
A DICTIONARY-BASED APPROACH TO FAST
AND ACCURATE NAME MATCHING IN LARGE

LAW ENFORCEMENT DATABASES

Olcay Kursun*, Anna Koufakou†, Bing Chen†, Michael Georgiopoulos†,
Kenneth M. Reynolds‡, Ron Eaglin*

* Department of Engineering Technology
† School of Electrical Engineering and Computer Science

‡ Department of Criminal Justice and Legal Studies
University of Central Florida, Orlando, FL 32816

{okursun,akoufako,bchen,michaelg,kreynold,reaglin}@mail.ucf.edu

Abstract. In the presence of dirty data, a search for specific information by a
standard query (e.g., search for a name that is misspelled or mistyped) does not
return all needed information. This is an issue of grave importance in homeland
security, criminology, medical applications, GIS (geographic information systems)
and so on. Different techniques, such as soundex, phonix, n-grams, edit-distance,
have been used to improve the matching rate in these name-matching applications.
There is a pressing need for name matching approaches that provide high levels of
accuracy, while at the same time maintaining the computational complexity of
achieving this goal reasonably low. In this paper, we present ANSWER, a name
matching approach that utilizes a prefix-tree of available names in the database.
Creating and searching the name dictionary tree is fast and accurate and, thus,
ANSWER is superior to other techniques of retrieving fuzzy name matches in
large databases.

1 Introduction

With the advances in computer technologies, large amounts of data are stored in
data warehouses (centralized or distributed) that need to be efficiently searched
and analyzed. With the increased number of records that organizations keep the
chances of having “dirty data” within the databases (due to aliases, misspelled
entries, etc.) increases as well 1, 2. Prior to the implementation of any algorithm
to analyze the data, the issue of determining the correct matches in datasets with
low data integrity must be resolved.

The problem of identifying the correct individual is indeed of great
importance in the law enforcement and crime analysis arenas. For example,
when detectives or crime analysts query for individuals associated with prior
burglary reports, they need to be able to examine all the records related to these

individuals, otherwise they might miss important clues and information that
could lead to solving these cases. As mentioned earlier, missing names (and thus
records) becomes a problem mainly due to common typing and misspelling
errors. However, in the case of crime related applications, this problem becomes
even bigger due to other reasons, most important of which being that criminals
try to modify their name and other information in order to deceive the law
enforcement personnel and thus evade punishment. The other reason is that for a
large number of cases, the name information might come from witnesses,
informants, etc., and therefore this information (for example the spelling of a
name) is not as reliable as when identification documents are produced. This is
also true in the field of counterterrorism, where a lot of information comes from
sources that might be unreliable, but which still needs to be checked
nevertheless. It is evident then that it is imperative to have an efficient and
accurate name matching technique that will guarantee to return all positive
matches of a given name. On the other hand, the returned matches should not
have too many false-positives, as the person who is investigating a crime is
likely to be overwhelmed by unrelated information, which will only delay the
solution of a case.

In this paper, we focus on the problem of searching proper nouns (first and
last names) within a database. The application of interest to us is in law
enforcement; however, there are many other application domains where
availability of accurate and efficient name search tools in large databases is
imperative, such as in medical, commercial, or governmental fields 3, 4.

There are two main reasons for the necessity of techniques that return fuzzy
matches to name queries: (1) the user does not know the correct spelling of a
name; (2) names are already entered within the database with errors because of
typing errors, misreported names, etc 5. For example, record linkage, defined as
finding duplicate records in a file or matching different records in different files

6, 7, is a valuable application where efficient name matching techniques must be
utilized.

2 Existing Methods

The main idea behind all name matching techniques is comparing two or more
strings in order to decide if they both represent the same string. The main string
comparators found in the literature can be divided in phonetic and spelling
based. Soundex 8 is used to represent words by phonetic patterns. Soundex
achieves this goal by encoding a name as the first letter of the name, followed by
a three-digit number. These numbers correspond to a numerical encoding of the
next three letters (excluding vowels and consonants h, y, and w) of the name 11.
The number code is such that spelled names that are pronounced similar will
have the same soundex code, e.g., “Allan” and “Allen” are both coded as

“A450”. Although soundex is very successful and simple, it often misses
legitimate matches, and at the same time, detects false matches. For instance,
“Christie” (C623) and “Kristie” (K623) are pronounced similarly, but have
different soundex encodings, while “Kristie” and “Kirkwood” share the same
soundex code but are entirely different names.

On the contrary, spelling string comparators check the spelling differences
between strings instead of phonetic encodings. One of the well-known methods
that is used to compare strings is measuring their “edit distance”, defined by
Levenshtein 9. This can be viewed as the minimum number of characters that
need to be inserted into, deleted from, and/or substituted in one string to create
the other (e.g., the edit distance of “Michael” and “Mitchell” is three). Edit-
distance approaches can be extended in a variety of ways, such as taking
advantage of phonetic similarity of substituted characters (or proximity of the
corresponding keys on the keyboard) or checking for transposition of
neighboring characters as another kind of common typographical error 10 (e.g.,
“Baldwin” vs. “Badlwin”). The name-by-name comparison by edit distance
methods throughout the entire database renders the desired accuracy, at the
expense of exhibiting high complexity and lack of scalability.

In this paper, we propose a string-matching algorithm, named ANSWER
(Approximate Name Search With ERrors), that is fast, accurate, scalable to large
databases, and exhibiting low variability in query return times (i.e., robust). This
string comparator is developed to establish the similarity between different
attributes, such as first and last names. In its application to name matching,
ANSWER is shown to be even faster than phonetic-based methods in searching
large databases. It is also shown that ANSWER’s accuracy is close to those of
full exhaustive searches by spelling-based comparators. Similar work to ours has
been described by Wang et. al. 4, which focuses in identifying deceptive criminal
identities, i.e. in matching different records that correspond to the same
individual mainly due to false information provided by these individuals.

3 The Operational Environment -- FINDER

One of the major advantages of our research is that we have a working test-bed
to experiment with (FINDER – the Florida Integrated Network for Data
Exchange and Retrieval). FINDER (see Fig. 1) has been a highly successful
project in the state of Florida that has addressed effectively the security and
privacy issues that relate to information sharing between above 120 law
enforcement agencies. It is operated as a partnership between the University of
Central Florida and the law-enforcement agencies in Florida sharing data –
referred to as the Law Enforcement Data Sharing Consortium. Detailed
information about the organization of the data sharing consortium and the
FINDER software is available at http://finder.ucf.edu.

http://finder.ucf.edu/

Texas

Georgia

Other US states

Regional
Master
Query

Server 1

N1

Regional
Master
Query

Server 3

State
Master
Query
Server

N2

N3

Regional
Master
Query

Server 2

Local
Node

Users

Fig. 1. The general overview of the FINDER network in Florida and expanded to

other states

Part of the constraints of the FINDER system and also most law enforcement
records management systems is that once the data has entered into the system
it must remain intact in its current form. This includes data that have been
erroneously entered, and consequently they contain misspellings. This
problem was identified by the FINDER team and has also been substantiated
in the literature 1, 12, 13, 14. A simple illustration related to name matching,
utilizing dirty data available in the FINDER system, is shown in Table 1,
which emphasizes both the level of data integrity and the challenges of using
standard SQL queries to retrieve records from a law enforcement database
(also known as merge/purge problems 14). In Table 1, we are depicting the
results of an SQL query on “Joey Sleischman”. An SQL query will miss all
the records but the first one. The other records could be discovered only if we
were to apply an edit distance algorithm on all the existing records in the
database, an unsuitable approach though, due to its high computational
complexity, especially in large databases. In particular, the rest of the records
(besides the exact match), shown in Table 1 were identified by comparing the
queried record (“Joey Sleischman”) against all records in the database (by
applying the edit distance approach). The Last Name, First Name, DOB (Date
of Birth), and Sex were used as parameters in this search. In order to detect
the matching records, we assigned weights to the fields: Last Name (40%),
First Name (20%), DOB (30%), and Sex (10%). We used the edit distance
algorithm 9 for determining the degree of match between fields.

Table 1. Example of the Data Integrity Issues within the FINDER data.

Last Name First Name DOB Sex Match
INPUT QUERY:

SLEISCHMAN JOEY 1/21/1988 M ≥ 85%
MATCHING RECORDS:

SLEISCHMAN JOEY 1/21/1988 M 100%
SLEICHMAN JOEY 7/21/1988 M 91%

SLEISCHMANN JOSEPH 1/21/1988 M 88%
SLEISCHMANN JOSPEH 1/21/1988 M 88%

SLEISHMAN JOEY M 87%
SLEISCHMANN JOEY M 87%

SLEISHCHMANN JOSEPH 1/21/1988 M 86%
SLESHMAN JOEY M 85%

As it can be seen in Table 1, the edit distance algorithm provides an excellent
level of matching, but the algorithm requires a full table scan (checking all
records in the database). This level of computational complexity makes it
unsuitable as a technique for providing name matching in applications, such as
FINDER, where the number of records is high and consistently increasing. In
the next sections, we are discussing in detail a name matching approach that
alleviates this computational complexity.

4 The PREFIX Algorithm

In order to reduce the time complexity of the full-search of partially matching
names in the database (of crucial importance in homeland security or medical
applications), we propose a method that constructs a structured dictionary (or a
tree) of prefixes corresponding to the existing names in the database (denoted
PREFIX). Searching through this structure is a lot more efficient than searching
through the entire database.

The algorithm that we propose is dependent on a maximum edit distance
value that is practically reasonable. Based on experimental evidence, it has been
stated that edit distance up to three errors performs reasonably well 15. For
example, “Michael” and “Miguel” are already at an edit distance of three. Let k
represent the maximum number of errors that is tolerated in the name matching
process. Using a minimal k value that works well in the application at hand
would make the search maximally fast. Setting k to zero would equal to an exact
search which is currently available in any query system. Increasing k increases

the recall (i.e., it will not miss any true matches), even though this implies a very
slow search and an increase in the number of false positives.

PREFIX relies on edit distance calculations. Its innovation though lies on the
fact that it is not searching the entire database to find names that match the
query entry but accomplishes this goal by building a dictionary of names. One
might think that it would not be very efficient to have such a dictionary due to
the fact that we would still need to search the whole dictionary, as the spelling
error could happen anywhere in the string, such as “Smith” vs. “Rmith”.
However, our algorithm can search the dictionary very fast, using a tree-
structure, by eliminating the branches of the tree that have already been found to
differ from the query string by more than k.

There are two key points to our approach: (1) Constructing a tree of prefixes
of existing names in the database and searching this structure can be much more
efficient than a full scan of all names (e.g., if “Jon” does not match “Paul”, one
should not consider if “Jonathan” does); (2) such a prefix-tree is feasible and it
will not grow unmanageably big. This is due to the fact that many substrings
would hardly ever be encountered in valid names (e.g., a name would not start
with a “ZZ”); consequently, this cuts down significantly the number of branches
that can possibly exist in the tree. Similar data structures are proposed in the
literature 16, 17 but they are not as suitable as ours when it comes to DBMS
implementation (see Section 7).

The PREFIX algorithm creates a series of prefix-tables T1, T2, T3…, where Tn
will link (index) Tn+1. Tn will contain all n-symbol-long prefixes of the names in
the database. These tables correspond to the levels of the prefix-tree. The reason
that we use tables is to facilitate the implementation of this approach in any
database system. Tn will have the following fields: current symbol (the nth
symbol), previous symbol (n-1st symbol), next symbol (n+1st symbol), its links
(each link will point to the index of an entry in the prefix-table Tn+1 with this
current entry as the prefix, followed by the symbol in the “next symbol” field),
and a field called Name that indicates whether or not the prefix itself is already a
name (e.g., Jimm is a prefix of Jimmy but it may not be a valid name). Note that
in the links field we cannot have more than 26 links because there are only 26
letters in the English alphabet. Also note that the first prefix-table (T0) will not
utilize the previous symbol field.

Suppose that our database contains “John”, “Jon”, “Jonathan”, “Olcay”,
“Jim”, “Oclay”, and “Jimmy”. After building the prefix-dictionary shown in Fig.
2, it can be used as many times as needed for subsequent queries. It is very
simple to update the dictionary when new records are added (the same procedure
explained above, when creating the tables in the first place, is used to add
records one by one). Each level i in Fig. 2 is a depiction of the prefix-table Ti
(for example the third table consists of JOH, JON, OLC, JIM, OCL). The dark-
colored nodes in Fig. 2 are the prefixes that are actually valid names as well.

Fig. 2. The tree obtained by processing “John”, “Jon”, “Jonathan”, “Olcay”, “Jim”,
“Oclay”, and “Jimmy”.

The advantage of PREFIX is that when we search for approximate name
matches, we can eliminate a sub-tree of the above-depicted tree (a sub-tree
consists of a node and all of its offspring nodes and branches). Suppose that we
search for any similar names with no more than one edit-error to the name
“Olkay”. When the algorithm examines level two of the tree, (i.e., the prefix-
table T2), it will find that the node JI is already at a minimum edit distance of
two from “Olkay”. Therefore any node that extends from JI-node should not be
considered any further. That is, any name that starts with a JI is not going to be
within the allowable error margin.

5 The ANSWER Algorithm

To use the PREFIX algorithm for a full name query rather than a single string
query (such as a last name or a first name only), we apply the following steps:
(1) build prefix-dictionary for the last names; (2) for a given full name query,
search the tree for similar last names; (3) apply edit-distance algorithm on the
returned records to obtain the ones that also have matching first names. In step
1, we could have built a prefix-tree for first names and in step 2, we could have
obtained matching first names by scanning this tree; however, it would not have
been as efficient as the stated PREFIX algorithm because first names are, in
general, less distinct; consequently, by using first names at the beginning of the
search process would have reduced our capability of filtering out irrelevant
records.

The PREFIX algorithm offers a very efficient search of names. Nevertheless,
it does not provide any direct way of utilizing a given first name along with the
last name of a query because it does not use the first name information during
the search of the tree. We propose the ANSWER (Approximate Name Search

With ERrors) algorithm for fast and still highly accurate search of full names
based on the PREFIX idea. In the process of building the prefix-dictionary,
ANSWER takes every full name in the database, and using the PREFIX
algorithm, it creates required nodes and links for the last names in the tree. It
also augments each node in the tree by 26 bits, each bit representing whether
any last name on that branch has an associated first name starting with the
corresponding letter in the alphabet. For example, if the last name “Doe” could
be found in the database only with the first names “Jon”, “John”, and “Michael”,
the corresponding nodes in the “Doe” branch in the tree would be “linked” with
“J” and “M”, meaning that the last name “Doe” can only have first names
starting with “J” or “M”.

This architecture allows early (before the edit-distance exceeds the predefined
threshold k) pruning of tree nodes based on the first letter of the first name of the
query. For example, if the query name was “John Doe”, ANSWER would prune,
say the F-node, if there were no last names starting with letter “F” associated
with a first name that starts with “J”, the first letter of “John”. Based on our
preliminary experiments and what we deduced from the literature 5, 11, it is
unlikely that both first name and last name initials are incorrect (e.g., “Zohn
Foe” is not an expectable match for “John Doe”). On the other hand, PREFIX
would not prune the F-node right away because it does not take into
consideration the first name at all, and there could be a last name similar to DOE
that starts with “F” (e.g., “Foe”). Thus, PREFIX would scan more branches and
take longer than ANSWER. Moreover, even though ANSWER is not an
exhaustive search algorithm, it exhibits high hit rate as explained in the
following section.

6 Experimental Results

In order to assess the performances of our exhaustive search engine PREFIX and
its heuristic version ANSWER, we conducted a number of experiments. After
creating the prefix-dictionary tree, we queried all distinct full names available in
the FINDER database and measured the time taken by PREFIX and ANSWER
in terms of the number of columns computed in the calculation of edit-distance
calls (how edit-distance computation works was explained in Section 4.2). This
way, the effect of factors such as operating system, database server,
programming language, are alleviated. Furthermore, we compared PREFIX’s
and ANSWER’s performance with other name matching techniques. In
particular, we compared PREFIX and ANSWER with two other methods:
Filtering-based soundex approach applied on (1) only last name (SDXLAST);
(2) first or last names (SDXFULL). SDXLAST is a simple method that is based
on the commonly used soundex schema that returns records with soundex-wise-
matching last names, and then applies the edit-distance procedure (just as in our

methods, the edit-distance calls terminate the computation once the maximum
allowable edit errors k is exceeded) to the last names to eliminate the false
positives, and applies the edit-distance procedure once more on the first names
of the remaining last names, in order to obtain the final set of matching full
names.

It is worth noting though, that the hit rate obtained by using only the soundex-
matches for the last names is insufficient due to inherent limitations of the
soundex scheme 11. For example, searching for “Danny Boldwing” using
SDXLAST would not return “Danny Bodlwing” because the soundex code for
“Boldwing” does not match the soundex code for “Bodlwing”. Therefore, we
devised an extension of SDXLAST in order to enhance its hit rate. We called
this new method SDXFULL. SDXFULL selects records with soundex-wise-
matching last names or soundex-wise-matching first names. As a result, if
“Danny Boldwing” is the input query, SDXFULL would return not only “Danny
Bodlwing” and “Dannie Boldwing” as possible true positives, but it would also
return many false positives such as “Donnie Jackson” or “Martin Building”.
These false positives will be eliminated (by applying edit distance calculations
to all these returned records) as in the SDXLAST method. Thus, it is expected
that SDXFULL will have a higher recall (true positives) than SDXLAST but
longer run-time since it also returns a larger number of false positives). The low
recall rate of soundex is the reason for not comparing our methods with other
phonetic-type matching methods, such as Phonix 11. Phonix assigns unique
numerals to even smaller groups of consonants than soundex, and it is thus
expected to have an even lower recall rate than the already unacceptable recall
rate observed in SDXLAST 11.

Our database contains about half a million (414,091 to be exact) records of
full names, out of which 249,899 are distinct. In order to evaluate the behavior
of these four name matching methods as the number of records in the database
increases, we have applied each one of the aforementioned methods (PREFIX,
ANSWER, SDXLAST, and SDXFULL) to the database at different sizes. For
our experiments, we have chosen 25% (small), 50% (medium), 75% (large), and
100% (x-large) of records as the working set sizes. Note that a different prefix-
dictionary is used for different set sizes, as the number of records in the database
expands from the small to x-large sizes. We used the PREFIX algorithm as the
baseline for our algorithm comparisons, since it performs an exhaustive search.
For our experiments we used a maximum number of allowable edit-distance of 2
(k=2), for both last and first names. Thus, for every query by the exhaustive
search, we have selected from the database all the available full names of which
neither the last nor the first name deviates by more than two errors from the last
and the first names, respectively, of the query. Of course, this does not mean all
of these records with an edit distance of two or less refer to the same individual
but this was the best that we could use as a baseline for comparisons because
these names were at least interesting in respect that they were spelled similarly.

Fig. 3a plots the graph of average run-times for queries of each approach as a
function of the database size. Note that in some applications, the hit-rate of the
search can be as important as (if not more important than) the search time.
Therefore, in order to quantify the miss rate, we have also computed the average
hit-rates (the ratio of the true positives identified versus the total number of
actual positives) for these methods (Fig. 3b). SDXLAST is the fastest search;
however, it has the lowest hit-rate amongst all the algorithms. Furthermore,
SDXLAST’s hit-rate is unacceptably low for many applications 5, 11. The
ANSWER search is the next fastest for large databases (except for SDXLAST,
which has a small hit rate). ANSWER is also significantly more accurate than
the SDXFULL search. SDXFULL executes a simple search that fails when there
are errors in both the last and the first names (this happens in increasingly more
than 15% of the records). For instance, some of the records that are found by
ANSWER but missed by SDXFULL are “Samantha Etcheeson” versus
“Samatha Etcheenson” or “Yousaf Kodyxr” versus “Youse Rodyxr”.

Fig. 3. Scalability versus database size. (a) Run-times; (b) Recall rates.

7 DBMS Implementation

ANSWER offers a very efficient search of names. Its database system
implementation is not as fast, however it still remains to be a crucial tool of
querying because it is a full search tool. Other techniques we could use are
either partial searches with 60%-70% recall rates (such as soundex or phonix),
or very slow (e.g. one pass over all the distinct full names with Levenshtein
comparison takes about 10 minutes in database implementation). Soundex takes
about half a second to query a name. However, it misses matching records due
to its weak heuristicity.
 This does not come as a surprise because it is a problem in general that
algorithms implemented offline that use data outside the database system can
employ efficient structures that reside in memory and a minimal number of
database scans, and thus exhibit better performance than the equivalent database
implementations. From the performance perspective, data mining algorithms
that are implemented with the help of SQL are usually considered inferior to

algorithms that process data outside the database systems. One of the important
reasons is that offline algorithms employ sophisticated in-memory data
structures and can scan the data as many times as needed without much cost due
to speed of random access to memory 18. Our initial experiments with early
efforts of DBMS implementation resulted that the run time for ANSWER for
k=1 is under a second. For k=2, the search time is in order of 5 seconds.
 Disk-access is a very costly operation in database systems. Therefore, we will
have to reduce the number of database accesses needed for searching the tree.
One idea is to use the breadth-first search algorithm. For a query with a searched
name of length n and MaxError tolerable edit distance, the upper bound of the
number of database accesses is, therefore, n + MaxError.
 In order to further reduce database access, when we import the names into
prefix tables, we can load the names in partial order so that the similar names are
stored together in prefix name tables. Names whose initial letters are “AA” are
firstly imported, then those with “AB”, “AC”, and until “ZZ”. This way, when
we query names, database server will automatically load and cache the data
blocks with similar prefixes, thus we can facilitate I/O accesses by reducing the
number of memory blocks to be retrieved.

8 Summary, Conclusions and Future Work

Dirty data is a necessary evil in large databases. Large databases are prevalent in
a variety of application fields such as homeland security, medical, among others.
In that case, a search for specific information by a standard query fails to return
all the relevant records. The existing methods for fuzzy name matching attain
variable levels of success related to performance measures, such as speed,
accuracy, consistency of query return times (robustness), scalability, storage,
and even ease of implementation.

Name searching methods using name-by-name comparisons by edit distance
(i.e., the minimum number of single characters that need to be inserted into,
deleted from, and/or substituted in one string to get another) throughout the
entire database render the desired accuracy, but they exhibit high complexity of
run time and thus are non-scalable to large databases. In this paper, we have
introduced a method (PREFIX) that is capable of an exhaustive edit-distance
search at high speed, at the expense of some additional storage for a prefix-
dictionary tree constructed. We have also introduced a simple extension to it,
called ANSWER that has run-time complexity comparable to soundex methods,
and it maintains robustness and scalability, as well as a comparable level of
accuracy compared to an exhaustive edit distance search. ANSWER has been
tested, and its advantages have been verified, on real data from a law-
enforcement database (FINDER).

References

1. Kim, W. (2002) “On Database Technology for US Homeland Security”, Journal of
Object Technology, vol. 1(5), pp. 43–49.

2. Taipale, K.A. (2003) “Data Mining & Domestic Security: Connecting the Dots to
Make Sense of Data”, The Columbia Science & Technology Law Review, vol. 5, pp.
1–83.

3. Bilenko, M., Mooney, R., Cohen, W., Ravikumar, P., Fienberg, S. (2003) “Adaptive
name matching in information integration”, IEEE Intelligent Systems, vol. 18(5), pp.
16–23.

4. Wang, G., Chen, H., Atabakhsh, H. (2004) “Automatically detecting deceptive
criminal identities”, Communications of the ACM, March 2004, vol. 47(3), pp. 70–
76.

5. Pfeifer, U., Poersch, T., Fuhr, N. (1995) “Searching Proper Names in Databases”,
Proceedings of the Hypertext - Information Retrieval – Multimedia (HIM 95), vol.
20, pp. 259–276.

6. Winkler, W.E. (1999) “The state of record linkage and current research problems”,
Proceedings of the Section on Survey Methods of the Statistical Society of Canada.

7. Monge, A.E. and Elkan, C.P. (1997) “An Efficient Domain-Independent Algorithm
for Detecting Approximately Duplicate Database Records”, Proceedings of the
ACM-SIGMOD Workshop on Research Issues on Knowledge Discovery and Data
Mining, Tucson, AZ.

8. Newcombe, H.B., Kennedy J.M., Axford S.J., James, A.P. (1959) “Automatic
linkage of vital records”, Science, vol. 3381, pp. 954–959.

9. Levenshtein, V.L. (1966) “Binary codes capable of correcting deletions, insertions,
and reversals”, Soviet Physics, Doklady, vol. 10, pp. 707–710.

10. Jaro, M.A. (1976) “UNIMATCH: A Record Linkage System: User’s Manual.
Technical Report”, U.S. Bureau of the Census, Washington, DC.

11. Zobel, J., Dart, P. (1995) “Finding approximate matches in large lexicons”,
Software-Practice and Experience, vol. 25(3), pp. 331–345.

12. Wilcox, J. (1997) “Police Agencies Join Forces To Build Data-Sharing Networks:
Local, State, and Federal Crimefighters Establish IT Posses”, Government Computer
News, Sept. 1997.

13. Maxwell, T. (2005) “Information, Data Mining, and National Security: False
Positives and Unidentified Negatives”, Proceedings of the 38th Hawaii International
Conference on System Science.

14. Hernandez, M., and Stolfo, S. (1998) “Real-world Data is Dirty: Data Cleansing and
the Merge/purge Problems”, Data Mining Knowledge Discovery, vol. 2, pp. 9-37,
1998.

15. Mihov, S., Schulz, K.U. (2004) “Fast Approximate Search in Large Dictionaries”,
Journal of Computational Linguistics, vol. 30(4), pp. 451–477.

16. Aoe, J., Morimoto, K., Shishibori M., Park, K. (2001) “A Trie Compaction
Algorithm for a Large Set of Keys”, IEEE Transactions on Knowledge and Data
Engineering, vol. 8(3), pp. 476–491.

17. Navarro, G. (2001) “A Guided Tour to Approximate String Matching”, ACM
Computing Surveys, vol. 33(1), pp.31-88.

