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ABSTRACT

Adaptive Resonance theory was introduced by Grogshe address the
stability versus plasticity dilemma. That is, howncone design a learning
system that is plastic enough to learn new infoimnatand at the same time
stable enough not to forget old, important inforimatthat it has already
learned. In the past two decades a humber of ARifah@etwork architectures
were introduced in the literature, based on the AfRSbry. These architectures
can solve clustering and classification problems: ©©cus in this paper is ART
architectures that function like classifiers. ARIBssifiers have a number of
desirable properties, such as guaranteed convexgen@a solution for any
classification problem of interest, fast convergero a solution (i.e., they
converge in a few epochs, where epoch is a singdeeptation of all the
training data), they can be trained in an on-lehfon, they have the ability to
recognize novel inputs, and they can explain thewvens that they produce.
One of their limitations is that for large databaseblems, where inevitably a
lot of categories (clusters) are created to remteshe input data, the
convergence to a solution becomes excruciatinglyw,slsince ART's
complexity is proportional to the product of theun patterns and the number
of categories created. To address this problemir&€had suggested a parallel
implementation of Fuzzy ARTMAP (one of the ART diiers) on a Beowulf
cluster. Castro’s implementation was efficient gatheral enough to apply to
other ART architectures, such as Ellipsoidal ARTMAdhd Gaussian
ARTMAP, which are two other examples of ART claigsH. In this paper we
validate this claim, that EAM and GAM can be impknted effectively on a
Beowulf cluster, and we verify this claim by preSeg appropriate
experimental results. What is also worth noting tligt Castro’s Fuzzy
ARTMAP Beowulf implementation can also be appliedather competitive
classifiers, neural network based or not.

1. INTRODUCTION

The ART architectures that we are focusing onphiger are the Fuzzy ARTMAP
(see Carpenter, et al., 1992), the Ellipsoidal ARIRMsee Anagnostopoulos, et al.,
2001), and Gaussian ARTMAP (see Williamson, 199@, 2997). All of these
architectures are classifiers and share the goot prBperties that we mentioned earlier.
Nevertheless they all suffer from the categoryifa@tion problem, where, as the
training data set grows in size, the number ofgmies formed to represent the data
increases with it. The immediate impact of thisegaty proliferation is that it takes a
significant amount of time for these architectuesonverge to a solution, despite the
fact that convergence is guaranteed by passingaimng data a few times through the



network. As a reminder, the categories formed inzZftARTMAP (FAM) are hyper-
rectangles, in Ellipsoidal ARTMAP (EAM) are elligds, and in Gaussian ARTMAP
(GAM) are the parameters of Gaussian curves (ssichean and variance). The category
proliferation problem leads us into ART structungth many categories, and
consequently slows down the ART training processaddress this issue with ART,
especially when the datasets are large, Casted., ésee Castro, 2004) has proposed an
effective and efficient pipeline implementationFafzzy ARTMAP on a Beowulf cluster.
In particular, Castro has implemented a variatibRuzzy ARTMAP, called no-match
tracking Fuzzy ARTMAP (NMT-FAM) that was easierfarallelize than FAM. The no-
match tracking version of Fuzzy ARTMAP was firstroduced and examined by
Anagnostopoulos, et al., 2003. In his paper Anamppaslos illustrated that NMT-FAM
achieves equivalent, and at times, better genatalizthan FAM at the expense of
creating more categories. Furthermore, it was neigeg by Castro (see Castro, et al.,
2004) that the proposed pipeline implementatiorNIMT-FAM can be extended to other
ART architectures. In this paper we are demonsigatiis claim by implementing the
NMT-EAM and NMT-GAM on the Beowulf cluster. Our esqgmental results, included
here, illustrate the efficiency of our implementati Our experiments were run on a
Beowulf cluster and the database used for the erpats was the Forrest Covertype
database (obtained from the UCI repository).

The organization of the paper is as follows: Irtisec2 we discuss some of the
specifics of the ART architectures that are applieao FAM, EAM and GAM.
Furthermore, the high level operation of no-matelsking ART architectures is outlined.
In Section 3, we describe some of the charactesisti the Beowulf cluster and we
discuss the specifics of the Beowulf pipeline innpémtation. In Section 4, we present the
experimental results conducted and we depict teedsup obtained by the pipeline
implementations of NMT-FAM, NMT-EAM and NMT-GAM. Rally, in Section 5 we
provide a summary of our work and directions fdufa work.

2. ART ARCHITECTURES
The ART architecture has three major layers. Tis¢ ik the input layerk*)

where the input patterns are presented. Next tisehe category representation layer
(F;) where compressed representations of these iigirps, called templates are
formed (designated ag:). Finally, there is the output layeF) that holds the labels of
the categories formed in the category representédiger (designated twia"). In FAM,

EAM or GAM only one of the components of this weigkctor is equal to 1 and the rest
of the components are 0. The component that isl égua designates the label of the first
input pattern that committed this node, for thetftrme. Normalization of the input
patterns (so that their components lie in the watkjO, 1]) is a frequent pre-processing
strategy for all of these architectures. The nundberodes in the input layer of FAM is
equal t2M, , where M _is the dimensionality of the vector (note thatE#M and

GAM the number of nodes in the input layer is edadll ).

It is worth mentioning that the vector of weigméj‘ (template), emanating from
nodej in the category representation layer, differs frame ART architecture to another.
For instance, in FAI\/Mvj.‘ represents the lower and upper endpoints of a Ryper
enclosing the input patterns that chose this bakeis representative box. On the other
hand, in the case of EAM/,VT represents the center of an ellipsoid, and thetilne of



the ellipsoid’s major axis. This ellipsoid encleseithin its boundaries all the input
patterns that chose this ellipsoid as their repitasiee ellipsoid. Finally, in the case of

GAM, w7 represents the mean and the variances of the patgirns that chose category

(node)j as their representative category.

ART operates in two phases: The training phasetagerformance phase. In the
training phase of ART we have a collection of ipssociated labels pairs (called
training set), and we present it to ART, in a repddashion until the network learns this
collection or until an upper limit on the numberegiochs is reached. The training phase
of the no-match tracking FAM, EAM and GAM followse following simple rules:

1. Find the nearest category (node) in the categgmesentation layer of ART
that resonates with the input patterns.

2. If the label of the input pattern matches the latf¢he category, learning
ensues according to the specific ART learning r(figsM, EAM, GAM).

3. Ifthe label of the input pattern does not matahltbel of the category, the
category is reset, and an uncommitted categorgtigaded that learns the
input/output pair according to the specific ARTrlgag rules (FAM, EAM,
GAM).

The learning rules in each one of the ART architexd are different. In FAM when a
new input pattern is coded by a category its hyymerrepresentation expands so that it
encloses within its boundaries the new input patter EAM when a new input pattern is
coded by a category its ellipsoidal representagixpands so that it encloses within its
boundaries the new input pattern. Finally, in GAMem a new input pattern is coded by
a category its mean and variances vectors are pipgtely updated to reflect that the
new input pattern is now a member of the clustqradfits that this category represents.

For the performance phase, a new input patterresxttie input layer of ART and
finds the nearest category in the category reptasen layer that resonates with it, and
uses the label of this category as the predicteel laf the input pattern presented. If an
existing category that satisfies these conditi@mnot be found, then ART flags this
input pattern as a novel input pattern whose laaghot be reliably predicted.

3. PARALLEL, NO-MATCH TRACKING FAM IMPLEMENTATION

3.1 Beowulf Cluster Preliminaries

A Beowulf cluster computer is a collection of stardiPC’s connected together by a
fast network interconnect and programmed in pdraliually with open-source software.
In our case, it consisted of @8/D nodes, each with dual AthlonMP 1500+ processors
and 512MB of RAM. The nodes are connected throughst Ethernet network.

In general, the Beowulf cluster configuration igaaallel platform that has a high
latency. This implies that to achieve optimum perfance communication packets must
be of large size and of small number. Paralleliratechniques in this platform are
radically different from shared memory or vectorcimaes.

We have two choices for parallelization design. &g request from each node in
the network to process a different input pattemrdpa slice of time. Or we can request
that each node processes the same input pattetimes same time. If we want the parallel
implementation to work equivalently to the sequerdine the first design will lead to a
pipelined approach where each node computes aistéige pipeline. The second
approach will lead to a scatter/gather approachrevhlk nodes communicate to a
gathering master node. This approach was explar@dalkani and Vassiliadis, 1995).



In this paper, the authors propose a hypercubeanktaesign, where each node has a
subset of the templates. A single input patteirésdcast to all of the nodes and
through several synchronization operations they fire template with the maximum
bottom up input. However, because the results eistynchronized with a master node,
this approach can limit scalability. We choseditofv the pipelined approach because in
this scenario we are only doing point to point camination, which is a constant time
operation in a Fast Ethernet switched network. Sdadter/gather approach tends to
degrade communication performance as the numh@ooessing elements increases.
Our design is based on fixed packet size commuoit#trough the network. No

network bandwidth would be gained by using variaited packets since packets are
more efficient when they are large, and to findthetsize of a packet a receiving process
would have to incur an extra (and expensive) conication.

3.2 Paralld Implementation of ART Architectures

Castro, et al., (see Castro, 2004) has demonstitzednagnostopoulos’s NMT-
FAM variant is amenable to production-line stylpgdine. We extended Castro’s idea to
the parallel implementation of the NMT-EAM and NMJAM. For the implementation
of the no-match tracking FAM, EAM, GAM, we firsttnoduce a number of definitions.
The algorithm itself (parallel, no-match trackin®A implementation) is shown in the
Appendix, after the definitions are introducedtha description of the parallel no-match
tracking ART (FAM, EAM, GAM) the initialization preedure(INIT(p)) andWINNER
are not described due to lack of space. More deahibut these procedures as well as the
algorithm presented here can be found in (Castral,,e2004).

n: number of processors in the pipeline
K : index of current process D{O,l ...,N —]}
p: packet size, number of patterns sent downstrepm,umber of templates sent
upstream
I'": input patterni of the current packet in the pipelirid]{lZ,..., p} .

W : current best candidate template for input patiérn

T': current maximum activation for input patterh.
myTemplates : :set of templates that belong to the current psmes

nodes: variable local to the current processor that htidstotal number of templates
the process is aware of (its own plus the templaftether processors)
myShare: amount of templates that the current process dhwaile.

W,_, : templatei coming from previous process in the pipeline.
M+1: templatei coming from next process in the ring.

W : templatei going to next process in the ring.
Wm(k_l) . templatei going to previous process in the pipeline.
|.class: class label associated with a given input pattern.

w.class: class label associated with a given input template.
index(w) : sequential index assigned to the template.

newNodes: number of created nodes on a given iteration tonsanicate upstream in
the pipeline.



newNodes ., : number of created nodes on a given iteration conicated from
processor k+1 in the pipeline.

The exchange of packets between processors igipltdllustrated in figure 1. In
this figure, the focus is on proces&and the exchange of packets between procé&ssor
and its neighboring processors (i.e., processdrandk+1). The parallel implementation
of no-match tracking ART (FAM, EAM or GAM) is shown the Appendix. The
pseudocode, shown in the Appendix, is the maintteéahe parallel algorithm. Each
element of the pipeline will execute this procediareas long as there are input patterns
to be processed. The input parameter k tells tbegss which stage of the pipeline it is,
where the valué& varies from0 to n-1. After initializing most of the values as empty we
enter the loop of lines 2 through 35 (see AppendiR)s loop continues execution until
there are no more input patterns to process. Tsedittivity of each process is to create a
packet of excess templates to send back (line 12)toLines 7 to 10 correspond to the
information exchange between contiguous nodesdmipeline. The functionSend-Next
andRecv-Next on lines 7 and 8, respectively, do not do anytfifitige process is the last
in the pipeline (k = n-1). The same is true for filmection Send-Prev when the process is
the first in the pipeline (k= 0). On the other hatied functionRecv-Prev reads input
patterns from the input stream if the processeditist in the pipeline. These fresh
patterns will be paired with an uncommitted nodel(1.,1) with index® as their best
representative so far. On all other cases thesgifuns do the obvious information
exchange between contiguous processes in therppé#lie assume that all
communication happens at the same time and is symicled. We can achieve this in an
MPI environment by doing non--blocking sends and usaimiglPl-Waitall to synchronize
the receipt of information.

On line 30 of the Appendix we add 2 templates tdmplate setyTemplates.

This is because a new template was created armlittent candidate winnev is not of
the correct category and has to be inserted backhe pool of templates. The function
Find-Winner is also important. This function searches throaget of templateSto find

if there exists a template/' that is a better choice (using ART criteria) fopnesenting
| than the current best representative If it finds one it swaps it withw

leavingw in Sand extractingw' from it. By sending the input patterns downstream i
the pipeline coupled with their current best repreative template we guarantee that the
templates are not duplicated amongst differentgssars and that we do not have
multiple--instance consistency issues.

Also when exchanging templates between nodes ipifiedine we have to be
careful that patterns that are sent downstreanotmiss the comparison with templates
that are being sent upstream. This is the purpbliees 12 to 15 (communication with
the next one in the pipeline) and lines 18-2Piaicess (see Appendix). On line 12 we set
Sto represent the set of templates that have bE@rupstream to nodeby nodek+1.
We loop through each pattern, template &jrw) to see if one of the templates, sent
upstream, has a higher activation (bottom-up infhah the ones that were sent
downstream; if this is true then the template élextracted frons The net result of
this is thatSends up containing the templates that lost thepedition, and therefore the
ones that processshould keep (line 15).

The converse process is done in lines 18 to 21in@rl8 we sefto represent the
set of templates that are seatk to the previous node k-1 in the pipeline. In lii@sto
20 we compare the pattern, template pdits, , w, ) thatk-1 sent upstream in the

pipeline with the templates fBthat process k sent downstream in the pipelinelir@n



21 we set our current pattern, template pairseéonimners of this competition. The &t
is discarded since it contains the losing templatestherefore the templates that process
k-1 keeps.

Finally, on line 30 of the Appendix we add both iheut patternl' and the template
W' to the set of templates. This does the obvinyBemplates update except when the

templatew' happens to be the uncommitted node in which d¢esaddition is ignored.
Once more, we reiterate that the main loop of tleegss starts with line 2 and ends
with line 35. The main loop is executed for as lasghere are input patterns to process.
The first processor that becomes aware that tirera@amore input patterns to process is
processor 0 (first processor in the pipeline)olhmunicates this information to the other

processors by sending(@', I', T') = (none, none, 0) to the next processor (see line

36 of Appendix). Lines 37 and 38 of process make that the templates that are sent
upstream in the pipeline are not lost after the pbtraining input patterns that are
processed is exhausted.

4. EXPERIMENTS

The database used for testing the efficiency op#rallel, no-match tracking ART
(FAM, EAM, GAM) implementations was the Forest Cdype database, provided by
Blackard, and donated to the UCI Repository. @kmeriments were run on Cerberus, a
40 node Beowulf cluster, connected by a fast E#tematwork. The database consists of
a total of 581,012 patterns, each one associatidivwf 7 different forest tree cover-
types. The number of attributes of each pattefdjdut this number is misleading since
attributes 11 through 14 are actually a binary f@ion of the attributéVilderness-Area,
and attributes 15 to 54 ( 40 of them) are a bisaloyilation of the attributgoil-Type. The
original database values are not normalized to fite unit hypercube (ARTMAP
architectures require normalization of input valigesthat they lie in the interval [0, 1]).
Hence, we normalized the input values.

For testing the parallel efficiency of all thregailithms, patterns 1 through 256,000
were used for the training. Patterns 561,001 tq 68@Q (20,000 of them) were used for
testing. The number of processors in the pipelaréed fromp=1to p=32, in powers of
2. For these runs, the primary concern was thedspe of the pipelined NMT-FAM,
NMT-GAM and NMT-EAM versus their sequential coungtarts. Results of the speed-
up for this database can be seen in Figures 2d34aWe observe from these figures that
the speed-up is approaching linear. For small rermbf training patterns, the speed-up
trails off for higher number of processors, cregtinknee in the curve. This is because
for smaller numbers of input patterns, there aneefaemplates created and thus less
processing to be done. With too many processaitseipipeline, these relatively small
computational tasks are too finely split, resultingoo much communication versus
computation. This effect is very commonly seepanallel algorithms. The problems
for the algorithm need to be large enough to jugtdrallelism. For some of the training
set sizes, the speed-up is slightly above lin@&is behavior is attributed to caching
effects. When there are greater numbers of procegs the pipeline each processor has
fewer templates. This means that more of the tateplcan remain cached for the
competition loop versus a processor with more tamagl



5. CONCLUSIONS

In this paper, we have extended the implementatiame of our no match tracking
ARTMAP architectures (Fuzzy ARTMAP) to 2 other \aions of the ARTMAP neural
network (Ellipsoidal ARTMAP and Gaussian ARTMAPhO&se no match tracking
variants allowed us to focus on the parallelizatbthe competition process in
ARTMAP. We have showed that this parallel implera¢ioh of the FAM variant is
theoretically sound (results were reported in @agr al., 2004, and omitted due to lack
of space) and exhibits good workload balancing eriigs. We also showed
experimentally (by working with the Covertype datab) that this algorithm exhibited
linear speed-up when the number of processor=ipitteline is increased for all these
no-match tracking ART variations. We expect tihat parallelization strategy introduced
for the no-match tracking ART structures discussetiis paper can be readily extended
to other classifiers, neural network based or that, share commonalities with the ART
classifiers. In particular, these are classifibet tely on an exemplar structure to
compress (group) their input patterns and on a etitnge loop that chooses the
exemplar that best matches the incoming input pette
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APPENDIX

Process(k,n, o,, 5., p)

1 INIT (p)

2 while continue

3 do

4 while|myTemplates > myShare
5 do
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31
32
33
34

35
36

37
38

EXTRACT-TEMPLATE (myTemplates,{w;,, . })
SEND-NEXT(k,n,{(w 1", T'):i =1...., p})
RECV-NEXT (k,n{w,,, :i =1... 2p}, newNodes )
SEND-NEXT(K,{},,., :i =1...,2p}, newNodes)
RECV-NEXT (k{11 T/, ):i =1.... p})
newNodes — newNodes,
S« {Wk+1}
foreachiin {12,..., }
doWINNER(I',W,T', ., .,5)
myTemplates — myTemplates(] S
if I' =EOF
thencontinue — FALSE
elseS ~ {V\/w(k,l)}
for eachiin {12,..., p}
doWINNER (1%, W,,,T., 2, 3., S)

(Ii 'W ’TI) - (I ikfl'wkfl’Tklfl)
for eachiin {12,..., p}
doWINNER(1',w,T', 2,, 3,, myTemplates)
if k=n-1
then if class(l') = class(w')
then
myTemplates — myTemplates {I " W}
else newTemplate — I
index(newTemplate) — newNodes+ nodes
myTemplates — myTemplates[] {I i ,W}
newNodes — newNodes+1
if newNodes>0
then
nodes — nodes+ newNodes
nodes—‘

myShare [

SEND-NEXT (k,n,{(none, none, 0)})

RECV-NEXT (k,n,{w.,, :i =1,... 2p}, newNodes,.,)
myTemplates — myTemplates(] {V\/k+1 =1....2 p}



