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Abstract 

 
One way to improve how simulations can more realistically model human behavior is through use of intelligent 
computer generated objects (ICGOs).  This paper proposes a framework for incorporating intelligent objects using 
fuzzy ARTMAP neural networks, into existing simulations in a way that significantly reduces the need for 
updating and maintaining the behavioral aspects of the code.   The framework enables the ICGO to learn from 
existing computer generated object rules, as well as learn from human operators participating in the simulation.  
The final product will be an ICGO that exhibits certain human behavioral traits including the ability to adapt to 
changes and basing decisions on previous experiences.  The methodology is demonstrated in real-time using 
OneSAF Testbed developed by the Simulation, Training and Instrumentation Command (STRICOM).   
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1.  Introduction 
Computer generated objects play a crucial role in a many of today's simulations.  Regardless of the application, or 
the role of the CGO, they are expected to behave like the real-world entities they represent.  This research 
primarily focuses on the role of the CGO in military simulations.  However, research results and findings presented 
throughout this paper, as well as many of the applications, can be generalized for use in non-military simulations 
through a straightforward extension of the methodology presented here.  For instance, in the entertainment 
software industry a myriad of simulation games can apply this methodology so the enemy characters learn from the 
on-going simulation.  Similarly, emergency service agencies use simulations to train for critical scenarios.  
Invoking this methodology can provide a more realistic virtual population.  A key technology that promises to 
provide a near-term solution to the problems of behavior representation is artificial intelligence (AI).  One AI 
technique, artificial neural networks (ANN), have been shown to be very well suited for problems characterized by 



a rich set of data but where information regarding the intricacies of how the system works is not well known.  
ANNs are especially useful when a clear mathematical formula of system behavior that describes the behavior of 
the system cannot be derived.  That is to say, an explicit methodology cannot be gleaned from the domain [1].  
This accurately describes most situations involving CGOs.  Using data created from a well-defined logic structure 
governing a decision episode, it is possible to train an ANN (representing a CGO) to make a decision based on a 
current set of relevant parameters that represent the state of the simulated environment.  Evaluating the outcome of 
a decision, and providing the model with alternative outcome provides a means for the CGO to learn from its 
previous experiences.  The result is an intelligent CGO that does not require extensive updates to existing code in 
order to achieve behavior in the object that mimics behavior of the real-world entity.  The object’s behavior self-
modifies as it updates itself in response to a changing synthetic environment.  This approach can also be adapted to 
the changing behavior of its human opponent, as well as, changing behaviors of other semi-automated forces.  
Another very desirable and inherent characteristic of this ICGO is its potential to model human-like decision 
making.   
 

2.  Fuzzy ARTMAP 
Fuzzy ARTMAP is an ANN for incremental, supervised learning and prediction of binary inputs as well as analog 
inputs defined by a fuzzy set of features.  During supervised learning, fuzzy ARTMAP receives a stream of input 
patterns and an associated stream of output classification categories.  The algorithm creates a certain number of 
recognition categories required to satisfy an established level of accuracy.  Once trained, fuzzy ARTMAP can 
accept additional input vectors and efficiently classify them.  It can also be incrementally trained using newly 
acquired data.  Fuzzy ARTMAP operates with only a few parameters.  The baseline vigilance parameter ]1,0[∈ρ  
calibrates the minimum amount to correct a predictive error.  A choice parameter 0>β , affects the dynamics 
involving which recognition category is selected first. A learning rate parameter ]1,0[∈α  can be implemented if the 
application requires other than fast learning.  More intricate details of fuzzy ARTMAP are discussed in [2]. 
 
This research methodology uses a fuzzy ARTMAP (FAM) neural network to create an intelligent computer 
generated object.  This type of network has many desirable characteristics that allow modelers to incorporate an 
intelligent CGO into simulations.  These benefits include: 

 
1. On-line (incremental) learning 
2. Automatic creation of an appropriate sized network 
3. Minimal parameter selection 
4. Quick convergence 
5. Accepts binary and analog data 
6. Easily explainable results.   

 
3.  Methodology 
Five tasks comprise the methodology.  A key step is to define the decision episode.  Without fully understanding 
the process, a modeler will have difficulty implementing any methodology.  The next step is to create the model 
from logic governing the decision episode.  The result is a FAM neural network that is implemented into the 
simulation.  Once the intelligent CGO has been successfully implemented, the modeler must conduct certain 
verification and validation (V&V) procedures to ensure the model is performing according to its intended purpose, 
and the actions of the ICGO are believable and credible.  The final task, maintenance, ensures process efficiency 
and accuracy within the simulation.  These five tasks are discussed in more detail below. 
 
3.1  Task 1:  Define the decision episode 

Obtaining accurate and complete information regarding the task to be performed is the first and most 
critical task in order to construct a model that exhibits human (or special) behavior [3].  For a particular decision to 
be realistically modeled, it must be described in detail, including all pertinent parameters that effect the decision, 
and the range of values for these parameters.  All possible outcomes must be identified as well.  In many cases a 
weighting scheme is used to place proper emphasis on certain parameters.  It is necessary to identify a method of 
decision evaluation to determine if the "correct" action was chosen.  It is also critical to understand how quickly the 
learning process should occur.  For instance, should a CGO alter its behavior based upon one instance?  Or, should 



learning take place more slowly?  In most cases, the simulation may require several confirming occurrences before 
it is willing to alter its behavior or select an alternate action. 
 
Some decisions are certainly more complex than others.  When defining the decision it is important to determine 
the total number of possible outcomes.  In a simple case, there may be only two outcomes.  Binary decisions pose a 
much simpler problem for the network during the simulation.  However, if there are several possible outcomes, it 
can become rather complicated to identify the "next best alternative".   

     
At some point in time following the decision episode, each decision that was selected will be evaluated and 
determined to be correct or incorrect based on a favorable or unfavorable outcome for the CGO.  Therefore it is 
necessary to identify the decision evaluation criteria.  It may be very obvious and easy to identify, or it may be a 
combination of factors and less clear.  Since the learning process hinges upon evaluation of the decision it is very 
important to clearly define and quantify this measure.  Key elements of information or subtasks are summarized 
below.  This list assumes that the decision process exists in the simulation and does not need to be developed from 
the ground up. 

o Ensure the decision episode requires an ICGO 
o Identify algorithm parameters (inputs) 
o Determine parameter values and ranges 
o Determine parameter weighting scheme (if required) 
o Identify decision outcomes (outputs) 
o Establish learning rate 
o Determine evaluation criteria  

An interdisciplinary team of computer scientists and subject matter experts in the fields associated with the 
simulation should be consulted to define or examine the process, identify the critical parameters and validate the 
decision logic.  This measure is very important regardless of the simulation application.  Depending on the 
application, sociologists, psychologists, and military scientists may also be important members of the 
interdisciplinary team [3].  Properly and completely defining the decision process can ultimately reduce the 
requirement in the simulation for certain human-in-the-loop interactions with the CGO, thus providing a 
tremendous benefit to the end user of the simulation.   

 
3.2.  Task 2:  Create the Model 
In this task the FAM neural network model is created off-line, prior to simulation run-time.  The objective of this 
task is to ensure the artificial neural network acquires, and adequately uses information that was gathered during 
first task.  Figure 1 contains a flow chart that describes this task.   
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Figure 1.  Required steps to create fuzzy ARTMAP neural network model 

 



If the simulation currently has a set of if-then-else rules, or some other logic structure for the decision episode that 
is well defined, and underlying logic has been validated, then this information can be extracted from the simulation 
computer code and used to create the data required to train the FAM network.  Even so, computer code and logic 
should be scrutinized and reevaluated to ensure that information is complete, accurate and valid.  On the other 
hand, if this decision structure is not present at all, or not adequately modeled in the simulation, then it must be 
developed before proceeding any further.  Using the decision rules and logic structure, the modeler creates a set of 
training, validation and testing input data along with corresponding outputs.  In many cases this is not a trivial 
task and requires some detailed effort.   
 
The algorithm trains the network and produces a psuedo-optimal set of connection weights in the following 
manner.  It selects the parameter values and input pattern order by using a validation set of data that provides the 
highest percent correct classification (PCC).  The choice parameter β , and the vigilance parameter ρ , are set to 
values between 0 and 1 in 0.1 size increments.  Several (10 to 15) randomly ordered training data sets are used for 
each pair of parameter values.  Results from each trial are compared using separate validation data.  The set of 
weights that produce the highest percent correct classification (PCC) are retained.  If the user determines that the 
testing phase produces an acceptable level of performance, then this task is complete.  However, if the results from 
the test data are not acceptable, it is necessary to return to Task 1 to re-evaluate the decision logic, relevant 
parameters, and ranges of those parameters to determine why the network is not producing acceptable results.   
 
Results obtained using Fuzzy ARTMAP are highly dependent upon the data set.  Therefore, an automated process 
is used so the user does not need to be an expert regarding the algorithm, and is not required to select any 
algorithm parameter values.  Results for several benchmark databases have produced extremely good results.  It 
was shown that with the automated process, the PCC for the test data was significantly higher than attempting to 
manually selecting β and ρ .  It is also much less time consuming.  The benchmark databases also showed a 
positive correlation exists between the validation PCC and test PCC.  Therefore, optimizing the validation PCC, in 
general, produces a more desirable PCC for the test data. At the completion of task 2, the modeler has created the 
FAM neural network.  A text file contains all required information regarding the size and structure of the network 
as well as the selected parameter values that will be used in the next step of the methodology.  
 
3.3.  Task 3:  Implement the model 
In this task the newly created ANN is used within the simulation to serve as the decision tool for the semi-
automated force for the modeled decision episode.  The previously existing rule-based decision process is no longer 
used, and is removed from the simulation code.  During a simulation run when the CGO is confronted with a 
decision episode, the algorithm is invoked and, operating in real-time, the ANN provides the required decision.  
The decision logic for FAM neural network is diagramed in Figure 3.  When the decision episode occurs, relevant 
input parameters for the network are queried to determine their current values.  An input vector is created and 
presented to the performance phase of fuzzy ARTMAP.  Two situations could occur at this time.  A small chance 
exists that the network returns an "I don't know" response because an output pattern can not be found to correspond 
with the provided input pattern.  This situation can be avoided almost entirely depending on the selection of the 
choice parameter, and if adequate training occurred during the information acquisition phase of the process.  
However, if it were to occur, then the choice parameter is reduced to zero, and the instance would be flagged as a 
"weak/new response".  Reducing the choice parameter β , would force the network to associate the input vector 
with a previously established output category and guarantee a response from the network.  The predominately more 
common situation is when the network provides a "known response" and passes the appropriate action to the CGO 
entity that responds accordingly in the simulation.   
 
The outcome of this decision is later evaluated to determine if a correct decision was made.  That is, to see if the 
outcome of the decision is favorable, or unfavorable from the perspective of the CGO.  Again, there are two cases 
to consider.  If the decision is determined to be the correct one, then the input/output pattern is presented to the 
training phase of fuzzy ARTMAP in order to strengthen the current set of weights within the network.  However, if 
the decision is determined to be incorrect, then the algorithm checks "next best alternative".  The network creates a 
list of feasible decisions.  All alternatives that satisfy the vigilance criterion are prioritized based on the bottom-up 
weights from the FAM network.  Fuzzy ARTMAP may produce only one feasible outcome, or it may list one or 



more alternatives.  If an alternate decision exists, then the decision is considered weak.  This input vector with its 
new output is used to retrain the network.  Therefore, when presented with this decision episode in the future, 
under the same circumstances, if the outcome was undesirable and the decision was weak, the CGO will be more 
prone to select the next best alternative decision.  However, if no such feasible alternative exists, the decision is 
labeled 
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Figure 2.  Decision logic for implemented fuzzy ARTMAP neural network model 

 
strong.  In this case the outcome for the decision remains unchanged in the future, even though the outcome of the 
decision was determined to be unfavorable.  Note in this case however, the decision is not reinforced.  That is to 
say, the input/output pair is not presented to the network for online, incremental training.  The learning for the 
CGO is a result of the incremental training of the ANN based on the outcome of each decision episode.  As a 
result, successful decisions are reinforced, and unsuccessful decisions are examined to determine if there are any 
feasible alternatives.  If there is a logical alternate solution, measures are taken to give the network an opportunity 
to avoid making the same mistake given the same circumstances. 
 
3.4.  Task 4:  Verify and validate the model 
Each application will have its own set of verification and validation criteria depending on the simulation, the 
decision being modeled, as well as the purpose and intended use of the simulation.  Fuzzy ARTMAP provides a 
relatively straightforward explanation on why a particular classification occurred [4].  In many cases it is more 
important to know why a particular decision was made than the actual decision itself.  A text file can easily be 
created in most simulations to record key information in each pertinent step.  Weight changes can be traced to the 
input/output pair which enables the modeler to ensure that the model is producing sensible results.  The algorithm 
makes it relatively straightforward to replay identical scenarios and examine the results off-line to determine if the 
network is producing similar results as the pre-existing rule-based decision tool.  The learning process can also be 
examined to check it against current doctrine (or common practices depending on the application and simulation). 
 Most importantly, this method can be used to observe the learning as it occurs in a controlled testing environment, 
void of any outside compounding influences that are often present in a complicated simulation program. Virtually 
every aspect of the algorithm can be monitored; effective learning rate, magnitude of weight changes, percent of 
correct classifications, as well as occurrences of "I don't know" responses.  All of this retrievable information 
assists in the verification and validation procedures.   
 



3.5.  Task 5:  Maintain the model 
This task focuses on maintaining model accuracy and efficiency.  Periodic checks ensure the decision process has 
not evolved too radically.  It is possible in some cases, due to long periods of on-line learning that the algorithm 
decays, or does not generalize well for the original data used to train and test the algorithm.  To avoid this, 
periodic retraining with the full data set will restore the network.  In most cases, this retraining takes about 15 
minutes and can be conducted off-line.  During on-line training new nodes may be created in the network.  These 
nodes can occur as the network grows to accommodate new situations that do not generalize well to the previous 
output values.  Periodic maintenance may be required to "prune" the network of obsolete nodes that no longer are 
required by the ICGO.  Although the algorithm operates extremely fast, and all indications show it will not be a 
computational strain during simulation run-time, it makes good sense to maintain maximum efficiency.  By simple 
inspection, the obsolete nodes can be identified and safely removed from the network structure using various 
pruning techniques [5]. 
 
4.  PRELIMINARY RESULTS 
This methodology has been partially demonstrated using OneSAF Testbed Baseline (OTB), open architecture 
model for semi-automated forces developed by the U.S. Army, Simulation, Training, and Instrumentation 
Command (STRICOM).  A relatively simple decision episode was modeled.  The decision involves selecting the 
correct weapon system and munition for a CGO (in this case an M1 Abrahms tank) when confronted with an 
enemy target.  Admittedly, this is a rather simple decision for the tank in the simulation and other, more 
complicated decisions will be modeled as well.  However, the choice to model this decision episode was based on 
several factors.  It is a decision that could benefit from an intelligence decision tool.  That is to say, if the tank is 
repeatedly unsuccessful with its primary selection of weapon and munition against a particular target, it may 
benefit from selecting differently in the future.  Also, the decision logic currently present in OTB for this decision 
episode is well documented, validated, and rather straightforward to extract.  Additionally, since it is relatively 
confined to just a few functions within the OTB computer code, the ANN decision tool is will be relatively 
straightforward to implement. 
 
The algorithm has shown to be very efficient.  For the types of decisions normally considered for this methodology 
produces networks with anywhere from 8 to 30 committed nodes.  For the examples in our preliminary research, 
the computer time required to conduct training, validation and testing in this manner generally takes less than 5-15 
minutes using a 400 megahertz Pentium II personal computer.  Other, larger databases such as the Pima Indian 
diabetes database [6] have taken as much as a 45 minutes.  Once implemented into the simulation, the CPU time 
required for the performance phase requires much less than 0.25 seconds.  We are poised to model other decision 
episodes in OTB using this methodology.  Some that appear to be most suitable and appropriate include: target 
selection for direct fire weapon systems, identification of friend or foe and possibly some platoon command 
decisions regarding decisions whether or not to attack, defend or retreat.  The OTB software development team is 
also hoping to use this methodology in to aid in developing tactics and doctrine for future combat systems for the 
Army.   
 
5.  CONCLUSIONS 
This research provides modelers a methodology to implement an intelligent CGO into an existing simulation 
environment.  It provides a means to incorporate more realistic CGOs that exhibit a more reasonable 
representation of the human decision making process.  The algorithm can operate in a real-time simulation 
environment, and does not add a significant burden to either programming or computational requirements to the 
simulation.  Finally, the methodology reduces the overall effort, in terms of man hours, lines of computer code and 
money to implement and maintain an effective CGO.   
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