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Abstract - In this paper we present an experimental comparison
of four neural-based classifiers, namely Growing Cell Structures
(GCS), Growing Neural Gas (GNG), Semi-Supervised Fuzzy
ARTMAP (ssFAM) and Semi-Supervised Ellipsoid ARTMAP
(ssEAM). The comparison is performed in terms of classification
accuracy and structural complexity of the resulting classifiers.
Earlier studies that had appeared in the literature showed that
Fuzzy ARTMAP, which utilizes fully-supervised learning, may
suffer from poor generalization performance, when compared to
GCS and GNG classifiers. This phenomenon typically occurs,
when class distribution overlap is significant. Here, we present
new results indicating that ARTMAP classifiers equipped with
semi-supervised learning capabilities can improve their
performance with respect to GCS and GNG classifiers, while
maintaining lower structural complexity.

I. INTRODUCTION

Neural networks have been successfully applied in a
plethora of application domains as classification models.
Among these, a particularly successful group is the family of
incremental neural networks. The three main characteristics
of these networks are (i) their ability to improve their
classification performance by gradually increasing their
structural complexity during training on an as-needed basis,
(ii) their ability to perform online (incremental) learning and
(iii) their response transparency. In the context of
classification, incremental leaming refers to the ability of
these networks to leam how to correctly classify individual
patterns on a one-by-one basis in the order they become
available for learning. During this process only a small part of
the network has to undergo appropriate changes. These
updates are performed via local adaptation rules and typically
only a small number of synaptic weights are affected per
presented pattern. Also, by response transparency we mean
our ability to easily explain a network's response to a specific
input. This is a highly desirable feature in many real
applications, where assurance is needed about the validity of
the model's classification results.

These characteristics contrast other neural architectures,
such as Multi-Layer Perceptrons [1], [2] among others, whose

structure and topology must be defined prior to the training
process. Fiuthermore, learning a single pattern typically
involves updating a large proportion (if not all) of the
network's synaptic weights. Moreover, since the network's
knowledge is highly distributed over all synaptic weights due
to the utilization of global adaptation rules, it is difficult, in
general, to explain the network's outputs.

Incremental neural networks can also be thought of
belonging to the broader family ofexemplar-based classifiers,
which cluster the training patterns via the use of exemplars or
prototypes prior or simultaneously to predicting class labels.
These exemplars may have different geometrical
representations, such as single points (vectors), hyper-spheres
and other constructs, whose role is to represent the existence
and influence of training patterns in the feature space. From
that aspect the set of exemplars substitutes the role of the
training set. After clustering the resulting number of
exemplars is far less than the size of the training set and,
therefore, the collection of exemplars can be thought of as a
compressed representation of the knowledge implied by the
training data.

This paper will focus on four types of incremental neural
architectures: Growing Cell Structures (GCS), Growing
Neural Gas (GNG), Semi-Supervised Fuzzy ARTMAP
(ssFAM) and Semi-Supervised Ellipsoidal ARTMAP
(ssEAM) classifiers. GCS is a neural network architecture
consisting of a Self-Organizing Feature Map-type layer [3]
(hidden layer) followed by a Radial Basis Function output
layer [4]. Neighborhoods of hidden neurons are defined with
the aid ofk-dimensional topological structures (k-dimensional
simplexes) that relate the neurons with each other [5]. The
GNG [6] architecture is a modification to the GCS family, in
which the dimensionality of the topological structures is not
predefined, but is discovered during training. Both ssFAM
and ssEAM neural networks have their roots in Adaptive
Resonance Theory first proposed in [7] and are relatively
recent extensions (although in slightly different aspects) of
the basic Fuzzy ARTMAP (FAM) architecture [8]. While
FAM and ssFAM employ hyper-rectangles as exemplars [9],
ssEAM uses hyper-ellipsoids to summarize input data [10].
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ssFAM and ssEAM make use of semi-supervised learning
[11] during their training phase that allows these networks to
feature zero post-training error, while preserving finite-time
learning.

An experimental comparison of GCS, GNG, MLP and
FAM networks presented in [12] suggested that FAM models,
although having the fastest training time and the lowest, final
network size, have the tendency of performing poorly, when
tackling classification problems that feature significant class
distribution overlap as well as non-linear, decision
boundaries. The later phenomenon was indirectly attributed to
the hyper-rectangular exemplars used by FAM networks,
which induce piece-wise linear decision boundaries. The
objective of our experimental comparison is to show that
ARTMAP classifiers making use of semi-supervised learning,
such as ssFAM and ssEAM, achieve generalization
performance comparable to the one of GCS and GNG models,
while maintaining lower structural complexity and shorter
training times. Towards this goal we draw a new comparison
of GCS, GNG, ssFAM and ssEAM on four classification
problems ofvarying degree of difficulty.

The rest of the paper is organized as follows. In Section
II we provide more details about the main characteristics of
the architectures we compare, whereas Section III describes
the data sets that were used, our experimental settings and the
results we obtained. Finally, Section IV summarizes our
findings and conclusions.

II. BRIEF DESCRIFTION OF ARCHITECTURES

A. GCS& GNG Networks

As mentioned earlier in the text, GCS networks consist of
three layers (input, hidden and output layers), the hidden layer
being a special, self-organizing map and the output layer
being a radial basis function layer. Unlike the traditional self-
organizing maps, neighborhoods of hidden nodes in GCS are
being defined with the aid of a graph embedded in a k-
dimensional space, where k is a network parameter. Each
node of the graph corresponds to a hidden node and
neighborhood relations between two hidden nodes are
depicted via edges connecting the corresponding graph nodes.
The purpose of the hidden layer is to perform clustering of the
input data and the exemplars/prototypes used are the input-to-
hidden layer synaptic weight vectors. Appropriate updates
performed on the graph by inserting and deleting nodes
allows neighborhoods to change dynamically in an
incremental, online fashion and capture the characteristics of
the underlying data distribution. Insertion and deletion of
nodes occurs in such a manner so that the graph consists of
(k+l)dimensional simplexes at all times. This process is
depicted in Figures l(a) and l(b). Typically, insertions
happen every X presentations of patterns and node deletions
after the hidden layer has reached a prescribed size. The
maximum size a hidden layer can reach constitutes an
additional training parameter for the GCS network. Upon

presentation of a training pattern, the hidden node featuring
the highest activation function value (the winning node) and
its immediate neighbors (according to the graph) are updated
using a learning rate of -b and s, respectively. The weights
from the hidden to output layer are updated with a learning
rate of il. The main reason behind node insertion is to make
the selection of winning nodes approximately equiprobable.
We must note here that the hidden units feature Gaussian
activation functions and that the all the node updates occur
concurrently. Finally, the activation signals of the output layer
act as discriminant values used to determine the final
classification label of a pattern.

(a)

(b)

Fig. 1. Graph modification (a) after inserting a hidden node and (b) after
removing a hidden node in a GCS network.

The GNG network is a variation to the GCS that is
designed to overcome, primarily, the difficulty of pre-
assigning a particular dimensionality to the space, in which
the neighborhood graph is embedded. The growing
mechanism of GNG's hidden layer is similar to the one of
GCS, the main difference being that GNG uses a type of
competitive Hebbian learning (CHL) to modify the topology
structure of the graph. In particular, CHL will relate two
hidden units as neighbors (an edge connecting the
corresponding two graph nodes will be created), if they are
the two most active nodes, when a pattern is presented. On
the other hand, a neighborhood relationship between two
nodes is dissolved, if the activation signals of those two
hidden nodes are not positively correlated. The adoption of
CHL principles for the training of the hidden layer allows
GNG networks to form neighborhood graphs embedded in a
space, whose dimensionality varies by adapting to local, data
distribution profiles. Apart from the aforementioned
differences, GNG and GCS are structurally the same.

B. Semi-SupervisedFAM& EAMNetworks

Semi-supervised FAM and EAM classifiers are real-time,
recurrent neural networks that were derived from the original
FAM architecture. Their basic building block is the ART-
module, a three-layered (for ssEAM, two-layered) neuronal
structure, whose output and hidden layer are bi-directionally
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interconnected. Moreover, the output layer features lateral
connections and acts as a competitive layer. Prior to
predicting class labels, these architectures summarize the
input data in a self-organizing fashion into clusters, which in
the adaptive resonance theory literature are referred to as
categories. The geometric interpretation of categories for
ssFAM and ssEAM are respectively hyper-rectangles and
hyper-ellipsoids embedded in the feature space. Figure 2
shows an example of category representations for a two-
dimensional input space.ii}~~~~~~~v

Uj

Fig. 2. Geometrical representations ofssFAM (on the left) and ssEAM (on
the right) categories for a 2-dimensional input space.

ssFAM categories are specified by the min- and max-
points of the corresponding hyper-rectangle, while ssEAM
categories are described by a center, a Mahalanobis radius
and a direction vector. The eccentricity of ssEAM's hyper-
ellipsoids is determined via the network parameter p, which is
defined as the ratio of the hyper-ellipsoid's major axis length
over the length of each other minor axis. The maximum size
ssFAM and ssEAM categories can reach is dictated by the
value of another network parameter, the baseline vigilance
parameter p . When a pattern is being presented, output
neurons of the ART-module compete and the one with the
highest activation either assigns (according to its associated
category) a class label to the pattern during performance
phase or is eligible to learn the new pattern during training.
These activation signals are influenced by the choice
parameter a ofssFAM and ssEAM.

Learning in the two networks occurs via expansion of
already existing categories or via the creation of new ones.
The expansion mechanism is illustrated in Figure 3 for a
special mode of learning, called fast learning. The hyper-
rectangle or hyper-ellipsoid expands enough to include the
pattern to be learnt. Also, in rough terms, if the pattem falls
inside a category's geometrical representation it is assumed to
be already known. Unlike GCS and GNG, there is no need to
pre-specify an upper limit for the number of clusters to be
created. If a pattern does not fit the particular characteristics
of already existing categories a new category will be created.
Note that in ssFAM/ssEAM categories (clusters) are never
removed to ensure stability of the learning process.

One of the main, attractive characteristics of the original
FAM classifier is its ability to complete its training in a finite
number of steps (finite, stable learning), when fast learning of
patterns is employed. By completion of training we mean that
the model has leamt how to correctly label the entire training

set. While this feature of FAM is desirable in some cases, it
will exhibit poor generalization due to over-fitting the training
data, when there is an inherent, high class distribution
overlap.

Both semi-supervised architectures address this issue by
allowing some errors to be committed during training, while
maintaining the finite, stable learning feature of FAM. In
ssFAM and ssEAM this is accomplished via a tunable
misclassification tolerance parameter e that eventually
determines the level of the networks' post-training
(resubstitution) error. A value of 0 corresponds to fully-
supervised learning, according to which a category can learn
only patterns of a specific label; under these circumstances
ssFAM behaves like FAM. On the other hand a value of 1
allows a category to learn any pattern independently of class
label (unsupervised learning ofcategories).

E-

7

Fig. 3. Leaming in ssFAM (on the left) and ssEAM (on the right) through
category expansion.

We realize that in this section we were only able to
provide a rudimentary, brief portrayal of the neural
architectures we chose to focus on. Therefore, we refer the
interested reader to references [5-11] for more detailed
descriptions.

III. EXPERIMENTAL RESULTS

In order to compare the GCS, GNG, ssEAM, and ssFAM
classifiers we conducted a series of experiments using three
artificially-generated data sets as well as four real data sets.
Below we provide a brief description for each one ofthem.

A. Description ofdata sets

1) G4 data sets: Three data sets were generated by
sampling from a bi-variate mixture of isotropic Gaussian
distributions with equal priors consisting of 4 components;
each component corresponded to a separate class distribution.
The class means were positioned in such a way so that the
featured four-fold symmetry with respect to the horizontal
and vertical axes. We selected this particular distribution
scheme in order to know apriori the exact Bayes error for the
associated classification problems. By changing the spatial
separation ofthe 4 means while preserving their symmetry we
generated 3 datasets named G4LO, G4ME and G4HI with
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Bayes error 0.05, 0.15 and 0.4 respectively. In the sequel will
be referring to the Bayes error of these datasets as overlap
expressed in percentage. For each one of the aforementioned
3 cases we generated a training set, a cross-validation set and
a test set of 500, 5,000 and 5,000 patterns respectively. We
kept the training set size low to minimize the required training
time of the models and we chose to use larger cross-validation
and test sets to achieve a capability for finer resolution of the
subsequent statistical tests we conducted. Figure 4 depicts
scatter plots of test patterns from each data set.

, wJ.0
m ,vt: D

Fig. 4. Scatter plots of test patterns for the 4-Gaussian problem with 5%,
15%, and 40% overlap (from left to right).

2) Abalone data set: We also used the Abalone data set
[13], whose patterns 8-dimensional with each feature
corresponding to physical measurements of the abalone
marine creature. In particular, the features are Sex, Length,
Diameter, Height, Wh6le weight, Shucked weight, Viscera
weight and Shell weight. The learning task associated to this
data set is to predict the abalone's age by predicting its
number of rings, which ranges from 1 to 29. The number of
rings plus 1.5 equals the age of the creature.

This data set is treated as a 3-category classification
problem (grouping ring classes 1-8, 9 and 10, and 11 on) with
a total number of 4177 instances. Out of this many patterns,
we used 1000 to make up a traniing set, another 2133 for a
cross-validation set, and the remaining (1044 patterns) for
testing purposes. We chose the Abalone set because the
classification of its data has been reported in the literature to
be a relatively difficult task with low percentage of cofrect
classification.

3) Glass, Pima Indian Diabetes, Cancer data sets:
Finally, we drew model comparisons on 3 out of the 4 data
sets utilized in [12]. Due to lack of space, we refer the reader
to [13] for a detailed description of the sets. We only mention
in brief, that the sets are relatively small in size containing
only 214, 768 and 690 total examples respectively.
Furthermore, we used identical training, cross-validation and
test subset sizes as in [12].

B. Experimental Setup

In this subsection we explain our experimental setup and
the particular methodology we utilized to conduct the
comparisons on classification accuracy and size complexity
of the 4 classifiers. For each model-dataset pair we used a
large number of combinations of training parameter values.

More specifically, the same combinations ofparameter values
for each classifier type were used for all 4 data sets.
Furthermore, each combination gave rise to an individual
trained model. From the set of all trained models of each
classifier type (GCS, GNG, ssEAM and ssFAM) we selected
the 100 most accurate models in terms of classification
performance on the cross-validation set. Finally, we assessed
the accuracy and size complexity of those 100 best networks
on a separate test set. We followed this particular scheme to
avoid selection bias.

In order to train GCS models we used a GCS graph
dimensionality of 1 through 6 and we limited the maximum
size of hidden layer to 50 and 100 neurons. For the GNG
classifiers we let the number of adaptation steps before node
insertion (X) to take values in [100:50:300]. For both the
GCS and GNG classifiers we let the learning rate for the best
matching hidden unit (eb) to take values in [0.1:0.05:0.25],
of the neighboring hidden nodes (e,,) in {0.006, 0.012} and
the learning rate of output nodes (T ) in [0.1:0.05:0.3]. Let us
note here that these ranges of training parameter values are a
superset of those specified in [12].

With respect to ssFAM and ssEAM the following values
were used: E in the range [0.0:0.1:1.0], baseline vigilance p
in [0.0:0.05:0.75]U[0.75:0.01:0.99] and choice parameter a in
{0.0001, 0.001, 0.01, 0.1, 1.0}. For ssEAM the axes ratio
parameter took values in [0.3:0.1:1.0]. Also, for both
architectures a value of 0 was used for p during the
networks' performance phases to force class label
assignments on all cross-validation and test set patterns.
Finally, for all 4 network types the training set patterns were
presented in 100 different orders during training; the selection
of each particular order can be thought of as an additional
training parameter. The aforementioned parameter values and
value ranges gave approximately 20,000 training parameter
value combinations per network type and data set. In other
words, about 20,000 models of each kind were trained on
each of the 4 data sets resulting in a total of 320,000 models
having being trained approximately.

C. Observations

In the following presentation and discussion of the results
we have obtained, PIC will stand for percent incorrect
classification, that is, the error rate of a classifier. Also, we
define as size of the architecture to be its structural
complexity: for GCS and GNG classifiers it is the number of
hidden neurons utilized, while for ssFAM, ssEAM and FAM
it is the number of categories employed. Ideally, a classifier
should have the lowest possible PIC and simultaneously have
the smallest possible size for a given classification problem.
The comparison of the 4 models is conducted strictly with
respect to the test set. Finally, we call champion model the
network that has lowest PIC within the set of models of the
same model family for a given data set.
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Table I depicts the maximum, median, minimum and
standard deviation for the PIC on the test set for each
classifier type and each data set considered. In this table, best
values for each row are depicted in bold. Also, Figures 5(a)
through 5(d) are generalization performance (PIC on test set)
versus structural complexity (size) plots of then 10 best
models from each family for the G4LO, G4HI, Diabetes and
Abalone data sets respectively.

TABLE I
PIC Test for 100 best classifiers

G4LO GCS GNG ssEAM ssFAM FAM
Max 10.58 10.48 10.74 10.48 14.34

Median 10.48 10.4 10.62 10.38 13.72
Min 10.14 10.18 10.56 10.14 12.6
Std. 0.09211 0.07888 0.06457 0.10203 0.30566
G4ME
Max 25.5 24.86 26.36 25.54 33.56

Median 25.36 24.74 26 25.2 31.98
Min 24.88 24.4 25.4 24.78 31.52
Std. 0.14061 0.12173 0.26508 0.25875 0.39804
G4HI _ _ _

Max 42.34 41.72 42.76 42.3 49.46
Median 42.16 41.58 42.4 42.06 48.52
Min 41.36 41.02 41.52 41.28 47.44
Std. 0.21283 0.1378 0.34975 0.25216 0.48651

CANCER
Max 0.5747 0 0 0.5747 5.1724

Median 0.5747 0 0 0 1.1494
Min 0 0 0 0 0
Std. 0.2671 0 0 0.0809 1.5883

GLASS
Max 35.8491 43.3962 39.6226 35.8491 50.9434

Median 35.8491 39.6226 39.6226 33.9623 39.6226
Min 32.0755 33.9623 30.1887 32.0755 33.9623
Std. 1.1024 2.4243 1.8443 1.3564 3.8905

DIABETES
Max 26.3542 27.3958 26.5625 26.5625 35.938

Median 25.8333 26.3542 25 25 27.604
Min 20.1042 21.1458 22.3958 19.7917 20.313
Std. 1.0586 1.0824 1.0232 1.6368 3.0864

ABALONE
Max 47.51 47.797 46.935 46.839 56.897

Median 47.126 47.51 46.743 46.456 53.161
Min 45.498 45.881 45.594 45.211 49.234
Std. 0.39718 0.40604 033461 0.4532 1.4949

From Table I we observe that for the G4 databases GCS
and GNG champion models exhibit the smallest PIC point
estimates, for the Glass, Diabetes and Abalone data sets the
best models appear to be either ssEAM or ssFAM, while for
the Cancer database there is tie. However, at significance
level of 0.01 the differences in PIC point estimates between
the 4 types of champion (minimum PIC) models are
statistically insignificant for the all datasets. For example,
when comparing GCS and GNG to the semi-supervised
ARTMAP architectures on the G4 data sets, the differences in
PIC of the champion models is below 1%, which is
statistically insignificant, while a difference of slightly more
than 1% in PIC would have lead to the opposite conclusion.
An analogous statement also holds for the results pertaining
to the rest of the databases.
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In particular, for the Glass and Diabetes data sets we can
attribute this fact to the small sizes of the test sets that had to
be used (53 and 192 patterns respectively). A notable
exception is the champion ssFAM network for the Abalone
dataset, which differs by 1.04% with the champion GNG
network, the difference being statistically significant. Also,
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there are some indications that the generalization performance
of ssFAM and ssEAM tends to increase relatively to that of
GCS and GNG in high class distribution overlap, an
observations which is aligned with the findings in [11]. For
example, the difference in PIC Test of the best ssFAM
network from the corresponding GNG model is 0.38%,
0.26%, and -0.67% for the G4ME, G4HI, and Abalone data
sets respectively. The corresponding quantities for ssEAM
and GNG are 1.0%, 0.5%, and -0.29%. The aforementioned
remarks can also be observed in Figures 5(a) through 5(d) for
the G4Lo, G4HI, Diabetes and Abalone data sets. With
respect to FAM, all champion GCS, GNG, ssFAM and
ssEAM are superior in terms of PIC on the G4 and Abalone
datasets, since all differences in PIC are rather large (ranging
from 2% to 6%) and, thus, turn out to be statistically
significant. However, the contrary holds for the remaining
datasets, where the differences are too small.
With respect to structural complexity, it is clearly exhibited in
our results (for example, as shown in Figures 5) that ssFAM
and ssEAM networks achieve comparable generalization
performance to the GCS and GNG classifiers, while requiring
a smaller network size. Notice that for all 4 data sets ssFAM
and ssEAM feature network sizes below 20 and in certain
cases below 10. An extreme difference in size occurs for the
Abalone data set, where both semi-supervised ARTMAP need
17 categories compared to GNG's and GCS' champion
models of sizes 42 and 150 respectively. Finally, let us
mention in passing that the ssFAM and ssEAM training
phases were less time consuming than the ones of GCS and
GNG; combined with the fact that the former models are
smaller size, GCS and GNG are associated with higher
computational overhead, whether with respect to training or
performance phase.

On balance, our results demonstrate that FAM's
performance challenges pointed out in [12] are more likely to
arise from the fully-supervised learning nature of FAM,
which may lead to over-training and even to larger models,
rather than from the piece-wise linear nature of its induced
decision boundaries, since ssFAM also creates decision
boundaries with this property. Furthermore, by using semi-
supervised learning, ARTMAP architectures like ssFAM and
ssEAM may become comparable in generalization abilities to
GCS and GNG classifiers, while requiring smaller network
sizes.

IV. SUMMARY

In this paper we present an experimental comparison of
four neural-based classifiers, namely Growing Cell Structures
(GCS), Growing Neural Gas (GNG), Semi-Supervised Fuzzy
ARTMAP (ssFAM) and Semi-Supervised Ellipsoid
ARTMAP (ssEAM). The experimental comparison is drawn
in terms of generalization performance and structural
complexity of the resulting classifiers. Earlier studies implied
that Fuzzy ARTMAP, which utilizes fully-supervised
learning, may suffer from poor generalization performance,

when compared to GCS and GNG classifiers, especially in
hard classification problems featuring high class distribution
overlap. Through our experimental study we concluded that
such deficiencies are more likely linked to fully-supervised
leaming and that ARTMAP classifiers equipped with semi-
supervised learning capabilities can improve their
performance with respect to GCS and GNG classifiers, while
maintaining lower structural complexity.
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