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ABSTRACT 

 
 

The Nearest Neighbor algorithm is one of the simplest and oldest classification 

techniques. A given collection of historic data (Training Data) of known classification is 

stored in memory. Then based on the stored knowledge the classification of an unknown 

data (Test Data) is predicted by finding the classification of the nearest neighbor. For 

example, if an instance from the test set is presented to the nearest neighbor classifier, its 

nearest neighbor, in terms of some distance metric, in the training set is found. Then its 

classification is predicted to be the classification of the nearest neighbor. This classifier is 

known as the 1-NN (one-nearest-neighbor). An extension to this classifier is the k-NN 

classifier. It follows the same principle as the 1-NN classifier with the addition of finding 

k (k > 1) neighbors and taking the classification represented by the highest number of its 

neighbors.  

It is easy to see that the implementation of the nearest neighbor classifier is effort-

less, simply store the training data and their classifications. The drawback of this 

classifier is found when a test instance is presented to be classified. The distance from the 

test pattern to every point in the training set must be found. The required computations to 

find these distances are proportional to the number of training points (N), which is 

computationally complex, especially with N large.  

The purpose of this thesis is to reduce the computational complexity of the testing 

phase of the nearest neighbor by using the Hilbert Space Filling Curve (HSFC). The 

HSFC NN classifier was implemented and its accuracy and computational complexity is 

 



compared to the original NN classifier to test the validity of using the HSFC in 

classification.
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Chapter 1: Introduction 

 

Classification is the problem of correctly classifying (labeling) data based on the 

features that they possess. For instance, an example of a classification problem is to 

recognize the type of fruit that we are dealing with (e.g., banana, apple, pear, etc.) based 

on certain features, such as color, smell, shape, and so on. In building such a classifier 

system one relies on domain knowledge about the problem at hand (e.g., that the color of 

the banana is yellow) and quite often on examples of data whose classification is known. 

The task then becomes to efficiently use this knowledge to design a classifier that 

performs this recognition (labeling), fast and accurately.  

The Nearest Neighbor classifier is one of the oldest classifiers in use today. It has 

remained popular because of its simple implementation and its guaranteed error rate of 

less than twice the error rate of the Bayesian classifier, the best possible classifier when 

statistical information about the data is known (Cover and Hart, 1967). The nearest 

neighbor classifier can be described very simply. The classification (label) of a datum (of 

certain features) and unknown classification is the same as the classification of any datum 

of known classification whose features are closest in distance to the features of datum of 

unknown classification. The assumption here is that we have available to us data of 

known classification and the features of these data belong to a feature space for which 

meaningful distances can be defined.  

One of the problems of the nearest neighbor classifier is the time that it takes to 

find the label of a datum of unknown classification. Assuming that we have stored the 
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information about the features and labels of N known points to determine the 

classification of a new datum it requires that we calculate the distances of the new datum 

from all the stored points. This is a calculation that is proportional to N and it is 

prohibitively slow for large N. One of the ways that have been suggested in the literature 

to deal with this problem is the design of a prototype nearest neighbor. A prototype 

nearest neighbor is a nearest neighbor approach where compression of the stored data of 

known classification is performed first, by clustering. Then, when a new datum of 

unknown classification arrives its nearest prototype is first found and its classification is 

predicted to be identical with the classification of the prototype. Since the number of 

prototypes is, quite often, significantly smaller than the number of points that they 

represent this approach significantly reduces the computational complexity of the nearest 

neighbor approach. The disadvantage of the prototype nearest neighbor is that it results, 

at times, in the reduction of accuracy attained by the original nearest neighbor approach.    

Examples of fast approaches that have been introduced into the literature to speed 

up the complexity of nearest neighbor include (Friedman, et al., 1975, Hart 1968). In 

particular, in Hart you start with a single randomly chosen observation as the training set, 

and then each additional data item is processed one at a time, adding it to the training set 

only if it is misclassified by the nearest neighbor rule computed on the current training 

set. While in Friedman the training data is stored in an optimized k-d tree, similar to a 

binary tree, allowing the algorithm to search only the training data that is sufficiently 

close to the test point for the nearest neighbor. The increase in speed comes from the 

decreased number of training points that are searched for the nearest neighbor.  
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Another way of dealing with the high computational complexity of the nearest 

neighbor classifier is by using the HSFC approach. Through this approach the N stored 

points of dimensionality n are mapped into a 1-dimensional index, called the HSFC 

index. The indexing happens in time. Then when a new datum arrives the 

point with its closest index is found first (in  time), and its classification is 

designated to be the classification of the point of closest index. What makes this approach 

successful, in addition to being computationally efficient, is that points whose Hilbert 

indexes are close are close in the original n – dimensional space. However, there might 

be points that are close in the original n – dimensional space whose Hilbert indices are 

not close. Hence, although Hilbert indexing improves the speed of determining a nearest 

neighbor, this advantage happens at the expense of not being able to find the nearest 

neighbor at all times.  

))(log( 2 NNO

))((log2 NO

This approach is similar to the method of (Skubalska-Rafajlowicz, et al, 1996) in 

the use of space filing curves to index the training data. In Skubalska-Rafajlowicz, the 

data was indexed using Peano and Sierspinski space filling curves. They show that these 

curves were able to produce classification performance on par with the standard NN 

approach. Their experiments were on very small data sets in the range of 80 to 200 

Training points, and did not show the increase in classification speed. They dismissed the 

Hilbert space-filling curve saying it provided lower performance, but personal 

communication with Castro suggested that this was not the case. The experiments in this 

study focus on the Hilbert space-filling curve and its performance on data sets in the 

range of 2,000 to 500,000 training points, and dimensions ranging from 2 to 12.  
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The HSFC has been used in (Castro, 2004) to partition training data for the Fuzzy 

ARTMAP classifier. The training data was partitioned into separate sets and trained on 

individual ARTMAP classifiers. This approach decreased the training time for the large 

training set without negatively affecting the classification accuracy. This also allowed the 

problem to be implemented on a Beowulf cluster to further speed up the classification 

time.  

The HSFC has also been used in (J.K.Lawder, et al., 200) to index multi-

dimensional databases and to allow efficient querying on the indexed databases. 

Lawder’s work provides step by step instructions for producing Hilbert indexes from 

multi-dimensional data that were helpful during the implementation of the HSFC NN 

classifier.  

In the following sections several different nearest neighbor techniques are 

introduced and pseudo code for each is provided. Also an explanation of the HSFC and 

the procedure for indexing multi-dimensional data is provided with examples, followed 

by experiments comparing the performance of the HSFC NN classifier with the Standard 

NN classifier on several natural and generated databases. Experiments are also carried 

out on the very large Forest Cover database. Lastly avenues for future exploration are 

presented.  
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Chapter 2: Nearest Neighbor Algorithms 

 

In order to validate the HSFC NN algorithm it is necessary to implement and test 

the standard NN algorithm. For the purposes of this thesis the 1-NN, k-NN and Weighted 

k-NN algorithms will be implemented, and will be subjected to the same testing process 

as the HSFC NN algorithm. In this way the Standard NN algorithms will act as a 

benchmark to gauge the success of the HSFC NN. In this section each of these algorithms 

are described and their classification process is detailed and analyzed.  

2.1 1-NN Algorithm 
 

 The single nearest neighbor classification implemented by Cover and Hart 

is the most basic of all the NN implementations (Cover and Hart, 1967). Proposed in 

1966, the paper showed that the single nearest neighbor implementation had a minimum 

probability of error that was less the twice the Bayes probability of error, and because the 

Bayes classifier is the optimum choice for a decision classifier, less than twice the 

probability of error for any classification rule. The single nearest neighbor 

implementation classifies the unknown observation by finding the nearest neighbor to the 

observation by some relevant distance function, and assigning its class to the unknown 

observation. Cover and Hart show that for a simple distribution the single nearest 

neighbor algorithm will have a probability of error that is less than the k-NN probability 

on the same distribution. This means that the 1-NN implementation is strictly better than 

the k-NN implementation for distributions where each in-class distance is larger than any 

5 



of the between-class distances (Cover and Hart, 1967). The figure below is the set used in 

their example.  

 

Figure 1: sample distribution used in example by Cover and Hart 

 

2.1.1 1-NN Pseudo Code 
  
Terminology:  
 
x : A vector representing the input attributes. This vector is of dimensionality n. 
 

:j
ix The i-th vector of class j. The index i ranges from 1 to , where represents the 

number of vectors that belong to class j. The index j ranges from 1 to J, where J 

represents the number of classes that the measured vector x could belong.  

j
tN j

tN

x

 
Step 1: We store all the points in memory.  j

ix
 
Step 2: We present the test pattern   to the 1-NN.  x
 
Step 3: We calculate the distance of  from all the stored patterns ( ’s). The distance 

of the pattern  from pattern  is defined as:  

x j
ix

x j
ix

 

∑
=

−=
d

l

j
i

j
i lxlxxxdis

1

2))()((),(  

 
 
Step 4: We find the minimum such distance. That is we find 
 

),(min),( 1,1min
j

iNiJj xxdisjxdis j
t≤≤≤≤

=  

 
Step 5: The predicted class for test pattern x  is then class . minj
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This process is repeated for every test pattern , whose classification we want 1-NN to 

predict.  

x

 

2.2 k-NN Algorithm 
 

One of the short comings of the 1-NN approach is that it does not handle noise 

data very well. Noise data are points in the training set that are misclassified. If the test 

point’s nearest neighbor is misclassified, then the algorithm will misclassify the test 

point. The k-NN algorithm overcomes this short-coming by considering the classification 

of multiple neighbors. During the performance phase the algorithm will select k 

neighbors, where k is a positive integer, and will give the test point the classification of 

the class with the highest number of representatives in the set of neighbors. Using this 

technique if one of the neighbors is misclassified the other neighbors will still give the 

correct classification. This also increases performance on databases that are not 

completely separable, when the data for different classes overlap each other. In these 

cases the decision boundary is blurred. A test point that is near a class boundary could 

have a neighbor that is correctly classified but still in the other class. Once again in this 

situation the 1-NN approach could misclassify the point, but the k-NN, choosing multiple 

neighbors, will classify the point correctly. In the following diagram an example of 5-NN 

is shown. In this example if the 1-NN rule is used the algorithm would choose class 2, but 

as you can see most of the points around the test point are class 1. The 5-NN rule shown 

will classify the test point as class 2, because 4 out of 5 of the neighbors selected are 

class 1.  
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Test Point 
Class 1 
Class 2 

Figure 2: Example of 5-NN classification. 

 

2.2.1 k-NN Pseudo Code 
 
Terminology:  
 
x : A vector representing the input attributes. This vector is of dimensionality n. 
 

:j
ix The i-th vector of class j. The index i ranges from 1 to , where represents the 

number of vectors x that belong to class j. The index j ranges from 1 to J, where J 

represents the number of classes that the measured vector could belong.  

j
tN j

tN

x

 
Step 1: We store all the points in memory.  j

ix
 
Step 2: We present the test pattern   to the k-NN.  x
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Step 3: We calculate the distance of  from all the stored patterns ( ’s). The distance 

of the pattern  from pattern  is defined as:  

x j
ix

x j
ix

 

∑
=

−=
d

l

j
i

j
i lxlxxxdis

1

2))()((),(  

 
 
Step 4: We find the k minimum such distances. We call the class labels corresponding to 

these k smallest such distances as:  

 
kjjj min

2
min

1
min ...,,,  

 
 

Step 5: The predicted class for test pattern x  is class . Class is the class that 

appears more often in the discrete set . 

minj minj

}...,,,{ min
2
min

1
min

kjjj

 
This process is repeated for every test pattern , whose classification we want k-NN to 

predict.  

x

 

2.3 Weighted k-NN algorithm 
 

The Weighted k-NN algorithm is almost identical to the standard k-NN algorithm 

with the exception that each neighbor is given a weight depending on its distance from 

the test point. The classifier decision is then based on the weights. The class with the 

highest weight is the classification chosen for the test point. In most situations this 

method will choose the same classification as the k-NN. The difference between the two 

becomes useful when the test data is sparse. In a sparse dataset the training points are 

spread thin throughout the training space, this means that during the k-NN classification 

the algorithm might have to look far away from the test point to find k neighbors. It is 

possible that in looking for neighbors the algorithm will cross the decision boundary and 
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select points of the wrong classification. The Weighted k-NN method is better suited for 

this situation because it computes a weight for each neighbor based on the distance from 

the test point. Neighbors that are very close to the test point receive a higher weight than 

the neighbors that are further away. The weights of all of the neighbors with the same 

classification are summed and the class with the highest weight is chosen for the test 

point. The figure below shows an example of this situation. The k-NN classifier would 

choose class 1 because the 3 out of 5 neighbors are class 1, but the weighted k-NN would 

choose class 2 because the two neighbors of class 2 are much closer to the test point than 

the 3 neighbors of class 1.  

 

 

Test Point 
Class 1 
Class 2 

Figure 3: Example of Weighted 5-NN 
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2.3.1 Weighted k-NN Pseudo Code 
 
Terminology:  
 
x : A vector representing the input attributes. This vector is of dimensionality n. 
 

:j
ix The i-th vector of class j. The index i ranges from 1 to , where represents the 

number of vectors that belong to class j. The index j ranges from 1 to J, where J 

represents the number of classes that the measured vector could belong.  

j
tN j

tN

x

x

 
:w  The weight of a training point in relation to the test point. The closer the training 

point is to the test point the higher the weight.  

 

Step 1: We store all the points in memory.  j
ix

 
Step 2: We present the test pattern   to the k-NN.  x
 
Step 3: We calculate the distance of  from all the stored patterns ( ’s). The distance 

of the pattern  from pattern  is defined as:  

x j
ix

x j
ix

 

∑
=

−=
d

l

j
i

j
i lxlxxxdis

1

2))()((),(  

 
Step 4: We find the k minimum such distances. We call the class labels corresponding to 

these k smallest such distances as:  

 
kjjj min

2
min

1
min ...,,,  
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Step 5: We find the weighted distance of the presented pattern from each of the k 

closest points (found in Step 4). That is, we calculate (for every l, such 

that ) 

x

kl ≤≤1

 

∑
=

⋅

⋅
⋅ = k

r

j

j
j

n
r

l

l

dis

dis
dis

1
)(

)(
)(

),(

),(
),(

min

min

min

xx

xx
xx  

∑
=

−= k

i

j
i

j
i

xxdis

xxdis
w

0

),(

),(
1  

 

Step 6: Weighted distances, calculated in Step 5, that are calculated from points 

belonging to the same class are added together. The predicted class for test 

pattern  is class , which is the class from the group of classes 

that produces the largest such sum of weighted distances.  

x minj

}...,,,{ min
2
min

1
min

kjjj

 
This process is repeated for every test pattern , whose classification we want k-NN to 

predict.  

x
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Chapter 3: The Hilbert Space Filling Curve 

 

A Space-filling curve is a continuous map of a one-dimensional interval) into a 

two-dimensional area (a plane-filling function) or a three-dimensional volume. 

 The Hilbert curve is used to map an n-dimensional coordinate system to a 1-

dimensional index. The Hilbert curve is known to maintain some of the spatial 

relationships of the n-dimensional space. This trait makes is useful in clustering multi-

dimensional data.  

 

 
Figure 4: 2-D Examples of Hilbert Space filling curves 
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Figure 5: Mapping 2-D coordinates to 1-D Hilbert Index 
 

The HSFC converts an n-dimensional space to a 1-dimensional space. In the 

implementation of the HSFC NN algorithm this property is used to convert the Training 

Data to a 1-dimensional array. This array is then sorted on the Hilbert index making it 

possible to search the training space in  time using a quick sort or a merge 

sort. The Hilbert Index is found by using Butz’s Algorithm (Butz, 1971) to convert the n-

dimensional coordinates to a Hilbert Index.  

))(log( 2 NNO
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3.1 Butz’s Algorithm 
 
 This section provides the pseudo code for Butz’s Algorithm, and gives simple 

examples of the mapping process from 2-D coordinates to the 1-D Hilbert index, and the 

reverse operation.  

 
Algorithm Definitions 
n  : number of dimensions 

m : the order of approximation 

M : the number of bits in a derived–key (n*m) 

r  : an N–Bit binary Hilbert derived–key expressed as a real number in the range [0, 1). 

byte : a word containing n bits 
i
jρ : where  and },...,1{ ni∈ },...,1{ mj∈  A binary digit in r such that: 

   m
nnnr ρρρρρρρρρ ..........0 3

2
3
1

22
2

2
1

11
2

1
1=

iρ : binary byte in thi r .  11
2

1
1

1 ... nρρρρ =

ja : A coordinate in dimension j of the point >< naaa ...21  whose derived key is r . It is 

also expressed as a real number between [0, 1). 
i
jα : A binary digit in the coordinate  such that   ja m

jjjja ααα ...21=

 
Principal position J: The first bit from the right that is different. If all of the bits are the 
same then it is the least significant bit (or the one farthest to the right). Position is counted 
from the left.  
  Ex.  
  00110011  J = 6 
  01000000  J = 2 
  11111111  J = 8 
 
Parity: Even or Odd depending on the number of 1’s in a byte. 
  Ex. 
  01100110 = Even 
  01010001 = Odd 
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2-D Example: Hilbert Index to 2-D Coordinate 
Variables used in conversion: 
  1. : Principal position of  iJ iρ

2. : Grey code of .  where and 

are the bits of and .  

iσ iρ i
n

i
n

i
n

iiiii
112211 ,..., −⊕=⊕== ρρσρρσρσ i

nσ

i
nρ

thn iσ iρ

3. : Obtained by complimenting in the position and if it is odd parity then 

complimenting it in the Principal Position. 

iτ iσ thn

4. :~ iσ Circular Shift to the right by  iσ ∑
−

=

1

1

i

k
kJ

5. :~ iτ Calculated the same way as :~ iσ  using  iτ

6. : =iω 11 ~ −− ⊕ ii τω , where  )0,...0,0,0(1 ≡ω

7. : iα ii σω ~⊕  

  
2-D Example: 

n  = 2  
m  = 2 
M  = 4 

1ρ = First 2 bits of r 
2ρ = Second 2 bits of r 

 
This algorithm is an iterative algorithm. There are m iterations. In the following steps 

represents then iteration number. i
 

Let  0010.0=r
001 =∴ρ  ,  102 =ρ

 
When converting from a Hilbert Index to an n-dimensional coordinate we want to find 
the value of  from r . Also most of the calculations for multiple iterations can be done 
simultaneously. 

iα
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1. Find  iJ

1J = 2    = 1 2J
 

2. Calculate  iσ
The first bit of matches the first bit of . The second bit of is the 
first and second bits of  XORed with each other.  

iσ iρ iσ
iρ

1σ  = 00   = 11 2σ
 
3. Calculate  iτ

Compliment in the position and if odd parity compliment the 
principal position.  

iσ thn

1τ = 00   = 00 2τ
4. Calculate iσ~  

Never shift the first iteration. The second iteration and after shift right 

 ∑
−

=

1

1

i

k
kJ

1~σ  = 00   2~σ = 11 
 
5. Calculate iτ~  

Calculate the same way as iσ~ .  
1~τ = 00   2~τ = 00 

 
6. Calculate  iω

1ω = 00 otherwise =iω 11 ~ −− ⊕ ii τω  
1ω = 00   = 00 2ω

7. Calculate  iα
iα =  ii σω ~⊕
1α = 00   = 11 2α

 
8. Convert to  iα ja

iα is a vector containing the bit of each coordinate. Therefore 
contains the first bits of each coordinate  and contains the second 

bit of each coordinate .  

thi
1α ja 2α

ja

1a = 0.01   = 0.01 2a
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2-D Example: 2-D coordinates to Hilbert Index 
Variables used in conversion: 

1. = iω 11 ~ −− ⊕ ii τω , where  )0,...0,0,0(1 ≡ω

2. , where  :~ iσ ii ωα ⊕ 11~ ασ ≡

3. : circular shift  left times. First iteration does not shift. iσ iσ~ ∑
−

=

1

1

i

k
kJ

4. : iρ i
n

i
n

i
n

iiiii σρρσρρσρ ⊕=⊕== −121211 ,...,,  

5. : principal position of  iJ iρ

6. : Obtained by complimenting in the position and if it is odd parity then 

complimenting it in the Principal Position. 

iτ iσ thn

7. :~ iτ Calculated the same way as :~ iσ  using  iτ

 
 

When calculating the Hilbert Index from a coordinate each value must be calculated in 
the order above; one iteration at a time. The steps below have the values for each iteration 
side by side, but each iteration must be completed before continuing to the next.  

 
2-D Example: 

n  = 2  
m  = 2 
M  = 4 

1a = 0.01   = 0.01 2a
1α = 00   = 11 2α

 
We want to find , we already know  iρ iα

 
1. Calculate  iω
  is always 00, each other iteration is 1ω 11 ~ −− ⊕ ii τω  
 = 00   = 00 1ω 2ω
 
2. Calculate  iσ~

 each other iteration is  11~ ασ ≡ ii ωα ⊕
 = 00   = 11 1~σ 2~σ
 
3. Calculate  iσ
 Rotate circular left according to rule above. First iteration never rotates. iσ~

 = 00   = 11 1σ 2σ
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4. Calculate  iρ
 i

n
i
n

i
n

iiiii σρρσρρσρ ⊕=⊕== −121211 ,...,,  
 = 00   = 10 1ρ 2ρ
 
5. Calculate  iJ
 principal position of  iρ
 = 2   = 1 1J 2J
 
6. Calculate  iτ

 Obtained by complimenting in the position and if it is odd parity then 
complimenting it in the Principal Position. 

iσ thn

 = 00   = 00 iτ iτ
 

7. Calculate  iτ~

 Calculated the same way as :~ iσ  using  iτ
 = 00   = 00 iτ~ iτ~
 

8. Find from  r iρ
 After completing all iterations the Hilbert index  mr ρρρ ....0 21=

  0010.0=r
 
 
 

The following table and figure show examples of the Iris Plant Database mapped 

to the Hilbert Space filling curve. As you can see from the Figure the HSFC does a good 

job of clustering the data. The clustering properties of the Hilbert Space Filling curve are 

what make it possible to implement the NN algorithm based on the Hilbert index. As 

shown in the figure below the classes are easily separated, leading to very high accuracy 

in the classification phase.  
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Table 1: Examples of HSFC Mapping 
Class Attr 1 Attr 2 Hilbert Index 

Versicolor 0.450113 0.159633 0.194565 

Virginica 0.653459 0.679114 0.534393 

 
 
 
 
 
 

 
Figure 6: Iris Plant Database mapped to the HSFC 
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3.2 HSFC NN Pseudo Code 
 
Terminology (Hilbert NN) 
n   : Number of dimensions  
m  : Order of approximation 
M :  The number of bits in a derived key  )*( mn
r   : An binary Hilbert derived key where bitN − )1,0[∈r  

ja : An n -dimensional vector representing the input attributes 
 
1-NN Hilbert 
 
Step 1: Store Training Set in an Array 
 
Step 2: For each instance in the Training set use Butz’s Algorithm to convert  to ja r  
 
Step 3: Sort the Training Set by r  
 
Step 4: Use Butz’s algorithm to convert  to for each instance to be classified ja r
 
Step 5:  Use a Binary Search based on  to find the Training Instances before and after 

your test instance on the Hilbert Curve.  
r

 
Step 6: Test the difference between both Training Instances  and the Test Instances r  r
 Assign the Test Instance the class of the Training Instance that meets the 

following criteria 
|)||,min(| 21 CTCT rrrr −−  

 Where and are the Hilbert Key’s of the Training Instances and is the 

Hilbert Key of the Test Instance.  

1Tr 2Tr Cr
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Chapter 4: Experimental Results 

 

 This section details the experiments that were run to compare the HSFC NN and 

the Standard NN. It gives a brief overview of the experimental procedure, as well as 

presenting the results of the experiments.  

 

4.1 Experimental Procedure  
 

The experiments were carried out in MATLAB using the HSFC_NN_Alg.dll. 

This DLL is capable of performing both the Standard NN and the HSFC NN. The 

datasets are stored in MAT files, and M-file scripts control the flow of the experiments. 

The RunNNExperiments script runs the experiment routine on each database, and the 

TestHSFCNNAlg script controls the flow of each individual experiment. The 

TestHSFCNNAlg script takes 3 arguments; DBName, NumClass, and Hilbert. DBName 

is the name of the database to be tested; this matches the beginning of the file name that 

contains the data, NumClass is the number of classes of the data, and Hilbert is a Boolean 

variable, true if you want to use the HSFC, or false if you want to use the Standard NN. 

The sequence of a single experiment is as follows: 

 
1. Load the Training, Test, and XV sets from the mat files for the database. 

2. Test Phase - Run the Algorithm in One NN mode, if using the HSFC the M 

parameter is set to 7.  
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3. Cross Validation for k-NN Unweighted – The algorithm is run repeatedly, 

each time changing the parameters m and k for HSFC and only k for Standard 

NN. The m parameter is ranged from 7:12 and the k parameter is ranged from 

2:20.  

4. Test Phase - the algorithm is run once in k-NN Unweighted mode using the 

parameters mmax and kmax – the parameters that maximized the performance 

in the cross validation phase.  

5. Cross Validation for k-NN Weighted – The algorithm is run repeatedly, each 

time changing the parameters. M and K for HSFC and only K for Standard 

NN. The m parameter is ranged from 7:12 and the k parameter is ranged from 

2:20.  

6. Test Phase – The algorithm is run once in k-NN Weighted mode using the 

parameters mmax and kmax – The parameters that maximized the 

performance in the cross validation phase.  

7. Output Results – The HSFC_NN_Alg returns the Accuracy, an array of the 

Result classification, and the running time of the algorithm. The 

TestHSFCNNAlg script creates a mat file that contains the accuracy, running 

times, and result class array for each of the test phase runs of the algorithm, it 

also stores the running time for the entire experiment. The mat file is named 

<DBName>_HSFC_Results.mat or <DBName>_NN_Results.mat depending 

on which mode the experiment was run in.  
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The TestHSFCNNAlg script is run on each of the fifteen databases. After this the 

OutputResults script is run to create a comma delimited text file that contains the 

accuracy and runtimes for both the HSFC NN and the Standard NN for each database.  

4.2 Test Databases 
 
 This section will give a short description of each of the databases that were used 

in the experiments. Some of these databases are artificially generated while others were 

obtained from the UCI repository found here: 

http://www.ics.uci.edu/~mlearn/MLRepository.html

4.2.1 Gaussian Databases 

 Twelve of the fifteen databases used in testing are artificially created Gaussian 

databases. These databases are created by setting a mean value for the class and filling in 

the points around the mean using a Gaussian distribution. All of these databases are 

dimensionality n = 2. The differences in each of the databases are the number of classes 

and the percent overlap of the classes. The number of classes available are 2, 4, and 6, 

and the percent overlap values are 5 %, 15 %, 25 %, and 40 %. The percent overlap 

determines the maximum accuracy that you can expect for each database. With a 5 % the 

maximum accuracy that you can expect will be 95 %. This is because the 5 % of the data 

that are overlapping have an equal probability to be any of the classes.  

4.2.2 IRIS Plant Database 
 

The Iris Plant Database was donated to the UCI Repository by Michael Marshall, 

and was created by R.A. Fisher in 1936. It contains 3 classes with 50 instances each. 

Each instance has four numeric attributes, and the purpose of the data is to classify the 
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type of iris plant. The four attributes are the sepal length in cm, the sepal width in cm, the 

petal length in cm, and the petal width in cm. The classes are iris setosa, iris versicolour, 

and iris virginica. The underlying statistics for this data set are available, as well as any 

other documentation needed. This data base is one of the most widely used because it has 

been around for a long time, and it is very well documented. One of the drawbacks of this 

database is that it has very few instances. The IRIS database used in this research has 

been modified by adding points around the original data points increasing the total 

number of observations. Also the data has been reduced to a dimensionality of n = 2 by 

choosing two dimensions where the classes are linearly separable. And lastly one of the 

classes has been dropped from the database. The final database is a 2 dimensional, 2 class 

problem with around 5 % overlap in the classes.  

4.2.3 Abalone Database 

 The abalone database was donated to the UCI repository in 1995 by Sam Waugh. 

The classification task is to predict the age of an abalone from physical measurements. 

The normal process for determining the age of an abalone is to cut the shell through the 

cone, stain it, and then count the number of rings. The task is to classify the age using 

easier to obtain measurements. This database has 29 classes and 8 attributes. This 

database has also been altered by generating instances from the original data.  

4.3.4 Page blocks Database 

 The abalone database was donated to the UCI repository in 1995 by Donato 

Malerba. The problem consists of classifying all of the blocks of the page layout of a 

document that have been identified by a segmentation process. This is an important step 
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in the analysis of a document. There are 5 classes; text (1), horizontal line (2), picture (3), 

vertical line (4), and graphic (5). The database has ten numeric attributes taken from 

measurements of each block, has very little noise, and has no missing data. This database 

has also been altered by generating new instances.  
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4.3 Results 
 

The results are presented in the table below. The run times in the table below are 

measured in the HSFC_NN_Alg.cpp file. The number of clock cycles that pass while the 

algorithm is running are measured and then divided by the number of clock cycles per 

second. This time includes the Training Phase and the Performance phase of both 

algorithms.  

Table 2: Results on small databases 
Database Name Type One NN Run Time k-NN  Run Time k-WNN Run Time 
g2c_05 HSFC 91.56 0.016 94.34 0.031 95.04 0.031 

g2c_05  NN 92.04 1.281 95.14 1.375 95.12 1.359 

g2c_15 HSFC 79.4 0.015 84.5 0.031 84.42 0.047 

g2c_15  NN 78.52 1.281 84.22 1.375 84.22 1.375 

g2c_25 HSFC 64.9 0.032 73.22 0.031 73.36 0.031 

g2c_25  NN 67.2 1.281 73.84 1.375 73.84 1.375 

g2c_40 HSFC 53.98 0.031 58.58 0.032 58.44 0.032 

g2c_40  NN 52.68 1.281 57.98 1.391 57.98 1.375 

g4c_05 HSFC 89.46 0.015 94.76 0.031 95.06 0.031 

g4c_05  NN 92.2 1.265 94.74 1.407 94.56 1.39 

g4c_15 HSFC 76.74 0.016 83.88 0.031 83.94 0.047 

g4c_15  NN 78.38 1.281 83.98 1.407 83.68 1.406 

g4c_25 HSFC 65.82 0.031 74.7 0.032 74.88 0.031 

g4c_25  NN 65.86 1.297 74.74 1.359 74.5 1.344 

g4c_40 HSFC 49.32 0.031 57.78 0.032 57.58 0.031 

g4c_40  NN 48.02 1.266 58.44 1.375 58.08 1.375 

g6c_05 HSFC 90.167866 0.031 91.08713 0.031 92.825739 0.031 

g6c_05  NN 93.105516 1.281 94.664269 1.39 94.684253 1.375 

g6c_15 HSFC 77.278177 0.016 80.695444 0.031 80.935252 0.032 

g6c_15  NN 75.979217 1.281 84.572342 1.453 84.572342 1.438 

g6c_25 HSFC 62.589928 0.032 69.744205 0.032 70.063949 0.032 

g6c_25  NN 64.128697 1.343 72.941647 1.422 72.781775 1.484 

g6c_40 HSFC 45.043965 0.031 54.236611 0.031 53.816946 0.031 

g6c_40  NN 44.964029 1.312 56.714628 1.406 57.394085 1.39 

Iris_DrG_Norm HSFC 90.979167 0.016 94.333333 0.031 94.416667 0.031 

Iris_DrG_Norm  NN 91.041667 1.218 93.833333 1.265 93.8125 1.328 

new_abalone_500_Norm HSFC 52.176279 0.015 52.339499 0.016 51.904244 0.016 

new_abalone_500_Norm  NN 49.945593 1.297 52.774755 1.343 52.50272 1.344 

pageblocks_Norm HSFC 71.531966 0.032 86.529956 0.032 86.489747 0.031 

pageblocks_Norm  NN 88.661037 2.484 90.349819 2.484 90.269401 2.5 
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In the table above the g2c_05 database the HSFC 1-NN has a running time of 

0.016 seconds and the Standard NN has a running time of 1.281 seconds. This means that 

the HSFC 1-NN performs the Training Phase and classifies the entire test set in 0.016 

seconds. The training phase of the standard NN is simply passing the Training Data array, 

so this means that it only has to classify the Test Set. It takes the Standard NN 1.281 

seconds to classify the test set. This means that for the g2c_05 database the HSFC NN 

gives a 98.75% decrease in the time needed to classify the test set while maintaining 

nearly the same accuracy. 

Table 2 shows that the HSFC NN algorithm maintains the accuracy of the NN 

algorithm in almost all of the databases, and increases the accuracy in a few instances. 

However, there are exceptions. In the Gaussian 6 class problems the HSFC algorithms 

were outperformed by the NN algorithms by 2 to 4 %, and on the page blocks database it 

was outperformed by 3 to 16%. These discrepancies are caused by the fact that the HSFC 

does not save all of the spatial relationships between data; it only preserves some of them. 

Because of this the HSFC will choose slightly different neighbors than the standard NN. 

In most of the databases choosing different neighbors still leads to the correct 

classification. However in the 6-class Gaussian database the decision boundaries cross 

over the quadrant boundaries. One of the properties of the HSFC is that it will naturally 

divide the data up into quadrants, the 2 and 4 class Gaussian databases are easily 

separated into quadrants and because of this the performance of the HSFC NN does not 

suffer. The 6-class problem however is not easily separated by quadrants and because of 

this the HSFC NN has a higher possibility of choosing the wrong neighbors. This and the 

higher number of dimensions are the reason for the discrepancies in the page blocks data. 
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One possible solution to this problem would be to use multiple curves, shifting each 

curve slightly so that neighbors that are close in n space will be close on one of the 

curves. After the three curves are created they would then vote on the classification of a 

test point. This technique should decrease the error associated with missing actual 

neighbors, and will be experimented with in the future.  

During the cross validation phase of the experiments the algorithms were run on 

validation sets to determine the optimal values of k and m. This is done by running the 

algorithm multiple times each time changing the values of the parameters. The values that 

produce the best accuracy are selected as the optimal values and the experiments are run 

on the test set using these values. During the cross validation some observations were 

made about the effect of the parameters on the accuracy of the algorithms. The figures 

below show the values of k and m and there effect on the accuracy of the HSFC 

algorithm. Figure 7 shows that as k increases the accuracy increases up until around 

k = 9, after that the accuracy levels off and remains nearly the same for all greater values 

of k. For the order of the curve m it was found that the accuracy fluctuated until an order 

was reached that assigned each of the training points there own index. For lower orders of 

the Hilbert curve multiple training points would be mapped to the same index. The 

sorting algorithm used in the HSFC NN is a quick sort. This sorting algorithm is only 

partially determinant. This means that if two values have the same index then each time 

the algorithm is run their order in the HSFC could change. Once the order of the curve 

was high enough to assign each training point a unique index the accuracy stopped 

fluctuating. That order also produced the best accuracy, any increase in the order after 

this point did not affect the accuracy of the algorithm. From these observations it was 
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determined that the best choice for the order of the curve, is the order that assigned each 

training point a unique index. The selection of the quick sort as the sorting algorithm was 

arbitrary, any  sorting algorithm would suffice. For example a merge sort, 

which is completely determinant, could also be used, and would resolve the fluctuating 

accuracy at lower orders.  

))(log( 2 NNO

 

 

Figure 7: Gaussian 2 class Accuracy vs. K 
 
 
 A second set of experiments were run on the Gaussian 2-class 5 % database to 

show the effects of training set size on classification time. The experiments were run 

again using training set sizes of 500, 1000, 1500, and 2000. The points were obtained by 

converting some of the points in the cross validation set to training points. The 
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experiments were run exactly the same as they were in the original experiments. The 

results are shown in the table and figure below.  

 

Figure 8: Run Time vs. Training set size 
 

 

Figure 8 shows the run time vs. the Training Set size, as you can see the run time 

increases linearly with training set size for the standard k-NN algorithm but the HSFC 

NN run time is barely affected. This same experiment will be run again on a much larger 

database so that the training set size can have a much larger domain, and the differences 

in the run times of both algorithms will be more pronounced. The results from this second 

experiment show that the HSFC NN is significantly more efficient than the standard NN.  
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4.3.1 Large Database Experiments: Forest Cover Database 

 To further test the speed increase of the HSFC NN experiments were run on the 

Forest Cover Database. This database was obtained from the UCI KDD archive. It 

consists of 581,012 instances, and 7 classes. The classification task of this database is to 

determine the Forest Cover type from measurements acquired from a parcel of land. Of 

the 54 attributes, 10 of them are quantitative, and the other 44 are binary representations 

of 2 qualitative attributes. The HSFC has a hardware limitation, such that the number of 

dimensions times the order of the curve must be less than 64 (n*m < 64) on a 32-bit 

machine. In order to classify the Forest Cover Database the 44 binary attributes were 

converted to two binary strings, and from there to two decimal attributes. This reduced 

the number of dimensions to 12 allow the use of an order 5 curve. After this each 

attribute was normalized, and the database was split into classes. To test the scale up of 

both algorithms, the database was used to create data sets with training sizes ranging 

from 2k – 512k in increments of , where i ranges from 1 to 9. The algorithm was then 

run on each of these datasets. The results are presented in the following table.  

ki2
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Table 3: Forest Cover Results 
DBName  Alg Type  One NN  Run Time  k-NN  Run Time  k-WNN  Run Time 
ForestCover_2k_  HSFC_NN 45.426829 0.141 48.970412 0.172 48.65054 0.188 

ForestCover_2k_  NN 49.515194 94.859 45.766693 93.985 45.816673 93.797 

ForestCover_4k_  HSFC_NN 50.809676 0.156 50.114954 0.203 49.930028 0.203 

ForestCover_4k_  NN 58.146741 186.828 56.862255 187.797 57.477009 187.859 

ForestCover_8k_  HSFC_NN 57.646941 0.156 55.147941 0.203 54.793083 0.203 

ForestCover_8k_  NN 64.614154 373.485 62.664934 374.5 63.834466 374.531 

ForestCover_16k_  HSFC_NN 58.576569 0.188 55.662735 0.235 55.732707 0.25 

ForestCover_16k_  NN 65.19892 746.328 63.269692 747.5 64.414234 747.469 

ForestCover_32k_  HSFC_NN 60.545782 0.266 58.716513 0.297 58.526589 0.328 

ForestCover_32k_  NN 68.472611 1487.843 64.32427 1489.047 65.353858 1489.093 

ForestCover_64k_  HSFC_NN 58.601559 0.39 56.852259 0.422 58.581567 0.422 

ForestCover_64k_  NN 69.167333 2971.922 58.371651 2972.906 58.811475 2973.015 

ForestCover_128k_  HSFC_NN 58.696521 0.641 57.007197 0.672 58.661535 0.672 

ForestCover_128k_  NN 69.537185 5952.219 56.332467 5955.594 56.467413 5953.406 

ForestCover_256k_  HSFC_NN 57.267093 1.188 54.453219 1.188 57.212115 1.203 

ForestCover_256k_  NN 67.443023 11916.312 49.595162 11925.297 49.910036 11879.274 

ForestCover_512k_  HSFC_NN 56.897241 2.219 55.667733 2.266 55.897641 2.266 

ForestCover_512k_  NN 62.240104 23616.265 54.328269 23577.36 54.523191 23575.984 
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Figure 9: Forest Cover Accuracy 
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The results from the Forest Cover experiments show that the HSFC NN gives a 

dramatic speed increase, but at a cost. In most of the experiments there is a significant 

reduction in the accuracy of the HSFC NN in relation to the Standard NN. For, example 

the k-NN algorithm running on the 32k training set achieved an accuracy of 68.47% 

compared to the HSFC k-NN with an accuracy of 60.54%. The run time for the HSFC k-

NN however is much faster than the Standard NN, at 0.266 seconds compared to 1488 

seconds. The run times for each algorithm are shown in the figure below.  

  
Figure 10: Forest Cover Database Run Times 

In the case of the Forest Cover Database the speed increase from the HSFC NN 

comes at a significant reduction in the accuracy. In the next section the experiments are 
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run again on both the small and large databases using multiple curves. Using multiple 

curves should decrease the number of neighbors that are missed by the HSFC NN and 

increase the accuracy of the HSFC NN. It is believed that this method will close the gap 

between the HSFC NN and the Standard NN on difficult data sets.  

4.3.2 Multiple Curve HSFC NN 
 
In this section the HSFC NN classifier is altered to use multiple curves in the 

classification phase. It is believed that this will increase the accuracy, and bring the 

performance of the HSFC NN closer to the performance of the Standard NN on difficult 

databases. To create multiple curves, the data is shifted by one unit towards and away 

from the origin. When these datasets are indexed using Butz’s algorithm, it will create 

two extra curves that have different orders of the training points and that have saved 

different n-space relationships.  

When using multiple curves there are a number of ways to classify the points. 

One method is to allow each of the three curves to classify the point independently, and 

then let them vote on the classification of the point. A second method, the one 

implemented in this section, is to find the closest neighbors from each of the curves, and 

use the best neighbor or neighbors from each to classify the point.  

The results of the altered algorithm on the Forest Cover Database, and on selected 

small databases are presented in the following tables. 
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Table 4: Multi vs Single HSFC accuracy on the Forest Cover Database 
DBName  Alg Type  One NN  Run 

Time 
 k-NN  Run 

Time 
 k-WNN  Run 

Time  
ForestCover_2k_ Multi Curve 46.53639 0.344 43.487605 0.422 43.297681 0.438 
ForestCover_2k_ Normal 47.30108 0.14 47.785886 0.234 43.932427 0.188 
ForestCover_4k_ Multi Curve 52.68393 0.359 52.064174 0.406 51.064574 0.406 
ForestCover_4k_ Normal 50.85966 0.156 49.445222 0.219 47.361056 0.219 
ForestCover_8k_ Multi Curve 57.95682 0.422 56.597361 0.469 56.077569 0.453 
ForestCover_8k_ Normal 55.69772 0.172 49.965014 0.25 49.92503 0.235 
ForestCover_16k_ Multi Curve 58.30168 0.516 56.937225 0.562 56.437425 0.562 
ForestCover_16k_ Normal 55.89764 0.219 56.297481 0.266 55.267893 0.266 
ForestCover_32k_ Multi Curve 59.53119 0.719 58.276689 0.75 57.472011 0.735 
ForestCover_32k_ Normal 57.02719 0.312 55.582767 0.328 57.027189 0.313 
ForestCover_64k_ Multi Curve 58.27169 1.094 56.157537 1.125 55.437825 1.141 
ForestCover_64k_ Normal 54.96801 0.453 53.253699 0.469 54.963015 0.469 
ForestCover_128k_ Multi Curve 58.15174 1.89 56.902239 1.938 55.077969 1.937 
ForestCover_128k_ Normal 54.95302 0.719 52.314074 0.75 54.938025 0.75 
ForestCover_256k_ Multi Curve 55.20292 3.547 53.363655 3.547 51.07457 3.562 
ForestCover_256k_ Normal 48.9954 1.313 47.501 1.437 48.985406 1.329 
ForestCover_512k_ Multi Curve 56.72731 6.906 52.264094 6.906 49.830068 6.906 
ForestCover_512k_ Normal 52.2591 2.531 50.87465 2.516 50.929628 2.579 
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Figure 11: Multi-HSFC 1-NN vs. Single-HSFC 1-NN 
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Figure 12: Multi-HSFC k-NN vs. Single-HSFC k-NN 
 

 The Figures above show that on the Forest Cover Database the Multi-HSFC 

approach improves the accuracy for most of the databases tested. However the increases 

do not bring the accuracy of the HSFC NN classifier up to the level of the Standard NN 

classifier for these databases. The Standard NN classifier still outperforms the HSFC NN 

Classifier even using the Multi-curve approach. The high dimensionality of the Forest 

Cover database is mostly to blame for the large deficit in accuracy. As the number of 

dimensions increases the number of possible neighbors within one unit from the test point 

increases while the number of neighbors within one unit on the HSFC remains at two. 

This means that as the number of dimensions increase it becomes less likely that the 

HSFC will produce the same nearest neighbor as the Standard NN. While using the multi 

curve approach did increase accuracy, in order to bring that accuracy up to the level of 
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the Standard NN it would require using many more curves. The best chance of achieving 

that accuracy would be to use a curve that has been shifted towards each corner of the n-

space. The problem with this is that for each curve you create you have to store another 

copy of the training data. On large databases like the Forest Cover that would not be 

practical. It is possible that the other type of multi curve NN discussed earlier could 

improve on the accuracy found here. The implementation of a voting curve system will 

be experimented some time later.   

 The multi-curve experiments were also run on the small databases. It was found 

that the accuracy of the 1-NN was only slightly affected changing very little for better 

and worse on different databases. However it was noted that the performance of the k-NN 

and Weighted k-NN suffered as a result of the multi-curve method. In general it was 

found that the multi-curve method used is producing the best improvements when applied 

to the 1-NN classifier.  
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Chapter 5: Conclusions on Results 

 

 The experiments conducted in the research were carried out to test the validity of 

using the HSFC to decrease the runtime of the Nearest Neighbor classifier. In each and 

every case the HSFC NN classifier outperformed the Standard Nearest Neighbor in terms 

of speed. As the number of training points increases the difference in run time becomes 

more and more pronounced. On the smaller databases, such as the Gaussian 2 class 

database, the HSFC classifies the database 80.06 times faster than the Standard NN, 

while on the larger datasets like the Forest Cover 512k database the HSFC classifies the 

database 10642.75 times faster reducing the classification time from 6.56 hours to 2.219 

seconds. These results show that the HSFC NN successfully improved on the 

classification time of the Nearest Neighbor algorithm. This improvement however comes 

at the cost of accuracy. On low dimensionality databases this cost in accuracy is very 

minimal as the results on the small databases show; the HSFC maintains accuracy very 

close to the Standard NN in most of the small databases. However, on higher 

dimensionality problems, and on databases with complicated decision boundaries the 

HSFC accuracy falls short of the Standard NN. The results show that the accuracy of the 

HSFC NN can be improved by using multiple curves, but this technique does not 

improve the accuracy enough to match the Standard NN. The accuracy could be 

improved further by increasing the number of curves used to classify the data, but with 

each additional curve another copy of the training data must be stored. At this point it 

becomes a trade off between space and accuracy; higher accuracy can be achieved but at 
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the cost of space. Several other techniques for increasing the accuracy of the HSFC NN 

will be discussed in the future work section.  

 Overall the experiments show that the HSFC is able to classify data reliably, in 

most cases the accuracy is comparable to the Standard NN, and in each instance it gives a 

significant improvement in classification time. The HSFC NN would be a good candidate 

for applications where speed is the most important factor. Also in low dimensional 

problems the HSFC NN is interchangeable with the Standard NN giving equivalent 

results, and improved classification time.  
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Chapter 6: Implementation Issues 

 

 This chapter details the implementation of the HSFC NN and the NN classifiers, 

and also discusses some of the issues that arose during the process. The code and scripts 

used in the experiments can be found in Appendix B.  

 The HSFC code used to convert n-dimensional data to the Hilbert index was 

implemented by Doug Moore of Rice University. This code will not be included in the 

appendix as it is interchangeable with any function that implements Butz’s Algorithm. 

This code was used for its simple interface and straight forward implementation.  

 The HSFC NN and the Standard NN are both implemented in a single C++ global 

function. This function takes a number of parameters that are needed for each classifier to 

run. Most of the parameters, such as the number of neighbors k, the training data, and the 

test data are used by both classifiers. However parameters like the order of the Hilbert 

curve are used only by the HSFC classifier. To control which of the two classifiers is 

used there is a single Boolean argument passed as the first parameter. Both classifiers are 

Nearest Neighbor classifiers, so the code used to classify each point remains the same for 

both the HSFC NN and the Standard NN. The difference comes in the selection of the 

neighbors. Once the algorithm is started the correct neighbor selection routine is run 

according to the classifier that is selected. In the case of the HSFC NN the indexing and 

sorting of the training data happens only once, at the beginning of the algorithm, and only 

if the HSFC classifier is selected. After this phase is complete, the algorithm goes into the 
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main loop. This loop runs through each one of the points in the test set. Inside this loop 

each point is classified, and the classification is checked against the known classification 

to test if the algorithm was correct. The process of classifying a test point begins with an 

if statement that checks to see which of the two classifiers is to be used. In the case of the 

HSFC the test point is converted to a Hilbert index, and then a modified binary search is 

run on the training set to find the test index. The binary search was modified to return the 

index of either an exact match or the index of the point just after where the test index 

would fall. This search would return an index on the training array. Starting with this 

index and moving out away from the test point, neighbors are selected and stored in the 

neighbor array. In the case of the Standard NN the distance from the test point to all the 

other points in the training set are calculated and the information, pertaining to the 

training points of the smallest k distances, is stored in the neighbor array. After this point 

the algorithms are the same. The neighbor array is used to classify the test point 

according to the type of classification being done; 1-NN, k-NN, or Weighted k-NN.  

 The implementation of the Standard NN is straight forward and the neighbor 

selection process is simply finding the smallest distances among the training points. As 

such, once this section was coded there was no need for modifications. The HSFC NN 

neighbor selection however is not as straight forward, and as such a few modifications 

were made to improve the performance of the classifier. When the test point’s location on 

the Hilbert curve has been found, there are two possible locations for its nearest neighbor 

either before or after it on the curve. In the original implementation the first neighbor was 

selected as the index that was returned by the search, the next neighbor was selected as 

the index that came before the test point, the rest of the neighbors were selected 
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alternating before and after the test index until the number of neighbors was reached. 

This method did not take into account the distance of these neighbors from the test point 

on the curve. To clarify, if the number of neighbors k was 6, then 3 neighbors were 

selected before the test point on the curve and 3 neighbors were selected from after the 

test point on the curve. This method is not the best choice because we are not guaranteed 

that the HSFC is full. There could be any number of missing indexes between the test 

point and the training points just before and after the test point in the training array. The 

neighbor selection method was altered to take into account the distances on the curve. In 

the new method the 1st neighbor is selected as the closer of the test point’s first neighbors 

on either side. According to which one is chosen a counter is incremented and the loosing 

point is tested against the next point further out from the test point on the winning side. 

This method increased the accuracy of the classifier slightly by ensuring that only the 

closest points on the Hilbert curve were selected as neighbors.  

Test Point 
Class 1 
Class 2 

Neighbor 

Initial HSFC Neighbor Selection

New HSFC Neighbor Selection

 

Figure 13: HSFC Neighbor Selection 
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 The experiments were run in MATLAB; this was accomplished by compiling the 

algorithm into a MATLAB DLL. This was the most difficult process of the 

implementation. In order to create the MATLAB DLL requires an interface. This 

interface file is used to talk between MATLAB and the NN_Alg function. It defines the 

function that is called from MATLAB, and also does all of the conversions between the 

MATLAB Array types to C arrays, and it takes care of error checking. When the function 

is called from MATLAB, the parameters are passed to the interface file, where they are 

converted to the correct types and checked to make sure that they are within the accepted 

ranges. Then the interface calls the NN_Alg function with the converted parameters. 

After the algorithm has finished the interface file returns the accuracy and the results 

back to MATLAB. The implementation of the MATLAB DLL, while adding some 

complexity to the process made it possible to quickly run experiments and generate data 

using MATLAB scripts. It also made handling the databases easier by removing the need 

for C++ file access routines.  

 The largest issue that arose from the MATLAB implementation was the fact that 

once the algorithm had run MATLAB did not free up the memory used inside the 

function. This meant that after many experiments had been run the computer would start 

to slow down because MATLAB was taking up more and more memory. This was solved 

by changing the C++ algorithm to take care of freeing up the memory manually.  

 In general the implementation of these algorithms is fairly simple. The actual 

code is straight forward and simple to understand. This makes these classifiers much 

easier to implement and run than other more complicated classifiers such as neural 

networks.  
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Chapter 7: Future Research 

 

 During the course of this research many ideas for future work were brought to 

light. There are a few techniques to improve the accuracy of the HSFC NN classifier that 

have yet to be implemented, and an idea for a new type of classifier based on the HSFC 

similar to the patterns of the ARTMAP Neural Network is being formulated 

(Carpenter,1992). Also there are other classification techniques that could benefit from 

reducing the dimensionality of the problem, such as the Probabilistic Neural Network 

(Specht, 1990).  

 In this research one technique using multiple HSFC’s was implemented and 

tested. It was shown that this technique improved the accuracy for the Forest Cover 

database, but had mixed results with the smaller databases. Other multi-curve methods 

are also available and could be implemented in the future. One such method discussed 

earlier is to allow each individual curve to classify the test point independently, and then 

allow them to vote on the final classification of the test point. This method is desirable 

because this means that the original results obtained would still be intact within the 

original curve. This technique is therefore less likely to perform worse than the single 

curve implementation. It is hoped that this technique would improve the accuracy in the 

k-NN and Weighted k-NN as well. Another multi-curve technique designed to improve 

accuracy on high dimensionality databases, would be to split the dimensions of the 

database into groups and use a different HSFC for each group of attributes. For example, 

on the Forest Cover Database, the 12 attributes would be split into groups of 4, and each 
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of these three groups would be indexed onto separate curves. The curves would then vote 

on the classification of each test point. This method would reduce the amount of spatial 

information that is lost from the original data.  

 The Hilbert Decision Space Classifier is based on the clustering properties of the 

HSFC. The idea is to create ranges on the HSFC that are mapped to a certain class. These 

ranges would be similar to the patterns in ARTMAP Neural Networks. The training data 

would be used to create these ranges, and then once the training is complete the training 

data can be discarded. This classifier will be very fast because most of the work will be 

done during the training phase. Once the training is complete the test points can be 

classified quickly by finding the correct range. The ranges will all be in one dimension so 

the correct range can be found using a binary search which again is very computationally 

efficient. Also the number of ranges should be less than the number of training points so 

the binary search will be over a smaller array. The major benefit of this technique, 

however, would be the ability to discard the training data, and the memory savings that 

would bring, especially on large databases like the Forest Cover. This new classifier 

would be much more complicated to implement than the HSFC NN. The biggest 

challenge in designing this technique would be to define the training phase. There are 

many issues that must be taken into consideration when creating the ranges, such as, what 

to do about points that fall into a range but do not agree on the classification. Should a 

new range be created in the middle of the current range, or should the point be thrown out 

as noise. In the end it is likely that the training phase will require multiple passes, with 

the first pass taking in all of the training data, and the subsequent passes weeding out un-

needed ranges. The Hilbert Decision Space Classifier (HDSC) will likely be the focus of 
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my future research; if this technique maintains the accuracy of the HSFC NN along with 

the added benefit of discarding the training data, it could turn out to be a very robust 

classifier. The following figure shows a possible selection of ranges on the IRIS database. 

The ranges colored blue would be class 1, and the ranges colored red would be class 2. 

This range selection would be using very loose parameters as can be seen by the number 

of points that are in the wrong ranges.  

 

Figure 14: Hilbert Decision Space Classifier Example 
  

 Other classifiers that would benefit from a reduction in dimensionality could also 

be implemented using the HSFC. One such classifier is the Probabilistic Neural Network. 

Implementing the PNN using the HSFC would be much more complicated than the 
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Nearest Neighbor, and as such would require more time and energy. The PNN works by 

estimating the probability distribution of the training data, and makes is classification 

based on the Bayesian classifier. Further research is required to determine how to 

implement the PNN using the HSFC.  

 One last avenue that might be pursued would be to develop a technique for 

estimating the expected accuracy of a given database. When testing on generated 

databases the optimal accuracy is known, however, on natural databases, unless all the 

statistical information about the data is known, it is difficult to know what the optimal 

accuracy would be. When multi-dimensional data is mapped onto the Hilbert curve it is 

possible to see relationships between the classes that are impossible to graph in multiple 

dimensions. We hope to develop a technique to estimate the expected accuracy of data by 

mapping the data to the Hilbert curve and determining the overlap of the classes. This 

would be useful to many researchers working on Natural databases.  

 The Hilbert Space Filling Curve has many qualities that make is useful in 

classification algorithms. It reduces the dimensionality of the data while still maintaining 

some of the spatial relationships, as well as naturally clustering the data. These properties 

will undoubtedly lead to many new applications for the HSFC.  
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