

PIPELINING OF FUZZY ARTMAP (FAM) WITHOUT MATCH
TRACKING

JOSE CASTRO(*), JIMMY SECRETAN(**), MICHAEL GEORGIOPOULOS(**),
RONALD F. DEMARA (*), GEORGIOS ANAGNOSTOPOULOS(***),

AVELINO GONZALEZ (**)
(*) Comp Eng., Instituto Tecnológico de Costa Rica, Cartago, Costa Rica

(**) Dept. of ECE, University of Central Florida, Orlando, FL 32816
(***) Dept. of ECE, Florida Institute of Technology, Melbourne, FL 32901

ABSTRACT
Fuzzy ARTMAP (FAM) is a neural network architecture that can establish the
correct mapping between real-valued input patterns and correct labels in a
variety of classification problems. Nevertheless, as the size of the dataset grows
to thousands and hundreds of thousands, FAM’s convergence time slows down
considerably. In this paper we focus on a FAM variant called no-match
tracking FAM (NMT-FAM). We propose a coarse grain parallelization of the
NMT-FAM, based on a pipeline, and show that the parallelization strategy
achieves linear speed-up in the order of p (number of processors). Experiments
on the Covertype database support our results. We have also shown, but not
included in this paper, that the parallelized NMT-FAM is equivalent to the
sequential NMT-FAM, it also possesses a number of good properties. Our work
in this paper is an effort in the direction of demonstrating that FAM can,
through appropriate parallelization strategies, be used to mine data from large
databases.

1. INTRODUCTION

Neural network algorithms have prohibitively slow training times, especially when
they learn from large databases. Even Fuzzy ARTMAP (Carpenter, 1992), one of the
fastest neural network algorithms in terms of training time, tends to exhibit slow
convergence time as the size of the network increases. One way to address this problem is
extensive use of parallelization. One of the works related to the parallelization of ART
that is worth mentioning is the work by Manolakos (1998), where he has implemented a
non-supervised ART neural network (ART1) on a ring of processors. Fuzzy ARTMAP
has many desirable characteristics, such as on-line learning capabilities, fast training
time, the ability to solve any mapping (classification) problem, an ease to provide
explanations for the answers that it produces, etc. But Fuzzy ARTMAP’s potential is
compromised by the fact that its convergence speed to a solution, decreases considerably
for problems with large datasets. This paper addresses this issue, the issue of Fuzzy
ARTMAP parallelization so that it becomes more efficient, when confronted with the
training of large datasets.

2. FAM AND NO MATCH-TRACKING FAM ALGORITHMS

 The Fuzzy ARTMAP architecture consists of three layers or fields of nodes (see
Figure 1). It is assumed here that the reader is familiar with the Fuzzy ARTMAP layers,
their functionality, and the associated Fuzzy ARTMAP weights. It is also assumed here
that the reader is familiar with the two network parameters in FAM, the choice

parameter aβ , and the baseline vigilance parameter aρ . The terminology that we have

adopted is to designate inputs by I, outputs by O, template weights by
a
jw and inter-ART

weights by ab
jW . Fuzzy ARTMAP can operate in two distinct phases: the training phase

and the performance phase. In the training phase, Fuzzy ARTMAP is presented with a
sequence of input/output pairs and it goes through a set of designated operations (to be
described below) to learn the correct mapping from inputs to desired outputs. In this
paper, only the on-line training phase of Fuzzy ARTMAP is considered, where an input
output pair from the training set is only presented once. In the performance phase the
trained Fuzzy ARTMAP is presented with an input pattern and it is required to produce a
response (predicted output pattern). In this phase Fuzzy ARTMAP is usually presented
with a list of input patterns whose correct output (response) is known; this way the
trained Fuzzy ARTMAP’s performance can be assessed. Prior to initiating the training

phase of Fuzzy ARTMAP the top–down weights (the swa
ji ') are chosen equal to 1.

There are three major operations that take place during the presentation of a training
input/output pair (e.g., ()rr OI ,) to Fuzzy ARTMAP. One of the specific operands

involved in all of these operations is the fuzzy min operand, designated by the symbol ^.
Actually, the fuzzy min operation of two vectors x, and y, designated as x^y, is a vector
whose components are equal to the minimum of components of x and y. Another specific

operand involved in these equations is designated by the symbol • . In particular, |x| is

the size of a vector x and is defined to be the sum of its components.

Operation 1: Calculation of bottom up inputs to every node j in
aF2 , as follows:

a
a
j

a
j

r

a
jT

β+

∧
=

w

wI
 (1)

after calculation of the bottom up inputs the node jmax with the maximum bottom up input
is chosen.

Operation 2: The node jmax with the maximum bottom up input is examined to
determine whether it passes the vigilance criterion. A node passes the vigilance criterion
if the following condition is met:

ar

a
j

r

ρ≥
∧

I

wI
 (2)

if the vigilance criterion is satisfied we proceed with operation 3 otherwise node jmax is
disqualified and we find the next node in sequence in F2

a that maximizes the bottom up
input. Eventually we will end up with a node jmax that maximizes the bottom up input and
passes the vigilance criterion.

Operation 3: This operation is implemented only after we have found a node jmax that
maximizes the bottom-up input of the remaining nodes in competition and that passes the
vigilance criterion. Operation 3 determines whether this node jmax passes the prediction
test. The prediction test checks if the inter--ART weight vector emanating from node jmax

 ie. ()ab
Nj

ab
j

ab
j

ab
j b

WWW ,21 maxmaxmaxmax
,,, L=W (3)

matches exactly the desired output vector rO (if it does this is referred to as passing the
prediction test). If the node does not pass the prediction test, the vigilance parameter

aρ is increased to the level of

 ερ +
∧

←
r

a
j

r

a
I

wI
max (4)

where ε is a very small number. Then, node jmax is disqualified, and the next in
sequence node that maximizes the bottom-up input and passes the vigilance is chosen.
The above operation of FAM is called match-tracking operation. If, on the other hand,
node jmax passes the predictability test, the weights in Fuzzy ARTMAP are modified as
follows:
 rab

j
ra

j
a
j OWIww ←∧←

maxmaxmax
, (5)

A modification of Fuzzy ARTMAP that is amenable to parallelization is the “no match-
tracking” Fuzzy ARTMAP. This modification was proposed by Anagnostopoulos (2003)
and it was shown that it can actually improve the performance of Fuzzy ARTMAP on
some databases. The no-match tracking Fuzzy ARTMAP algorithm is the same as Fuzzy
ARTMAP but it bypasses the match-tracking operation (described above). That is if a
node that maximizes the bottom-up input and satisfies the vigilance is selected and this
node does not pass the prediction test a new node (uncommitted node) in the category
representation layer of Fuzzy ARTMAP is activated.

3. PARALLEL, NO-MATCH TRACKING FAM IMPLEMENTATION
 Anagnostopoulos’s FAM variant is particular amenable to production-line style
pipeline parallel implementation since patterns can be evenly distributed among the
nodes in the pipeline. The elimination of match-tracking makes the learning of the pattern
a one-pass over the pipeline procedure, and different patterns can be processed on the
different pipeline steps to achieve optimum parallelization. For the implementation of the
no-match tracking FAM we first introduce a number of definitions. The algorithm itself
(parallel, no-match tracking FAM implementation) is shown after the definitions are
introduced. In the description of the parallel no-match tracking FAM the initialization
procedure (INIT(p)) and WINNER are not described due to lack of space. More details
about these procedures as well as the algorithm presented here can be found in (Castro,
2004).

:n number of processors in the pipeline

:k index of current process, { }1,,1,0 −∈ nk K

:p packet size, number of patterns sent downstream, 2p = number of templates sent

upstream

:iI input pattern i of the current packet in the pipeline. { }pi ,,2,1 K∈ .

:iw current best candidate template for input pattern iI .

:iT current maximum activation for input pattern iI .
:smyTemplate :set of templates that belong to the current processor.

:nodes variable local to the current processor that holds the total number of templates
the process is aware of (its own plus the templates of other processors)

:myShare amount of templates that the current process should have.

:1
i
kw − template i coming from previous process in the pipeline.

:1
i
kw + template i coming from next process in the ring.

:iw template i going to next process in the ring.

:)1(
i

ktow − template i going to previous process in the pipeline.

:.classI class label associated with a given input pattern.

:.classw class label associated with a given input template.

:)(windex sequential index assigned to the template.

:newNodes number of created nodes on a given iteration to communicate upstream in
the pipeline.

:1+knewNodes number of created nodes on a given iteration communicated from

processor k+1 in the pipeline.

Process),,,,(pnk aa βρ

1 INIT)(p

2 continue while

3 do

4 mySharesmyTemplate > while

5 do

6 EXTRACT-TEMPLATE { }()i
ktowsmyTemplate)1(, −

7 SEND-NEXT (){ }()piTwnk iii ,,1:,,,, K=I

8 RECV-NEXT { }()11 ,2,,1:,, ++ = k
i
k newNodespiwnk K

9 SEND-NEXT { }()newNodespiwk i
kto ,2,,1:,)1(K=−

10 RECV-NEXT (){ }()piTwk i
k

i
k

i
k ,,1:,,, 11)1(K=−−− I

11 1+← knewNodesnewNodes

12 { }i
kwS 1+←

13 { }pi ,,2,1 K in eachfor

14 ()STwWINNER aa
iii ,,,,, βρI do

15 SsmyTemplatesmyTemplate ∪←

16 EOF=−
i
k 1I if

17 FALSE←continue then

18 { }i
ktowS)1(−← else

19 { }pi ,,2,1 K in eachfor

20 ()STwWINNER aa
i

k
i
k

i
k ,,,,, 111 βρ−−−I do

21 () ()i
k

i
k

i
k

iii TwTw 111 ,,,, −−−← I I

22 { }pi ,,2,1 K in eachfor

23 ()smyTemplateTwWINNER aa
iii ,,,,, βρI do

24 1−= nk if

25)()(ii wclassclass =I if then

26 then

27 { }ii wsmyTemplatesmyTemplate ^I∪←

28 ienewTemplat I else ←

29 nodesnewNodesenewTemplatindex +←)(

30 { }ii wsmyTemplatesmyTemplate ,I∪←

31 1+← newNodesnewNodes

32 0>newNodes if

33 then

34 newNodesnodesnodes +←

35

←
n

nodes
myShare

36 SEND-NEXT (){ }()none,0none,,,nk

37 RECV-NEXT { }()11 ,2,,1:,, ++ = k
i
k newNodespiwnk K

38 { }piwsmyTemplatesmyTemplate i
k 2,,1:1 K=∪← +

4. EXPERIMENTS

The database used for testing the performance of the parallel, no-match tracking
FAM was the Forest Covertype database, provided by Blackard, and donated to the UCI
Repository. The experiments were run on OPCODE, a 96 node Beowulf cluster,
connected by a fast Ethernet network. The database consists of a total of 581,012
patterns, each one associated with 1 of 7 different forest tree cover-types. The number of
attributes of each pattern is 54, but this number is misleading since attributes 11 through
14 are actually a binary tabulation of the attribute Wilderness-Area, and attributes 15 to
54 (40 of them) are a binary tabulation of the attribute Soil-Type. The original database
values are not normalized to fit in the unit hypercube (FAM requires normalization of
input values, so that they lie in the interval [0, 1]). Hence, we normalized the input
values. Patterns 1 through 512,000 were used for the training of the NMT-FAM. Patterns
561,001 to 581, 000 (20,000 of them) were used for testing. Training set sizes of

}9,...,6,5{,21000 ∈ii were used for the training of the no-match tracking FAM. The

number of processors in the pipeline varied from p=1 to p=32, in powers of 2. The
metrics used to measure the performance of the pipelined approach were: (a)
Classification performance of the pipelined no-match tracking FAM, and (b) Speed-up of
the pipelined no-match tracking FAM versus sequential no-match tracking FAM. Results
of the speed-up for this database can be seen in Figure 2. We observe from this figure that
the speed-up is linear. For large training set sizes (i.e., 128,000 patterns) the speed-up is
slightly above linear which suggests that the memory issues are a concern when few
processes are in the pipeline. The classification performance of the Forest Covertype
ranges from 70% to 79% as the training set size changes from 32,000 patterns to 512,000
patterns. It is worth mentioning that the classification performance of the no-match
tracking FAM is comparable to the performance of the original FAM algorithm and
better than the performance of other algorithms reported in the literature (best
performance found was around 75%).

5. CONCLUSIONS
 We have implemented a pipelined Fuzzy ARTMAP variant (called no-match
tracking FAM). This FAM variant allowed us to focus on the parallelization of the
competition process in Fuzzy ARTMAP. We have showed that this parallel
implementation of the FAM variant is theoretically sound (results were omitted due to
lack of space) and exhibits good workload balancing properties. We also showed
experimentally (by working with the Covertype database) that this algorithm exhibited
linear speed-up when the number of processors in the pipeline is increased. Furthermore,
the generalization performance of this parallel no-matchtracking FAM was better than the
performance of any other algorithm (from results reported in the literature) and similar to
the performance of the original FAM. Finally, it is worth mentioning that, to the best of
our knowledge, this is the first implementation of a Fuzzy ARTMAP-like algorithm on a
Beowulf cluster.

ACKNOWLEDGEMENTS: Jose Castro and Michael Georgiopoulos would like to
acknowledge the partial support of the NSF CRCD grant, no: 0203446. Georgios
Anagnostopoulos and Michael Georgiopoulos would also like to acknowledge the partial
support of the NSF CCLI grant, no: 0341601.

REFERENCES
Anagnostopoulos, G. C., and Georgiopoulos, M., “Putting the utility of match-tracking in Fuzzy

ARTMAP to the test,” In Proceedings of the Seventh International Conference on Knowledge-
based Intelligent Information Engineering, Vol. 2, pp. 1-6, KES, 2003.

Carpenter, G. A., Grossberg, S. Markuzon, N., Reynolds, J. H., Rosen, D. B., “Fuzzy ARTMAP: A
neural network architecture for incremental learning of analog multi-dimensional maps,” IEEE
Transactions on Neural Networks, Vol. 3, No. 5. pp. 698-713, 1992.

Castro, J., “Modifications of the Fuzzy-ARTMAP Algorithms for Distributed Learning in Large
Data Sets,” PhD. Dissertation, University of Central Florida, Summer 2004.

Manolakos, E. S., “Parallel Implementation of ART1 neural networks on Processor Ring
Architectures”, in Parallel Architectures for Artificial Neural Networks, editors N.
Sundararajan and P. Saratchandran, IEEE Computer Society Press, 1998.

Figure 1. FAM Diagram.

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30 35

S
p

ee
d

u
p

Number of Processors

Parallel Speedup versus Number of Processors for Covertype Database

512,000 patterns
256,000 patterns
128,000 patterns

64,000 patterns
32,000 patterns

Figure 2. Performance of Pipelined NMT-FAM.

Output
 Layer

Category
Layer

I = (a, ac)

Input
Layer

Field F2
a

Field F2
b

Field F1
a

