensus1990 raw dataset. It
contains 2,458,287 data points and 68 categorical attributes. This dataset does not contain
labeled instances.

Artificial: We created an artificial dataset based on data generated with the categorical
data generator available online.’ We generated datasets with various numbers of rows (300,
100, 20K, etc.), 50 attributes, and various numbers of values per attribute. We combined the
resulting datasets into one dataset with 500 total rows, and 35 distinct values per column. This

3 http://www.cs.umb.edu/~dana/GAClust/index.html.

@ Springer

http://www.cs.umb.edu/~dana/GAClust/index.html

A. Koufakou et al.

dataset also does not contain labeled instances and is used to compare runtime performance
for the various algorithms in this paper.

4.1.2 Evaluation

We compare runtime performance of the algorithms using the same data. We also evaluate
the accuracy of outlier detection based on the following measures:

— Correct Detection rate (CD): ratio of the number of outliers correctly identified as outliers
over total number of outliers;

— False Alarm rate (FA): ratio of the number of normal points erroneously flagged as outliers
over total number of normal points.

4.2 Results

We ran several experiments with various values for support threshold, o, the desired number
of outliers, k, and the NADI parameter §. We used MAXLEN equal to 4 for all experiments
as in [20,22]. We discuss the effects of several parameter values and our algorithms in the
Discussion Sect. (4.3).

4.2.1 Detection accuracy results

Figure 2 contains the ROC curves for the Breast Cancer (BC), KDD1999-10 (all attacks and
U2R only), and Mushroom datasets. This figure displays the detection accuracy, CD, rates
versus the False Alarm, FA, rates as the number of target outliers k increases while the o is
kept constant.

As shown in Fig. 2a, we did not observe a difference in CD or FA rates for the Breast
Cancer Dataset between Fl-based OD and NDI-based OD. In this case (o0 = 10%), the
FNDI-OD and FI-OD have consistently better rates except for k equal to 40 where all meth-
ods have equal rates. Figure 2b shows that the FI- and FNDI-OD methods do better for lower
k values but eventually the NBFI- and NBNDI-OD methods have better CD rates for similar
FA values. For example, for k = 1,000, the CD (FA) rate for NBNDI-OD is 100% (13.4%)
versus 98.2% (13.6%) for NBFI-OD, 81.2% (15.4%) for FNDI-OD, and 82.6% (15.2%) for
FI-OD.

Figure 2c—d contain results for the average detection accuracy for the KDD1999 datasets
based on bursts of attacks that were correctly detected. Essentially, if we detect one point in
a burst of packets as an outlier, we mark all points in the burst as outliers and we count the
burst as detected, similar to [22]. In Fig. 2c—d, the negative border (NB) methods have the
same detection accuracy rates; for the KDD1999-10 dataset with all of the attacks, the NB
methods perform better than the FI/FNDI-based methods, while for the dataset with only the
U2R attacks, FI-OD has better rates but eventually the accuracy rates are the same for higher
k values.

Table 3 contains the CD and FA results on the Mushroom and KDD1999-10 datasets for
various o values while the target outlier number k is constant. From Table 3a, NDI-based
methods have better rates than FI-based methods for the Mushroom set for all o values except
for 50% when they are equal. The best accuracy, 93.3% is obtained for o equal to 2%, by the
NBNDI-OD method.

Table 3b also contains the average detection accuracy for KDD1999-10 based on bursts
of attacks for various o values. From Table 3b, the methods based on the infrequent sets

@ Springer

Non-derivable itemsets for fast outlier detection

1
0.85
[a)
O
) i —— NBNDI-OD
077 +- NBFI-OD
- FNDI/FI-OD —=— FI-OD
0
0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.02 0.04 0.06 0.08 0.1 0.12 0.14
FA FA
(a) BC (o =10%) (b) Mushroom (o = 2%)
0.9 0.8
0.75
3 8 06
0.6 . ——Fi-0D 1 “o~ NBNDUNBFI-OD
—e— NBNDI/NBFI-OD * —&= FI-OD
- FNDI-OD - FNDI-OD
0.4
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
FA FA
(¢) KDD1999-10 (0 = 97%) (d) KDD1999-U2R (o = 95%)

Fig. 2 ROC curves for FNDI-OD, FI-OD, NBFI-OD, and NBNDI-OD as k increases (MAXLEN = 4)

perform consistently better than the frequent set methods. Specifically, the NBNDI-OD and
NBFI-OD have 80.5% accuracy with 4% false alarm rate. It is important to note that these
algorithms detected all 22 types of attacks in the KDD1999-10 set, so the overall attack
detection accuracy is 100% for NBNDI-OD and NBFI-OD. Also, we notice that FI-OD
fares better than FNDI-OD for o < 95%; however, both methods detect the same 20 out of
22 attacks so they have a total of 91% accuracy w.r.t. attacks.

Overall, the infrequent-based methods, NBNDI-OD and NBFI-OD do better than the
methods that use frequent sets for scoring, i.e. FNDI-OD and FI-OD. Also, except for the
KDD1999-10 set, all methods have better accuracy for lower o values. Section 4.3 contains
a discussion regarding these results.

4.2.2 Runtime results

The performance advantage of the NDI-based technique versus the FI-based OD with respect
to running time and generated sets is apparent in Tables 4 and 5. These Tables respectively
contain the total generated sets for each algorithm (NDIs and Fls), sets on the negative bor-
ders (B~ (F1I) and B~ (NDI)), and the time in seconds for NDI-based OD and FI-based
OD for each of the two phases of the OD algorithms, for various o values. The user-entered
parameter k has a negligible effect on the runtime performance as shown in [21]. The two

@ Springer

A. Koufakou et al.

Table 3 Comparison of correct detection (False Alarm) rates of FNDI-OD, FI-OD, NBNDI-OD, and
NBFI-OD

% ENDI-OD FI-OD NBNDI-OD NBFI-OD
CD (FA) CD (FA) CD (FA) CD (FA)

(a) Mushroom (k = 700; actual outliers: 392)

50 72.0 (9.2) 72.0 9.2) 57.1(10.7) 57.1(10.7)
20 76.1 (8.8) 75.0 (8.9) 38.8 (12.6) 25.2 (14.0)
15 76.4 (8.7) 75.0 (8.9) 63.3 (10.1) 49.3 (11.5)
10 76.8 (8.7) 76.1 (8.8) 54.1(11.0) 31.2(13.4)
5 77.3 (8.6) 76.8 (8.7) 89.0 (7.4) 73.2(9.1)
2 77.3 (8.6) 77.1 (8.7) 93.3 (7.0) 89.0 (7.4)
(b) KDD1999-10 (k = 5,000; actual outliers: 1,309)

99.4 70.1 (4.5) 70.1 (4.5) 80.5 (4.3) 80.5 (4.3)
97 71.1 (4.4) 71.1 (4.4) 80.5 (4.3) 80.5 (4.3)
95 59.0 (4.4) 70.6 (4.3) 80.5 (4.3) 80.5 (4.3)
90 32.8 (4.5) 35.7 (4.5) 80.5 (4.3) 80.5 4.3)
75 22.3 (4.5) 26.8 (4.6) 80.5 (4.3) 80.5 4.3)
50 25.3 (4.5) 31.0 4.5) 80.5 (4.3) 80.5 4.3)
10 259 (4.5) - 80.5 (4.3) 80.5 (4.3)

Better rates are in bold

phases are (1) mining the sets (frequent sets for FIM-OD, and NDIs for NDI-OD), and (2)
computing the outlier score for each data point to detect the outliers.

In Table 4, the Mushroom dataset reveals the potential for high number of Fls; e.g. for
o = 5%, there are 9,069 NDIs versus 44,741 FIs. This is after we set MAXLEN to 4. FNDI-OD
takes 10s for the Mushroom set (o = 5%), while FI-OD takes 38 s for the same task.

The situation is exacerbated for the KDD1999 sets (see Table 5), mostly due to the large
number of data points, single items, and high dimensionality. For o equal to 90%, FNDI-OD
took 4 min to detect the outliers in the KDD1999-10 dataset, while FI-OD needed 40 min to
accomplish the same task. This is because NDI generated only 177 non-derivable frequent
sets versus the 1,486 frequent sets generated by Apriori. Moreover, the methods using the
infrequent pruned sets (NBNDI-OD and NBFI-OD) are much faster than the FI-based ones.
For the same o value, NBNDI-OD takes less than 3 min and NBFI-OD takes 5 min. Also, as o
decreases, the advantage of using NBNDI-OD over NBFI-OD becomes larger. For example,
for 0 = 10%, NBFI-OD takes 13 min versus 4 min for NBNDI-OD. Also, for o = 10%,
FI-OD generates more than 110 thousand sets, and its execution was terminated.

The results for the pumsb dataset show that the NDI sets might also face challenges for
low support values (see Table 4). For example, for 0 = 10%, there are more than a million
NDIs and more than two million FIs. Furthermore, we had to stop execution of FI- and
FNDI-OD for o equal to 30%, while the NB-based methods had relatively acceptable perfor-
mance. Overall, this type of situation shows the benefit of using an approximate representation
such as NADISs (related results for FNADI-OD are shown in Sect. 4.3.3).

Figure 3 contains an illustration of the runtime performance for FI- and NDI-based algo-
rithms using the Mushroom, KDD1999-Entire, pumsb, and UCSensus1990 datasets. This
figure shows the performance of FI-OD decreases much faster than FNDI-OD. Finally, Fig. 4
illustrates the generated sets for each of the algorithms for the Mushroom, KDD1999-Entire,

@ Springer

Non-derivable itemsets for fast outlier detection

Table 4 Size comparison between NDI, FI, negative border of NDI, and negative border of FI

Dataset o % NDIs FIs B~ (NDI) B~ (FI)
Mushroom 50 122 535 123 140
Mushroom 20 1,156 5,323 487 729
Mushroom 15 2,068 9,402 765 1,125
Mushroom 10 3,846 18,255 1,323 1,968
Mushroom 5 9,069 44,741 3,004 4,242
Mushroom 2 21,217 115,725 7,187 8,856
KDD1999-10 99.4 177 1,486 1,172 1,244
KDD1999-10 97 459 5,898 1,159 1,191
KDD1999-10 90 1,499 19,628 1,154 1,263
KDD1999-10 75 2,750 29,635 1,156 1,156
KDD1999-10 50 6,518 62,814 1,161 1,190
KDD1999-10 10 13,541 110,955 1,230 1,348
KDD1999-Entire 99 339 3,163 1,534 1,538
KDD1999-Entire 97 672 5,970 1,535 1,540
KDD1999-Entire 90 2,525 19,665 1,556 1,589
KDD1999-Entire 75 4,456 29,635 1,519 1,519
pumsb 75 5,008 12,743 2,130 2,696
pumsb 50 31,286 76,959 2,546 6,542
pumsb 30 200,238 411,819 4,831 19,421
pumsb 10 1,142,137 2,362,314 27,864 73,123
connect 90 199 3,476 141 272
connect 80 348 11,403 199 496
connect 50 1,397 49,039 382 1,275
connect 20 7,574 172,434 2,278 4,966
connect 10 28,799 343,839 7,155 9,217
USCensus1990 95 177 194 506 506
USCensus1990 90 1,727 1,857 872 876
USCensus1990 80 7,386 9,619 1,118 1,119
Artif-500-50 15 150,036 164,226 1,935 1,935
Artif-500-50 10 221,441 240,361 2,160 2,160
Artif-500-50 5 971,616 1,061,486 29,935 29,935

pumsb, connect, UCSensus1990, and Artif-500-50 datasets. This figure shows that for some
datasets the negative border of FIs is almost identical to NDIs, such as the KDD1999, USCen-
sus1990, and Artif-500-50 datasets. This is not the case for the dense datasets, such as pumsb
and connect datasets: for example, for the pumsb set and ¢ equal to 10%, the compression
ratio of B~ (NDI) +~ B~ (F1I) is 38%.

4.3 Discussion
4.3.1 Performance of OD phases

From Table 5, it is apparent that most of the time of outlier detection is spent in the second
phase, i.e. to compute the scores and detect outliers. A good example is the KDD1999-10

@ Springer

A. Koufakou et al.

Table 5 Runtime performance for NDI- versus FI-based methods

Dataset o% FNDI-OD FI-OD NBNDI-OD NBFI-OD
Mushroom 50 1/1 172 1/1 1/1
Mushroom 20 173 1/13 173 1/4
Mushroom 15 1/4 1717 1/4 1/6
Mushroom 10 1/7 2/24 1/7 2/11
Mushroom 5 1/9 3/35 1717 3/26
Mushroom 2 2/12 6/45 2/42 6/52
KDD1999-10 99.4 9/24 23/216 9/136 32/164
KDD1999-10 97 14/60 46/675 15/158 54/146
KDD1999-10 90 25/239 134/2,309 25/135 145/172
KDD1999-10 75 33/436 189/3,220 33/133 192/136
KDD1999-10 50 53/905 459/5,711 53/134 490/145
KDD1999-10 10 97/1,225 - 67/146 631/174
KDD1999-Entire 99 136/500 332/4,016 139/2,086 329/1,730
KDD1999-Entire 97 163/992 522/- 162/1,729 512/1,737
KDD1999-Entire 90 317/4,153 1,373/- 314/1,792 1,335/1,868
KDD1999-Entire 75 455/6,959 1,927/- 443/1,698 1,875/1,697
pumsb 75 49/699 27/344 29/192 49/290
pumsb 50 277/3,879 100/2,059 95/238 280/824
pumsb 30 - - 545/494 1,050/2,345
pumsb 10 - - 1,570/2,586 -

connect 90 23/327 4/12 4/15 23/36
connect 80 55/968 5/17 5/23 55/70
connect 50 213/3,049 11/72 10/44 209/174
connect 20 545/6,304 24/228 23/251 546/598
connect 10 743/— 43/522 44/779 758/1,026
USCensus1990 95 531/1,067 571/1174 561/2,662 534/2,329
USCensus1990 90 77711,244 848/7786 786/5,167 840/5,160
USCensus1990 80 1,605/— 1,979/- 1,601/6,724 1,931/6,682
Artif-500-50 15 2911/~ 3,173/- 2,906/1,263 3,168/1,221
Artif-500-50 10 - - 3,778/1,374 4,141/1,330
Artif-500-50 5 - - 6,327/19,966 7,245/19,254

Time is shown in seconds as time for Phase 1 (Set mining)/Time for phase 2 (Outlier Scoring)

set (o0 = 75%), where the second Phase of FI-OD takes 53 min versus 7 min for FNDI-OD.
In contrast, FNDI-OD Phase 1 takes 33 s, versus 3min for FI-OD Phase 1. As o decreases,
Phase 2 becomes increasingly slower for the frequent set-based methods, FNDI-OD and
FI-OD. This is due to the increasingly larger number of sets that have to be compared against
every single data point (row). The algorithms based on the negative border sets have usually
much faster second phase because the NB sets are overall less, thus the comparisons for each
point against all NB sets takes less time. For the KDD1999-10 set, we also observe that the
number of pruned sets increases slowly as the o becomes smaller, which is not true for the

Mushroom set.

@ Springer

Non-derivable itemsets for fast outlier detection

60 - 8000
x- FNDI-OD x - FNDI-OD
50 —=— FI-OD 7000 —&— FI-OD
—— NBNDI-OD —o— NBNDI-OD
+- NBFI-OD 6000} . NBFI-OD
g ¥ S 5000
3 R
=~ 30 = 4000
£ £
= 20 3000 -
2000 | ™~
10 10001 -
0 0
50 20 15 10 5 2 99 97 90 75
(¢ (¢
(a) Mushroom (b) KDD1999-Entire
4500 9000
x. FNDI-OD
4000 | - FI-OD
3500 —e— NBNDI-OD - 8000
+- NBFI-OD 7000
S 3000 ‘ B
2 2500 & 6000
[0] (0]
£ 2000 £ 5000
F 4500 = 4000
: x - FNDI-OD
1000 3000f —= FI-OD
—e— NBNDI-OD
500 2000 }f +- NBFI-OD
0
75 50 30 10 95 90 80
[¢) [¢)
(¢) pumsb (d) USCensus1990

Fig. 3 Runtime performance for FI-OD, FNDI-OD, NBNDI-OD, NBFI-OD as o decreases (MAXLEN = 4)

4.3.2 Restricting the length of generated sets (MAXLEN)

From Table 4, for the KDD1999-10 set (o = 99.4%), FIs with length less than 5 are 1,486
versus a total of 177 NDIs (which is the total NDIs, maximum length of 3). As we can also see
in Fig. 3, even with restricting the set length, the FI-OD is still much slower than FNDI-OD
as it generates many more sets as o decreases.

In general, the number of NDI sets generated in total are only slightly larger than the
number of NDIs with length less than 5. In contrast, Apriori continues to generate many
long derivable itemsets, while NDI prunes these sets and stops at smaller lengths. Therefore,
FI-based methods benefit much more from using the MAXLEN restriction than NDI-based
OD. However, even with using MAXLEN, Fl-based outlier detection methods are still much
slower than NDI-based OD as is also shown in Fig. 3.

In addition, the accuracy of the outlier detection methods may vary depending on the choice
of a specific MAXLEN value. For example, Fig. 5 depicts the accuracy rates for NBNDI-OD
versus NBFI-OD for the Mushroom set and various MAXLEN values, and two o values, 2
and 5%. The best accuracy rates for both algorithms happen in this case for MAXLEN equal
to 3. However, the CD rate drops significantly for MAXLEN > 4 for NBFI-OD while it stays
the same for NBNDI-OD. This is because the FI-based methods create many more Fls of
longer length that are added to the score, and the difference between outlier score values
and normal point score values becomes smaller. This means that the NDI-based methods
alleviate the need to choose a suitable MAXLEN value for a specific dataset and application.

@ Springer

A. Koufakou et al.

X

4

10

5
45 x- FNDI-OD
: —e— FI-OD
41 — NBNDI-OD
,g 35 + NBFI-OD
n
8 3
-§ 25
o 2
g 15
L
1 .
0.5 J
0 at
50 20 15 10 5 2
c
(a) Mushroom
5
35 x 10
- FNDI-OD
3} —= Fl-oD
—o— NBNDI-OD
@ NBFI-OD
2 25 *
w
T 2
2
©
S 15
&
o 1
0.5
: e
0 N
75 50 30 10
c
(¢) pumsb
10000
9000 x- FNDI-OD
—=— FI-OD
8000 | —o— NBNDI-OD
% 7000 ~+ NBFI-OD
w
8 6000
-§ 5000
@ 4000
3
15 3000
2000
1000
0
95 90 80

c
(e) USCensus1990

Generated Sets Generated Sets

Generated Sets

4

3 x 10
«- ENDI-OD
—=— FI-OD
25 o NBNDI-OD
+ NBFI-OD
2
1.5
1
0.5
0 bt
99 97 90 75
c
(b) KDD1999-Entire
x10*
3.5 x- FNDI-OD
—=— FI-OD
3 —e— NBNDI-OD
+ NBFI-OD
2.5
2
15
1
90 80 50 20 10
c
(d) connect
x10°
" FNDI-OD
101 = Fop
9} - NBNDI-OD
8 + NBFI-OD
7
6
5
4
3
2
1
0]
15 10 5
c

(f) Artif-500-50

Fig. 4 Generated sets for FI-OD, FNDI-OD, NBNDI-OD, NBFI-OD as o decreases (MAXLEN = 4)

The NDI-based OD methods do so also by relying on a much smaller collection of sets than
the set of FIs. We also note that for MAXLEN = 3 and 0 = 5%, there are 9,076 FIs and
5,105 NDIs, so NDI is still almost half of the FI collection even for lower MAXLEN values.

4.3.3 Impact of § on accuracy and runtime

Table 6a contains accuracy and runtime results for FNADI-OD with several § values ver-
sus FI-OD/FNDI-OD for the Mushroom set and o equal to 2%. FNADI-OD has similar

@ Springer

Non-derivable itemsets for fast outlier detection

Fig. 5 Effect of MAXLEN on the 100
correct detection rates for
NBNDI-OD versus NBFI-OD for
the mushroom set and two o
values

—x— NBNDI-OD 5%
i .| ® NBFI-OD 5%
501 / a| - o - NBNDI-OD 2%
—+— NBFI-OD 2%

MAXLEN

Table 6 Comparison of Correct Detection (False Alarm) rates, generated sets, and runtime performance in
seconds for FI-OD, FNDI-OD, and FNADI-OD

Algorithm) CD (FA) Sets Runtime

(a) Mushroom (k = 700, o0 = 2%; actual outliers: 436)

FI-OD - 77.1(8.7) 115,725 51.1
ENDI-OD - 77.3 (8.6) 21,217 14.2
FNADI-OD 2% 77.5 (8.6) 8,626 6.5
FNADI-OD 5% 77.5 (8.6) 3,659 3.2
FNADI-OD 10% 77.3 (8.6) 1,241 1.4
FNADI-OD 20% 76.1 (8.8) 441 0.8
(b) KDD1999-10 (k = 5,000, 0 = 97%; actual outliers: 1,309)
FI-OD - 71.1 (4.4) 5,898 721
FNDI-OD - 71.1 (4.4) 459 74
FNADI-OD 0.02% 71.1 (4.4) 146 24
FNADI-OD 0.05% 71.1 (4.4) 116 21
FNADI-OD 0.10% 71.1 (4.4) 59 18
FNADI-OD 0.15% 61.6 (4.4) 49 12

accuracy to FNDI-OD for § less than 20%. For example, for § equal to 10%, FNADI-OD
achieves slightly better accuracy than FNDI-OD (and better accuracy than FI-OD). It does
so while generating only 1,241 sets and finishing execution in slightly over 1s versus 8,626
NDIs (14s) and 115,725 FIs (51's). Accuracy (correct detection) results for FNADI-OD and
FNDI-OD for the Mushroom set are shown in Fig. 6 for various § and o values (6 = 0O reflects
FNDI-OD). As seen in this figure, the accuracy of FNADI-OD is very close to FNDI-OD for
most combinations of the parameter values.

Table 6b compares FNADI-OD with FNDI-OD/FI-OD for the KDD1999-10 set and
0 = 97%. FNADI achieves the same accuracy as FNDI-OD and FI-OD for § less than
0.15% (or 150). However, for § equal to 0.1%, FNADI-OD takes 18 s to finish the task, while
FNDI-OD takes 74 s, and FI-OD takes more than 12 min. These results indicate that FNA-
DI-OD closely approximates the performance of FNDI-OD, for a range of § values, while
using a smaller number of sets, and thus offers higher runtime performance gains.

@ Springer

A. Koufakou et al.

Fig. 6 Correct detection for 78 — T T T T
FNADI-OD versus FNDI-OD for A - +-0=10%
the mushroom set and various § et Tl N —e— 6=2%
values (8 = 0 implies FNDI-OD) 751 -0~ 6=5% | 1
¢ 6=20%
77+]
a
®)
76.5 1
76 S
\\ o
\§
75.5 " " " " N
0o 2 5 10 20

Table 7 Comparison of generated sets and runtime performance in seconds for FNDI-OD, and FNADI-OD
-§ is a percent of the number of data rows

Dataset % Algorithm) Sets Runtime
pumsb 10 FNDI-OD - 1,142,137 -
pumsb 10 FNADI-OD 1 66,729 2,094
pumsb 10 FNADI-OD 2 31,857 1,051
pumsb 10 FNADI-OD 5 11,814 409
pumsb 10 FNADI-OD 10 6,381 169
pumsb 10 FNADI-OD 20 2,728 52
KDD1999-Entire 75 FNDI-OD - 4,456 2,141
KDD1999-Entire 75 FNADI-OD 0.005 861 1,551
KDD1999-Entire 75 FNADI-OD 0.010 705 1,038
KDD1999-Entire 75 FNADI-OD 0.020 553 774
KDD1999-Entire 75 FNADI-OD 0.100 275 420
KDD1999-Entire 75 FNADI-OD 0.200 229 323
KDD1999-Entire 75 FNADI-OD 0.500 118 225
Artif-500-50 10 FNDI-OD - 221,441 -
Artif-500-50 10 FNADI-OD 0.3 19,250 2726
Artif-500-50 10 FNADI-OD 1 1,276 343
USCensus1990 80 FNDI-OD - 7,386 -
USCensus1990 80 FNADI-OD 0.004 2,307 9,829
USCensus1990 80 FNADI-OD 0.04 991 3,868
USCensus1990 80 FNADI-OD 0.2 396 2,021
USCensus1990 80 FNADI-OD 0.4 301 1,157

Table 7 compares generated sets and runtime for the pumsb, KDD1999-Entire, Artif-500-
50, and UCencus1990 datasets. A pictorial representation of these results is shown in Fig. 7.
As shown in Table 7 and Fig. 7, small values of § have a large impact on the runtime of the
algorithm. For example, for the pumsb set and § = 5%, FNADI-OD has 11,814 sets versus
more than 1.1 million NDI sets; moreover, we had to stop the execution of FNDI-OD due

@ Springer

Non-derivable itemsets for fast outlier detection

15 25 x10
0
Q 2
2
g " 2 15
3 a
;_)/ =z
g T
= g
2 o5
[0}
©)
0 0
0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20
d 8
(a) Mushroom Runtime (b) Mushroom Sets (o = 2%)
2200 4500
2000 © 4000
1800 2 3500
1600 <
%’: 1400 E 3000
) 2 2500
; 1200 z 2000
£ 1000 3
= 800 ®© 1500
600 2 1000
5
400 G 500
200 0
0 0.050.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 0.050.1 0.150.2 0.25 0.3 0.35 0.4 0.450.5
8 8
(¢) KDD1999-Entire Runtime (d) KDD1999-Entire Sets (o = 75%)
5
|
2500 12 x10
2 10
[a]
2000 <Z(
— 8
o)
8 1500 a
; Z 6
£ 1000 B
= g 4
o
500 G:.) 5
O]
0 0
0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20
S 8
(e¢) pumsb Runtime (f) pumsb Sets (o = 10%)
10000 8000
9000 g 7000
8000 <Z(6000
S 7000 D
3 2 5000
©» 6000 %
2 5000 Z 4000
@
= 4000 5 3000
3000 2 2000
2000 & 1000
1000 0
0 0.05 01 0.15 0.2 0.25 0.3 0.35 0.4 0 0.05 01 0.15 0.2 0.25 0.3 0.35 0.4
é 8
(g) USCensus1990 Runtime (h) USCensus1990 Sets (o = 80%)

Fig. 7 Comparison of runtime and generated NADIs vs. NDI as § increases (sets shown for § = 0 are NDIs;
8 shown as a percent of number of rows in the dataset)

@ Springer

A. Koufakou et al.

to the amount of time it took to run, while FNADI-OD took about 7 min to run for the same
parameter values.

For the Artif-500-50 set and o = 10%, there are 221,441 NDIs, 240,361 FIs, and 2,160
sets on the negative border of FI or NDI (see Table 4), while there are only 1,276 NADI sets
for § = 1% (see Table 7). Furthermore, FNADI-OD takes 5 min to finish versus 86 min for
NBNDI-OD. The large difference in runtime is the fact that the Artif-500-50 set has a large
number of rows (500 thousand), and that the sets on the negative border are saved in a vector
instead of the tree structure of the NADIs.

4.3.4 NB-based versus FI-based outlier detection

From Table 3, the NB-based methods seem to have better accuracy than the corresponding
FI-based methods. Our assumption is that outliers contain some irregular or infrequent char-
acteristics or values. FI-based scores cannot include these irregular values for high o values
as only the frequent values of a data point are included in its FI-based score. However, we
may face a dataset where certain values exist in 90-99% of the points. As almost all points
contain these values and their combinations, the FI-based score has no way of distinguishing
outliers from normal points for o = 90%. This is in fact what happens for the Mushroom set
for a high o value.

On the other hand, when o is low, the FI-based score includes irregular values. However,
it also includes many of the normal or frequent values. E.g. for 0 = 10%, sets with 10%
frequency are added to the score as well as sets with 90% frequency. This decrease in the o
value might lead to an increase in accuracy as for the Mushroom set (see Table 3a). At the
same time, the number of FIs that we need to compare with each point becomes much larger
that makes the second phase of the algorithm much slower as seen in Table 5. The NB-based
methods for low o values capture the irregularity of the outliers in the score which leads to
better accuracy, usually with the added benefit of a much faster second phase.

The NDI-based method, NBNDI-OD, ensures that the negative border remains relatively
small even without the MAXLEN restriction. Also, the accuracy rates achieved by NBNDI-OD
do not fluctuate for different MAXLEN values as is the case with NBFI-OD and the Mushroom
data (see Fig. 5).

4.3.5 Which o works best for a given dataset?

Our main assumption is that outlier points are a small percentage of the dataset D. Therefore,
in order for the outlier score to capture the irregularity of the values in the outlier points
and successfully detect the outliers we must use a small o value. This is apparent for the
Mushroom data, where better accuracy rates are achieved as o decreases (see Table 3a) for all
methods. In fact, the NB-based methods achieve a much higher accuracy rate for o < 10%.
For higher o values, there are many frequent single values whose combinations are still fre-
quent, a known characteristic of a dense dataset. Therefore, the NB-methods do not capture
enough infrequent or irregular characteristics of a point to distinguish the normal from the
outlier points.

However for the KDD dataset, the NBFI and NBNDI methods have the same accuracy for
all o values we tested. The reason for this is that the values in the KDD1999-10 dataset are
either very frequent or very infrequent as shown in Table 8. A similar number of single values
are found infrequent whether o is equal to 90 or 10%. The negative border of FIs/NDIs also
stays relatively the same for different o values as shown in Table 4, thus the accuracy rates
remain the same for different o values.

@ Springer

Non-derivable itemsets for fast outlier detection

Table 8 Frequency of distinct values (items) in mushroom and KDD1999-10 sets

Item frequency range% Mushroom KDD1999-10

Number of items % Number of items %
[90-100] 3 2 27
[50-100] 14 12 36
[20-100] 34 30 40
(0-10] 63 56 1,135 96
(0-1] 15 13 1,020 86
Total items 113 1,179

5 Conclusions

Recently, outlier detection techniques were proposed for categorical and mixed-attribute
datasets [16,20,22] based on Frequent Itemset Mining (FIM) [2]. These methods aim to
extract all frequent sets, or common patterns, in the data and then identify as outliers the
points that contain few of these patterns. Even though these methods have been shown to
perform well, they face significant challenges for large high-dimensional data where a large
number of frequent sets is generated. In this paper, we use Non-Derivable Itemsets (NDI), a
condensed representation of FIs presented in [8], in order to detect outliers more efficiently.
The NDI-based outlier detection method employs only the non-derivable frequent sets, or
NDIs, contained in a point to compute an anomaly score for the point. We also propose an
outlier detection method using a §-based approximate NDI collection, Non-Almost Derivable
Itemsets (NADIs) [28].

Specifically, we propose outlier detection schemes based on frequent NDI sets (FNDI-
OD), based on the negative border of Frequent NDIs (NBNDI-OD), and based on frequent
Non-Almost Derivable Sets (FNADI-OD). Our experiments show that the NDI-based meth-
ods present significant runtime advantages compared to their FI-based counterparts. The
runtime advantage of NDIs is still apparent even after a user-entered MAXLEN parameter is
used to restrict the length of generated FIs as in [22]. Overall, FNDI-OD has similar accuracy
and false alarm rates compared to FI-OD, while NBNDI-OD achieves the best rates for lower
o values. Moreover, the accuracy of FI-based methods can vary widely based on the choice
of the MAXLEN value, which is not an issue for NDI-based methods. On the other hand, the
approximate method, FNADI-OD, is faster than FNDI-OD, remains feasible for dense data
and low o values, and exhibits accuracy very close to the one achieved by FNDI-OD for a
range of § values.

Future research includes extending our ideas for data with both categorical and continuous
attributes, and for distributed datasets.

Acknowledgments This work was supported in part by NSF grants: 0341601, 0647018, 0717674, 0717680,
0647120, 0525429, 0806931, 0837332.

References

1. Aggarwal C, Yu P (2001) Outlier detection for high dimensional data. ACM SIGMOD Record 30(2):
37-46

2. Agrawal R, Srikant R (1994) Fast algorithms for mining association rules in large databases. In: Proceed-
ings int’l conference on very large data bases, pp 487-499

@ Springer

A. Koufakou et al.

20.

21.

22.
23.
24.
25.
26.
27.
28.
29.

30.

Barnett V (1978) Outliers in statistical data. John Wiley and Sons, New York

Bay S, Schwabacher M (2003) Mining distance-based outliers in near linear time with randomization and
a simple pruning rule. In: Proceedings ACM SIGKDD int’l conference on knowledge discovery and data
mining, pp 29-38

Blake C, Merz C (1998) UCI Repository of machine learning databases. http:/archive.ics.uci.edu
(Accessed Sep 2008)

Boley M, Grosskreutz H (2009) Approximating the number of frequent sets in dense data. Knowl Inf
Syst 21(1):65-89

Breunig M, Kriegel H, Ng R, Sander J (2000) LOF: identifying density-based local outliers. ACM SIG-
MOD Record 29(2):93-104

Calders T, Goethals B (2007) Non-derivable itemset mining. Data Min Knowl Discov 14(1):171-206
Calders T, Rigotti C, Boulicaut J (2004) A survey on condensed representations for frequent sets. LNCS
Constraint-Based Min Inductive Databases 3848:64—80

Dokas P, Ertoz L, Kumar V, Lazarevic A, Srivastava J, Tan P (2002) Data mining for network intrusion
detection. In: Proceedings NSF workshop on next generation data mining, pp 21-30

. Fan H, Zaiane O, Foss A, Wu J (2009) Resolution-based outlier factor: detecting the top-n most outlying

data points in engineering data. Knowl Inf Syst 19(1):31-51

Ganter B, Wille R (1999) Formal concept analysis. Springer, Berlin

Hawkins D (1980) Identification of outliers. Chapman and Hall, London

Hays C (2004) What Wal-Mart knows about customers habits. The New York Times

He Z, Deng S, Xu X, Huang J (2006) A fast greedy algorithm for outlier mining. In: Proceedings Pacific-
Asia conference on knowledge and data discovery, pp 567-576

He Z, Xu X, Huang J, Deng S (2005) FP-Outlier: frequent pattern based outlier detection. Comp Sci Inf
Syst 2(1):103-118

Jea K, Chang M (2008) Discovering frequent itemsets by support approximation and itemset clustering.
Data Knowl Eng 65(1):90-107

Knorr E, Ng R, Tucakov V (2000) Distance-based outliers: algorithms and applications. Int’l1J Very Large
Data Bases VLDB 8(3):237-253

Koufakou A, Georgiopoulos M (2010) A fast outlier detection strategy for distributed high-dimensional
data sets with mixed attributes. Data Min Knowl Discov 20(2):259-289

Koufakou A, Georgiopoulos M, Anagnostopoulos G (2008) Detecting outliers in high-dimensional data-
sets with mixed attributes. In: Int’l conference on data mining DMIN, pp 427-433

Koufakou A, Ortiz E, Georgiopoulos M, Anagnostopoulos G, Reynolds K (2007) A scalable and efficient
outlier detection strategy for categorical data. In: IEEE int’1 conference on tools with artificial intelligence
ICTALI, pp 210-217

Otey M, Ghoting A, Parthasarathy S (2006) Fast distributed outlier detection in mixed-attribute data sets.
Data Min Knowl Discov 12(2):203-228

Pasquier N., Bastide Y, Taouil R, Lakhal L (1999) Discovering frequent closed itemsets for association
rules. In: Proceedings 7th Int’l conference on database theory ICDT, pp 398-416

Tax D, Duin R (2004) Support vector data description. Mach Learn 54(1):45-66

Wang J, Karypis G (2006) On efficiently summarizing categorical databases. Knowl Inf Syst 9(1):19-37
Wu X, Kumar V, Ross Quinlan J, Ghosh J, Yang Q, Motoda H, McLachlan G, Ng A, Liu B, Yu P, Zhou Z,
Steinbach M, Hand D, Steinberg D (2008) Top 10 algorithms in data mining. Knowl Inf Syst 14(1):1-37
Xiong H, Pandey G, Steinbach M, Kumar V (2006) Enhancing data analysis with noise removal. IEEE
Trans Knowl Data Eng 18(3):304-319

Yang X, Wang Z, Bing L, Shouzhi Z, Wei W, Bole S (2005) Non-almost-derivable frequent itemsets
mining. In: Proceedings int’l conference on computer and information technology, pp 157-161

Yankov D, Keogh E, Rebbapragada U (2008) Disk aware discord discovery: finding unusual time series
in terabyte sized datasets. Knowl Inf Syst 17(2):241-262

Zaki M, Hsiao C (2005) Efficient algorithms for mining closed itemsets and their lattice structure. IEEE
Trans Knowl Data Eng 17(4):462-478

@ Springer

http://archive.ics.uci.edu

Non-derivable itemsets for fast outlier detection

Author Biographies

Anna Koufakou received a B.Sc. in Computer Informatics at the
Athens University of Economics and Business in Athens, Greece,
in 1997, and a M.Sc. and a Ph.D. in Computer Engineering at the
University of Central Florida, Orlando, Florida, in 2000 and 2009,
respectively. Her research interests include Mining of Large Data Sets,
Distributed Data Mining, Outlier Detection, and Frequent Itemset Min-
ing. She is currently an Assistant Professor in Computer Science at the
U.A. Whitaker School of Engineering, Florida Gulf Coast University,
Fort Myers, Florida.

Jimmy Secretan holds Ph.D. M.S., and B.S. degrees in Computer
Engineering from the University of Central Florida, Orlando, Florida.
He was a National Science Foundation (NSF) Graduate Research
Fellow. He has published in the areas of distributed and privacy pre-
serving data mining, grid computing, machine learning, evolutionary
algorithms and web-based systems. He currently works as principal sci-
entist at ad summos, inc., in Celebration, Florida.

Michael Georgiopoulos received the Diploma in EE from the
National Technical University in Athens, M.S. and Ph.D. degrees in
EE from the University of Connecticut, Storrs, CT, in 1981, 1983 and
1983, respectively. He is currently a Professor in the School of EECS,
University of Central Florida, Orlando, FL. His research interests lie
in the areas of Machine Learning and applications with special empha-
sis on neural network and neuro-evolutionary algorithms. He has pub-
lished more than 60 journal papers and more than 180 conference
papers in a variety of conference and journal venues. He has been an
Associate Editor of the IEEE Transactions on Neural Networks from
2002-2006, and he is currently serving as an Associate Editor of the
Neural Networks journal. He served as the General Chair of S+SSPR
2008, the satellite workshop affiliated with ICPR 2008. He is currently
serving as the Technical Co-Chair of IJCNN 2011.

@ Springer

	Non-derivable itemsets for fast outlier detection in large high-dimensional categorical data
	Abstract
	1 Introduction
	2 Previous work
	3 Algorithms
	3.1 Outlier detection based on frequent itemsets
	3.1.1 Outlier detection based on FIs: FI-OD
	3.1.2 Outlier detection based on the negative border of FIs: NBFI-OD

	3.2 Outlier detection based on Non-Derivable Itemsets
	3.2.1 Background on NDI
	3.2.2 Motivation for outlier detection using NDIs
	3.2.3 Outlier detection based on NDIRep: FNDI-OD
	3.2.4 Outlier detection based on the negative border of NDIRep: NBNDI-OD

	3.3 Outlier detection based on approximation of NDIs
	3.3.1 Non-almost derivable itemsets (NADIs)
	3.3.2 Outlier detection based on NADIRep: FNADI-OD

	4 Experiments
	4.1 Experimental setup
	4.1.1 Datasets
	4.1.2 Evaluation

	4.2 Results
	4.2.1 Detection accuracy results
	4.2.2 Runtime results

	4.3 Discussion
	4.3.1 Performance of OD phases
	4.3.2 Restricting the length of generated sets (MAXLEN)
	4.3.3 Impact of δ on accuracy and runtime
	4.3.4 NB-based versus FI-based outlier detection
	4.3.5 Which σ works best for a given dataset?

	5 Conclusions
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

