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Abstract 

BARTMAP-S introduced a neural network architec- 
ture with which structural risk minimization can be 
performed, although indirectly. BARTMAP-S as pre- 
viously described is trained in an on-line fashion, con- 
sistent with the original way intended for the F'uzsy 
ARTMAP neural network architecture. Here we will 
propose an extension to BARTMAP-S for conducting 
off-line learning. Consequently, this alternate mode 
of learning will allow us to conduct structural risk 
minimization more directly. In this paper, we will 
describe the new architecture and present some em- 
pirical results to demonstrate the usefulness of struc- 
tural risk minimization in learning with an ARTMAP- 
based neural network. 

Keywords: Adaptive Resonance Theory, Machine Learning, 
Classification, Structural Risk Minimization, Empirical Risk 
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1 Introduction 
It has been previously shown that through the use of its 
desired error tolerance parameter e,  Simplified Boosted 
ARTMAP (BARTMAP-S) [l, 21 can be used to mini- 
mize both training error and network complexity [2]. In 
these results, E was varied from its minimum value to 
its maximum value, and we could see the effect on net- 
work complexity through the Rademacher penalty value. 
This penalty value was calculated off-line, however, even 
though BARTMAP-S is trained on-line, similar to Fuzzy 

ARTMAP [3]. The next step is to design a new off- 
line version of BARTMAP-S that uses the Rademacher 
penalty during learning to bound its network complexity. 

Before we describe the off-line version of BARTMAP- 
S (called BARTMAP-SRM), we will present a small overview 
of structural risk minimization. Then we will describe 
Fuzzy ARTMAP and BARTMAP-S briefly. Next, the 
new BARTMAP-SRM will be detailed as well as its foun- 
dation in probability theory. Finally we will present some 
simple empirical learning problems and compare results 
from BARTMAP-SRM with other contemporary ARTMAP- 
based architectures. 

2 Risk Minimization 
Structural risk minimization finds its roots in empirical 
risk minimization [4, 5, 6, 7, 81. Thus, we will briefly 
describe empirical risk minimization and follow with a 
description of structural risk minimization. 

2.1 Empirical Risk Minimization 
The goal of learning is to find a hypothesis, h*, from a 
class of hypotheses, 31, with minimal generalization error 

h* = argmin,,,d'{h(z) # I&)}, (1) 

where c is the unknown target concept, I,($) is the indi- 
cator function for c with arbitrary data sample x, and P 
is the probability mass function. 

In empirical risk minimization, a learner is given a set 
of labeled examples, S = { (zl, yl), . . . , (zn, y,,)}, where 
xi E R" and yi E (0 , l ) .  The learner then attempts to 
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find a hypothesis, h* E 3t, with minimum empirical risk 

j=1 

The measure of empirical risk, Ln(h) is also called train- 
ing error. 

2.2 Structural Risk Minimization 
In some cases, however, minimizing training error is not 
sufficient in finding a hypothesis with minimum gener- 
alization error. It is possible to find a hypothesis with 
minimum, even zero, training error that never-the-less 
has very poor generalization performance. Structural risk 
minimization was introduced by Vapnik [4, 81 to address 
the problems of empirical risk minimization by adding a 
penalty term 

h* = argminhERN, N>I{Ln(h) - +pen(n;N) ) .  (3 )  

The penalty term was included to bound the difference 
between generalization error and training error by a func- 
tion of the complexity of the hypothesis class, N ,  

P { h ( z )  # I c ( ~ ) )  I L(h) + lL(h) - Ln(h)l, 
Ih(hN) - Ln(hN>I I ~ n ( n ;  (4) 

where L(h) is the generalization error of h, hN is a hy- 
pothesis of complexity no greater than N ,  and pen(n; N )  
is a function of the complexity of the class of output hy- 
potheses. Thus, there is a trade-off between training er- 
ror and penalization where overall generalization error is 
greater than 0. 

The penalty term can be bounded by the Vapnik- 
Chervonenkis (VC) dimension of the class of concepts (or 
hypotheses) [5] 

( 5 )  

for some constant K where V(3tN)  is the VC dimension 
of 71N. The VC dimension of a class of concepts is one 
measure of complexity for this set [9]. 

The Rademacher Penalty. Most penalty terms 
proposed for structural risk minimization rely heavily 
upon bounds that are abstracted away from the distri- 
bution of the problem data at hand. The Rademacher 
penalty was introduced by Koltchinskii [lo] as a data- 
dependent penalty. The Rademacher penalty is com- 
puted directly using training data, and thus the inher- 
ent distribution of this data is captured as part of the 
penalization process. 

Lozano proposes a cleverly simple algorithm for com- 
puting the Rademacher penalty for a “0 - 1”-concept 

learner [ll]. In this method, each training sample (zj, y j )  

is randomly re-labeled with probability 0.5 (i.e. with 
probability 0.5, uj = -1 and y j  is flipped either from 1 
to 0 or visa versa, otherwise uj = 1 and y j  is left alone)l, 
call it training set SI. Note that the gj’s are Rademacher 
random variables. A second set of re-labeled data is im- 
mediately available by flipping all of the labels of SI, call 
it training set s2. Next, the learner is trained using both 
SI and s 2 ,  separately, to produce two hypotheses, hl and 
h2. The Rademacher penalty is then estimated as 

l n  

l n  

j=1 

pen(hl) = 1; Cuj~~yj2hl(zj)}(zj) l ,  Y j  E 31, 
j = l  

pen(h2) = 1 -  C~j~{,,-fh2(zj~}(zj)I, Y j  E s 2 ,  

pen(n, N )  = m~(p .n (h l ) ,pen(h2) ) .  (6) 

The Rademacher penalty, as computed in Eq. (6), allows 
us measure the complexity of a learner’s hypothesis space, 
by determining how well it will satisfy, through learning, 
two very dis-similar training sets. Note that a learner 
which attempts to achieve 0 training error will produce a 
large Rademacher penalty, since it will attempt to  satisfy 
two such dis-similar training sets exactly. 

3 F’uzzyARTMAP 
Fuzzy ARTMAP is a neural network architecture de- 
signed to learn a mapping between example instances 
and their associated labels. These training examples are 
denoted (z, y), where 1: E [0, lIm is an example instance, 
and y E {0,1, ..., C-1) is its corresponding label. In most 
cases, there will only be two classes, or labels, thus, C = 2 
and y E {0,1). Fuzzy ARTMAP [3] is composed of two 
Fuzzy ART neural network modules connected through 
a MAP field, as shown in Fig. 1. The instance, z, is pre- 
sented to the A-side Fuzzy ART module (ARTA) and y 
is presented to the B-side Fuzzy ART module (ARTE). 
The mapping formed by F’uzzy ARTMAP actually con- 
sists of two separate mappings in composition. The first 
mapping occurs in the Fuzzy ART modules where data 
is clustered into categories, and thus each data sample, 
presented to  ARTA (z) and ARTB (y) (see Fig. 1 be- 
low), maps to a single cluster template in the respective 
Fuzzy ART module. Then each ARTA cluster template 
is mapped to a single ARTB cluster template through 
the Fuzzy ARTMAP MAP field. The overall mapping 
learned by Fuzzy ARTMAP is a composition of these 
two separate mappings. During training, the pair (z, y) is 
preprocessed, with complement coding, to form the pair 
((2, zc), (y, y“)), where zc is the complement of z, which 

‘Memacher penalization and structural risk minimization a p  
ply to learning situations where there are more than two classes, 
but in this paper we will be dealing with two class learning. 
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Figure 2: Some boxes belonging to R. 

IZI 
Figure 1: The Fuzzy ARTMAP Architecture. 

is then presented to the neural network. Fuzzy ARTMAP 
performs supervised learning on (2, y), a data pattern and 
a label for that data pattern respectively. 

4 BARTMAP-S 
B ARTMAP-S was designed to address performance diffi- 
culties of Fuzzy ARTMAP, especially in situations where 
there is significant overlap between classes due to noise 
or other causes. The BARTMAP-S network involves a 
simple modification to the Fuzzy ARTMAP MAP field. 

Modified MAP Field. The BARTMAP-S archi- 
tecture incorporates two changes to  the Fuzzy ARTMAP 
MAP field. First each F 2  node from the A-side ART 
module is allowed to simultaneously associate with all 
F2 nodes in the B-side. The association frequencies be- 
tween A-side and B-side nodes axe stored in the MAP 
field similar to  PROBART [12]. BARTMAP-S bounds 
the learning process by using the frequency information 
gathered in the MAP field, in place of the vigilance test, 
with the lateral reset match tracking mechanism of Fuzzy 
ARTMAP. The input error tolerance parameter, e, is used 
to  control the lateral reset. The error tolerance takes on 
values between 0 and 0.5. 

The application of the lateral reset mechanism, in 
BARTMAP-S, is precisely the same as in Fuzzy ARTMAP. 
In f a d  the performance of BARTMAP-S is exactly the 
same as Fuzzy ARTMAP, except for the use of frequency 
estimation during lateral reset of the MAP field and the 
accumulation of such frequency information during learn- 
ing. Moreover, BARTMAP-S reduces precisely to Fuzzy 
ARTMAP when E = 0. 

5 Axis Parallel Hyper-rectangles 
and Open Sets in R" 

An interesting property of open sets in R" is that each 
such non-empty open set is composed of a countable union 
of disjoint boxes belonging to R = RI U R2 U 0 3  U - + [13]. 
Here, a,, is defined as the collection of all 2-" boxes with 
corners at Pn, where P,, is the set of all 2 E R" whose 
coordinates are integer multiples of 2-". This property 
means that open sets in R" can be covered by a collec- 
tion of sets from R. It may take an infinite number of 
these boxes to cover a specific open set, but these will 
be countably infinite. In Fig. 2A, we see a collection of 
boxes from RI, R2, 03, and Rq for R2. 

6 BARTMAP-SRM 
In this paper, we are proposing a new off-line Fuzzy ARTMAP- 
based neural network architecture which employs struc- 
tural risk minimization with Rademacher penalization. 
Our new architecture, called BARTMAP-SRM is a very 
simple modification of BARTMAP-S. In BARTMAP-SRM, 
we will employ off-line learning using a series of BARTMAP- 
S networks which are not allowed to grow (i.e., learning is 
turned off). This algorithm was motivated by the hyper- 
boxes in R previously described. 

BARTMAP-SRM begins with a BARTMAP-S net- 
work complexity of 4 nodes2. There is one F z  node for 
each half of each dimension in cross product. This net- 
work is then tested upon the entire training set. The 
BARTMAP-S MAP field has the training error for each 
F2 node stored in it. The F2 node with the greatest error 
contribution is then split into 4 new F2 nodes and it is 
replaced by the same nodes as they cover the same space 
as the original hyper-box. The grayed box in Fig. 2A is 
split into 4 new boxes in Fig. 2B. 

As far as algorithm termination, BARTMAP-SRM 
need not create more F 2  nodes than there are training 
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samples. Therefore, after each network is tested upon 
the training data, BARTMAP-SRM can compute the 
Rademacher penalty, using the same training data, with 
the existing complexity level (i.e. N = the number of 
F2 nodes in Eq. 6). In most situations BARTMAP- 
SRM need not consider networks with complexity higher 
than one-half or one-third of the number of training sam- 
ples. To output its solution, BARTMAP-SRM chooses 
the network with minimum combined training error plus 
Rademacher penalty, of all those networks considered. 

Epochs 
7.0 
7.0 
7.0 
1.0 
5.0 
9.3 

49.6 
2.4 
7.0 
4.5 

20.0 7 Empirical Results 
For our empirical results, we compare the generalization 
performance of BARTMAP-SRM with Fuzzy ARTMAP, 
BARTMAP-S, ART-EMAP [14], ARTMAP-IC [15], Dis- 
tributed ARTMAP (dARTMAP) [16], Gaussian ARTMAP 
(GARTMAP) [17], Boosted ARTMAP (BARTMAP) [la], 
Micro ARTMAP (PARTMAP) [19, 201, Hierarchical 
ARTMAP (BARTMAP-H) [21], and further modification 
to BARTMAP-S called Classification Boosted ARTMAP 

In each of the following learning problems, one class 
was labeled 0 and the other 1. All data were normalized 
to fit within the unit square for Fuzzy ART complement 
coding. Also, each class contributed equally to both the 
training and test data sets. Each network was trained 
using 1000 training samples and tested with 10000 test 
samples. For each of the learning problems, we conducted 
10 such training/testing scenarios for the average values 
reported in the tables below. 

An ARTA baseline vigilance of 0.0 and ARTB base- 
line vigilance of 1.0 were used throughout. A MAP field 
vigilance of 1.0 was used for those architectures that use 
this parameter. In all experiments, BARTMAP-H was 
trained with p = 0.8. In each of the tables below, the sec- 
ond column shows the average number of passes through 
the training data, i.e., epochs, needed to reach a solution. 
The third column gives the average number of F2 nodes 
used in training the networks. The fourth column shows 
the percentage of correctly classified test instances, and 
the last column is the standard deviation of the perfor- 
mance percentage across the 10 experiments. 

(BARTMAP-C). 

F2 
Nodes 

24.7 
24.7 
24.7 
13.7 
11.4 

125.5 
17.0 

126.4 
24.7 
20.9 
61.0 

7.1 Circle-in-the-Square [3]. 
In this problem, the circumference of the circle represents 
the optimal decision boundary. The diameter of the cir- 
cular class is equal in size to  the hypotenuse of a square 
half the size of the big square, and both are centered 
about the same point. In table 1, Fuzzy ARTMAP 
holds the benchmark. ART-EMAP looses some perfor- 
mance due its suppression of small isolated data pockets. 
BARTMAP-S reduces exactly to Fuzzy ARTMAP with 
E = 0. 

Architecture 
FuzARTMAP 
ART-EMAP 
ARTMAP-IC 
dARTMAP 
GARTMAPx,.i 
BARTMAP,=.i 
pARTMAPh=.iS 
B ARTMAP-H 
BARTMAP-S,=.o 
BARTMAP-C,=.o 
B ARTMAP-SRM 

% 
correct 

95.9 
88.7 
95.9 
90.9 
85.6 
85.2 
93.3 
89.7 
95.9 
95.3 
94.0 

Table 1: Circle-in-the-Square. 

- - 
std. 
dew. 
0.6 
4.7 
0.6 
2.4 

16.5 
3.7 
3.4 
1.3 
0.6 
0.4 
0.6 

- 

0 50 100 150 2w 250 300 350 1w 
HmbadFZNodar 

Figure 3: BARTMAP-SRM and Circle-in-the-Square. 

In Fig. 3, we see the space of networks BARTMAP-SRM 
used to  produce its answer. The bottom axis charts the 
number of F2 nodes used by a particular BARTMAP- 
SRM network. This axis is the complexity of the net- 
work. The vertical axis represents a percentage d u e  for 
each network at a particular complexity. The first line 
(solid) represents the test performance. The second line 
(dash-dash) represents the computed value of training er- 
ror plus Rademacher penalty. The third line (dash-dot) 
represents the training error by itself, and the last line 
(dot-dot) represents the Rademacher penalty by itself. 
Figs. 3, 4, and 5 show all of the networks considered 
by BARTMAP-SRM internally during its learning, but 
the actual solution output by BARTMAP-SRM is that 
network with the minimum combination of training er- 
ror and Rademacher penalty. BARTMAP-SRM does not 
get to  see the test performance, but rather that is shown 
so that we can see the actual behavior of all of the net- 
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Architecture 
FuzARTMAP 
ART-EMAP 

dARTMAP 
GARTMAPA,.~ 
BARTMAP,=.25 
pARTMAPh=.25 
B ARTMAP-H 
BARTMAP-S,=.25 
BARTMAP-C,=.2: 
BARTMAP-SRM 

ARTMAP-IC 

F 2  
Nodes 
202.6 
199.1 
203.3 
57.8 
17.1 

147.9 
30.8 

126.4 
63.8 
46.1 
40.0 

Epochs 
7.5 
7.3 
7.4 
1 .o 
5.0 
9.5 

112.9 
2.4 

13.3 
6.4 

13.0 

% 
correct 

73.0 
78.4 
72.9 
68.0 
84.2 
82.4 
65.6 
86.4 
85.3 
84.0 
90.0 

% 
correct 

77.9 
73.4 
77.9 
75.9 
81.9 
78.4 
81.2 
78.3 
83.3 
87.0 
87.5 

Table 2: Noisy Circle-in-the-Square. 

std. 
dev. 
0.7 
2.4 
0.7 
2.0 
1.7 
4.1 
1.9 
1.0 
2.1 
0.4 
0.3 

- - 
sta. 
dev. 
2.0 
7.1 
1.4 
4.8 
6.4 
4.1 

2.0 
2.1 
3.4 
1.1 

- 

7.8 

- 

works that BARTMAP-SRM considers during learning. 
For this first experiment, BARTMAP-SRM's output net- 
work occurs at a complexity of 61 F 2  nodes, even though 
there are many networks with more F 2  that have a higher 
test performance. This particular problem is an example 
where structural risk minimization is just not needed, al- 
though BARTMAP-SRM does output a good network. 
Empirical risk minimization a la Fuzzy ARTMAP does 
just fine. 

7.2 Noisy Circle-in-the-Square. 
In this problem, we add 20% label noise to the previous 
learning problem. Thus with probability f each sample 
label is flipped. This label noise is significant, but it does 
allow us to see the performance of the learning algorithms 
in the presence of noise. In table 2, PARTMAP does not 
handle noisy data very well. GARTMAP shows good per- 
formance throughout our experiments, but it does have a 
very high standard deviation across the training sets im- 
plying it is not as stable as some of the other algorithms. 
BARTMAP-H deals with noisy data by creating a hierar- 
chy of cluster with greater specificity (usually less error) 
as it goes down its tree. BARTMAP-H tends to use many 
more F 2  nodes, in general, than the other algorithms. 

In Fig. 4, we see our first example where structural risk 
minimization buys us something. This plot is a good 
example where as the network complexity increases, af- 
ter a certain point, test performance decreases steadily. 
Over-fitting the data with too many F 2  nodes decreases 
generalization performance. 

7.3 Overlapping Squares. 
This experiment involves a uniformly distributed square 
overlapping a uniformly distributed square, where the 

''I;-------l 
80 

1 

I I 
' 0  50 100 150 200 250 MO 350 400 

Nmtm d F2 Nades 

Figure 4: 
Square. 

BARTMAP-SRM and Noisy Circle-in-the- 

Architecture 
FuzARTMAP 
ART-EMAP 
ARTMAP-IC 
dARTMAP 
GARTMAPx=.i 
BARTMAP,,.z 
PART MAP^,.^ 

BARTMAP-S,,.25 
BARTMAP-C,=.5 

B ARTMAP-H 

B ARTMAP-SRM 

Epochs 
7.7 
7.7 
7.7 
1 .o 
5.0 
9.0 

24.4 
2.6 
9.3 
2.0 
5.0 

F 2  
Nodes 
127.6 
127.6 
127.6 
35.9 
10.8 
99.9 
52.7 

114.0 
20.8 
2.0 

16.0 

Table 3: Overlapping Squares. 

smaller square has half the area of the larger square. Both 
squares are centered on the same point. In table 3, we 
see a problem that should be easy for the methods, us- 
ing hyper-box F2 nodes, to capture in very few nodes. 
Note that BARTMAP-C uses only 2 hyper-boxes here, 
and BARTMAP-SRM achieves a nearly optimal solution 
with exactly 16 hyper-boxes. 

In Fig. 5, there is a steady drop off in performance when 
the network complexity increases beyond 16. The reason 
for this is that BARTMAP-SRM only needs 16 hyper- 
boxes to solve this problem exactly, and any more de- 
crease its generalization performance. 

8 Conclusions 
In this paper we have shown through several simple learn- 
ing problems how structural risk minimization can be 
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Figure 5: BARTMAP-SRM and Overlapping Squares. 

helpful in providing solutions with greater generalization 
performance. The spirit of Occam’s Razor [22] infers that 
we should not complicate things unnecessarily, and the 
Rademacher penalty is one measure of complexity useful 
in allowing us to  achieve greater simplicity. Our future 
research will continue to  push the use of structural risk 
minimization in ARTMAP-based learning, even on-line 
learning, if possible. 
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