

PIPELINING OF ART ARCHITECTURES (FAM, EAM, GAM)
WITHOUT MATCH TRACKING

JIMMY SECRETAN(*), JOSÉ CASTRO(**), AMIT CHADHA(*), BRIAN HUBER(*),
JOE TAPIA(*), MICHAEL GEORGIOPOULOS(*), GEORGIOS

ANAGNOSTOPOULOS(***), SAM RICHIE(*)
(*) Dept. of ECE, University of Central Florida, Orlando, FL 32816

(**) Comp Eng., Instituto Tecnológico de Costa Rica, Cartago, Costa Rica
 (***) Dept. of ECE, Florida Institute of Technology, Melbourne, FL 32901

ABSTRACT
Adaptive Resonance theory was introduced by Grossberg to address the
stability versus plasticity dilemma. That is, how can one design a learning
system that is plastic enough to learn new information, and at the same time
stable enough not to forget old, important information that it has already
learned. In the past two decades a number of ART neural network architectures
were introduced in the literature, based on the ART theory. These architectures
can solve clustering and classification problems. Our focus in this paper is ART
architectures that function like classifiers. ART classifiers have a number of
desirable properties, such as guaranteed convergence to a solution for any
classification problem of interest, fast convergence to a solution (i.e., they
converge in a few epochs, where epoch is a single presentation of all the
training data), they can be trained in an on-line fashion, they have the ability to
recognize novel inputs, and they can explain the answers that they produce.
One of their limitations is that for large database problems, where inevitably a
lot of categories (clusters) are created to represent the input data, the
convergence to a solution becomes excruciatingly slow, since ART’s
complexity is proportional to the product of the input patterns and the number
of categories created. To address this problem, Castro had suggested a parallel
implementation of Fuzzy ARTMAP (one of the ART classifiers) on a Beowulf
cluster. Castro’s implementation was efficient and general enough to apply to
other ART architectures, such as Ellipsoidal ARTMAP and Gaussian
ARTMAP, which are two other examples of ART classifiers. In this paper we
validate this claim, that EAM and GAM can be implemented effectively on a
Beowulf cluster, and we verify this claim by presenting appropriate
experimental results. What is also worth noting is that Castro’s Fuzzy
ARTMAP Beowulf implementation can also be applied to other competitive
classifiers, neural network based or not.

1. INTRODUCTION
The ART architectures that we are focusing on this paper are the Fuzzy ARTMAP

(see Carpenter, et al., 1992), the Ellipsoidal ARTMAP (see Anagnostopoulos, et al.,
2001), and Gaussian ARTMAP (see Williamson, 1996, and 1997). All of these
architectures are classifiers and share the good ART properties that we mentioned earlier.
Nevertheless they all suffer from the category proliferation problem, where, as the
training data set grows in size, the number of categories formed to represent the data
increases with it. The immediate impact of this category proliferation is that it takes a
significant amount of time for these architectures to converge to a solution, despite the
fact that convergence is guaranteed by passing the training data a few times through the

network. As a reminder, the categories formed in Fuzzy ARTMAP (FAM) are hyper-
rectangles, in Ellipsoidal ARTMAP (EAM) are ellipsoids, and in Gaussian ARTMAP
(GAM) are the parameters of Gaussian curves (such as mean and variance). The category
proliferation problem leads us into ART structures with many categories, and
consequently slows down the ART training process. To address this issue with ART,
especially when the datasets are large, Castro, et al., (see Castro, 2004) has proposed an
effective and efficient pipeline implementation of Fuzzy ARTMAP on a Beowulf cluster.
In particular, Castro has implemented a variation of Fuzzy ARTMAP, called no-match
tracking Fuzzy ARTMAP (NMT-FAM) that was easier to parallelize than FAM. The no-
match tracking version of Fuzzy ARTMAP was first introduced and examined by
Anagnostopoulos, et al., 2003. In his paper Anagnostopoulos illustrated that NMT-FAM
achieves equivalent, and at times, better generalization than FAM at the expense of
creating more categories. Furthermore, it was recognized by Castro (see Castro, et al.,
2004) that the proposed pipeline implementation for NMT-FAM can be extended to other
ART architectures. In this paper we are demonstrating this claim by implementing the
NMT-EAM and NMT-GAM on the Beowulf cluster. Our experimental results, included
here, illustrate the efficiency of our implementation. Our experiments were run on a
Beowulf cluster and the database used for the experiments was the Forrest Covertype
database (obtained from the UCI repository).

The organization of the paper is as follows: In section 2 we discuss some of the
specifics of the ART architectures that are applicable to FAM, EAM and GAM.
Furthermore, the high level operation of no-match tracking ART architectures is outlined.
In Section 3, we describe some of the characteristics of the Beowulf cluster and we
discuss the specifics of the Beowulf pipeline implementation. In Section 4, we present the
experimental results conducted and we depict the speed-up obtained by the pipeline
implementations of NMT-FAM, NMT-EAM and NMT-GAM. Finally, in Section 5 we
provide a summary of our work and directions for future work.

2. ART ARCHITECTURES

The ART architecture has three major layers. The first is the input layer (aF1
)

where the input patterns are presented. Next, there is the category representation layer
(aF2

) where compressed representations of these input patterns, called templates are

formed (designated as a
j

w). Finally, there is the output layer (bF2
) that holds the labels of

the categories formed in the category representation layer (designated by ab

jW). In FAM,

EAM or GAM only one of the components of this weight vector is equal to 1 and the rest
of the components are 0. The component that is equal to 1, designates the label of the first
input pattern that committed this node, for the first time. Normalization of the input
patterns (so that their components lie in the interval [0, 1]) is a frequent pre-processing
strategy for all of these architectures. The number of nodes in the input layer of FAM is
equal to

aM2 , where
aM is the dimensionality of the vector (note that for EAM and

GAM the number of nodes in the input layer is equal to
aM).

It is worth mentioning that the vector of weights ajw (template), emanating from

node j in the category representation layer, differs from one ART architecture to another.

For instance, in FAM, a

jw represents the lower and upper endpoints of a hyper-box

enclosing the input patterns that chose this box as their representative box. On the other

hand, in the case of EAM, a

jw represents the center of an ellipsoid, and the direction of

the ellipsoid’s major axis. This ellipsoid encloses within its boundaries all the input
patterns that chose this ellipsoid as their representative ellipsoid. Finally, in the case of

GAM, a

jw represents the mean and the variances of the input patterns that chose category

(node) j as their representative category.
ART operates in two phases: The training phase and the performance phase. In the

training phase of ART we have a collection of input/associated labels pairs (called
training set), and we present it to ART, in a repeated fashion until the network learns this
collection or until an upper limit on the number of epochs is reached. The training phase
of the no-match tracking FAM, EAM and GAM follows the following simple rules:

1. Find the nearest category (node) in the category representation layer of ART
that resonates with the input patterns.

2. If the label of the input pattern matches the label of the category, learning
ensues according to the specific ART learning rules (FAM, EAM, GAM).

3. If the label of the input pattern does not match the label of the category, the
category is reset, and an uncommitted category is activated that learns the
input/output pair according to the specific ART learning rules (FAM, EAM,
GAM).

The learning rules in each one of the ART architectures are different. In FAM when a
new input pattern is coded by a category its hyper-box representation expands so that it
encloses within its boundaries the new input pattern. In EAM when a new input pattern is
coded by a category its ellipsoidal representation expands so that it encloses within its
boundaries the new input pattern. Finally, in GAM when a new input pattern is coded by
a category its mean and variances vectors are appropriately updated to reflect that the
new input pattern is now a member of the cluster of points that this category represents.

For the performance phase, a new input pattern excites the input layer of ART and
finds the nearest category in the category representation layer that resonates with it, and
uses the label of this category as the predicted label of the input pattern presented. If an
existing category that satisfies these conditions cannot be found, then ART flags this
input pattern as a novel input pattern whose label cannot be reliably predicted.

3. PARALLEL, NO-MATCH TRACKING FAM IMPLEMENTATION

3.1 Beowulf Cluster Preliminaries

A Beowulf cluster computer is a collection of standard PC’s connected together by a
fast network interconnect and programmed in parallel, usually with open-source software.
In our case, it consisted of 96 AMD nodes, each with dual AthlonMP 1500+ processors
and 512MB of RAM. The nodes are connected through a Fast Ethernet network.

In general, the Beowulf cluster configuration is a parallel platform that has a high
latency. This implies that to achieve optimum performance communication packets must
be of large size and of small number. Parallelization techniques in this platform are
radically different from shared memory or vector machines.

We have two choices for parallelization design. We can request from each node in
the network to process a different input pattern during a slice of time. Or we can request
that each node processes the same input patterns at the same time. If we want the parallel
implementation to work equivalently to the sequential one the first design will lead to a
pipelined approach where each node computes a stage in the pipeline. The second
approach will lead to a scatter/gather approach where all nodes communicate to a
gathering master node. This approach was explored in (Malkani and Vassiliadis, 1995).

In this paper, the authors propose a hypercube network design, where each node has a
subset of the templates. A single input pattern is broadcast to all of the nodes and
through several synchronization operations they find the template with the maximum
bottom up input. However, because the results must be synchronized with a master node,
this approach can limit scalability. We chose to follow the pipelined approach because in
this scenario we are only doing point to point communication, which is a constant time
operation in a Fast Ethernet switched network. The scatter/gather approach tends to
degrade communication performance as the number of processing elements increases.
Our design is based on fixed packet size communication through the network. No
network bandwidth would be gained by using variable sized packets since packets are
more efficient when they are large, and to find out the size of a packet a receiving process
would have to incur an extra (and expensive) communication.

3.2 Parallel Implementation of ART Architectures

Castro, et al., (see Castro, 2004) has demonstrated that Anagnostopoulos’s NMT-
FAM variant is amenable to production-line style pipeline. We extended Castro’s idea to
the parallel implementation of the NMT-EAM and NMT-GAM. For the implementation
of the no-match tracking FAM, EAM, GAM, we first introduce a number of definitions.
The algorithm itself (parallel, no-match tracking ART implementation) is shown in the
Appendix, after the definitions are introduced. In the description of the parallel no-match
tracking ART (FAM, EAM, GAM) the initialization procedure (INIT(p)) and WINNER
are not described due to lack of space. More details about these procedures as well as the
algorithm presented here can be found in (Castro, et al., 2004).

:n number of processors in the pipeline

:k index of current process, { }1,,1,0 −∈ nk K

:p packet size, number of patterns sent downstream, 2p = number of templates sent

upstream

:iI input pattern i of the current packet in the pipeline. { }pi ,,2,1 K∈ .

:iw current best candidate template for input pattern iI .

:iT current maximum activation for input pattern iI .
:smyTemplate :set of templates that belong to the current processor.

:nodes variable local to the current processor that holds the total number of templates
the process is aware of (its own plus the templates of other processors)

:myShare amount of templates that the current process should have.

:1
i

kw − template i coming from previous process in the pipeline.

:1
i

kw + template i coming from next process in the ring.

:iw template i going to next process in the ring.

:)1(

i

ktow − template i going to previous process in the pipeline.

:.classI class label associated with a given input pattern.

:.classw class label associated with a given input template.
:)(windex sequential index assigned to the template.

:newNodes number of created nodes on a given iteration to communicate upstream in
the pipeline.

:1+knewNodes number of created nodes on a given iteration communicated from

processor k+1 in the pipeline.

The exchange of packets between processors is pictorially illustrated in figure 1. In
this figure, the focus is on processor k and the exchange of packets between processor k
and its neighboring processors (i.e., processors k-1 and k+1). The parallel implementation
of no-match tracking ART (FAM, EAM or GAM) is shown in the Appendix. The
pseudocode, shown in the Appendix, is the main heart of the parallel algorithm. Each
element of the pipeline will execute this procedure for as long as there are input patterns
to be processed. The input parameter k tells the process which stage of the pipeline it is,
where the value k varies from 0 to n-1. After initializing most of the values as empty we
enter the loop of lines 2 through 35 (see Appendix). This loop continues execution until
there are no more input patterns to process. The first activity of each process is to create a
packet of excess templates to send back (line 12 to 14). Lines 7 to 10 correspond to the
information exchange between contiguous nodes in the pipeline. The functions Send-Next
and Recv-Next on lines 7 and 8, respectively, do not do anything if the process is the last
in the pipeline (k = n-1). The same is true for the function Send-Prev when the process is
the first in the pipeline (k= 0). On the other hand, the function Recv-Prev reads input
patterns from the input stream if the process is the first in the pipeline. These fresh
patterns will be paired with an uncommitted node (1, 1,…,1) with index ∞ as their best
representative so far. On all other cases these functions do the obvious information
exchange between contiguous processes in the pipeline. We assume that all
communication happens at the same time and is synchronized. We can achieve this in an
MPI environment by doing non--blocking sends and using an MPI-Waitall to synchronize
the receipt of information.

On line 30 of the Appendix we add 2 templates to the template set myTemplates.
This is because a new template was created and the current candidate winner w is not of
the correct category and has to be inserted back into the pool of templates. The function
Find-Winner is also important. This function searches through a set of templates S to find

if there exists a template iw that is a better choice (using ART criteria) for representing
I than the current best representativew . If it finds one it swaps it with w

leavingw in S and extracting iw from it. By sending the input patterns downstream in
the pipeline coupled with their current best representative template we guarantee that the
templates are not duplicated amongst different processors and that we do not have
multiple--instance consistency issues.

Also when exchanging templates between nodes in the pipeline we have to be
careful that patterns that are sent downstream do not miss the comparison with templates
that are being sent upstream. This is the purpose of lines 12 to 15 (communication with
the next one in the pipeline) and lines 18-21 of Process (see Appendix). On line 12 we set
S to represent the set of templates that have been sent upstream to node k by node k+1.
We loop through each pattern, template pair),(wI to see if one of the templates, sent

upstream, has a higher activation (bottom-up input) than the ones that were sent
downstream; if this is true then the template will be extracted from S. The net result of
this is that S ends up containing the templates that lost the competition, and therefore the
ones that process k should keep (line 15).

The converse process is done in lines 18 to 21. On line 18 we set S to represent the
set of templates that are sent back to the previous node k-1 in the pipeline. In lines 19 to

20 we compare the pattern, template pairs),(11
i

k

i

k −− wI that k-1 sent upstream in the

pipeline with the templates in S that process k sent downstream in the pipeline. On line

21 we set our current pattern, template pairs to the winners of this competition. The set S
is discarded since it contains the losing templates and therefore the templates that process
k-1 keeps.

Finally, on line 30 of the Appendix we add both the input pattern iI and the template
iw to the set of templates. This does the obvious myTemplates update except when the

template iw happens to be the uncommitted node in which case the addition is ignored.
Once more, we reiterate that the main loop of the process starts with line 2 and ends

with line 35. The main loop is executed for as long as there are input patterns to process.
The first processor that becomes aware that there are no more input patterns to process is
processor 0 (first processor in the pipeline). It communicates this information to the other

processors by sending a)0,,(),,(nonenoneT iii =Iw to the next processor (see line

36 of Appendix). Lines 37 and 38 of process make sure that the templates that are sent
upstream in the pipeline are not lost after the pool of training input patterns that are
processed is exhausted.

4. EXPERIMENTS

The database used for testing the efficiency of the parallel, no-match tracking ART
(FAM, EAM, GAM) implementations was the Forest Covertype database, provided by
Blackard, and donated to the UCI Repository. The experiments were run on Cerberus, a
40 node Beowulf cluster, connected by a fast Ethernet network. The database consists of
a total of 581,012 patterns, each one associated with 1 of 7 different forest tree cover-
types. The number of attributes of each pattern is 54, but this number is misleading since
attributes 11 through 14 are actually a binary tabulation of the attribute Wilderness-Area,
and attributes 15 to 54 (40 of them) are a binary tabulation of the attribute Soil-Type. The
original database values are not normalized to fit in the unit hypercube (ARTMAP
architectures require normalization of input values, so that they lie in the interval [0, 1]).
Hence, we normalized the input values.

For testing the parallel efficiency of all three algorithms, patterns 1 through 256,000
were used for the training. Patterns 561,001 to 581, 000 (20,000 of them) were used for
testing. The number of processors in the pipeline varied from p=1 to p=32, in powers of
2. For these runs, the primary concern was the speed-up of the pipelined NMT-FAM,
NMT-GAM and NMT-EAM versus their sequential counterparts. Results of the speed-
up for this database can be seen in Figures 2, 3, and 4. We observe from these figures that
the speed-up is approaching linear. For small numbers of training patterns, the speed-up
trails off for higher number of processors, creating a knee in the curve. This is because
for smaller numbers of input patterns, there are fewer templates created and thus less
processing to be done. With too many processors in the pipeline, these relatively small
computational tasks are too finely split, resulting in too much communication versus
computation. This effect is very commonly seen in parallel algorithms. The problems
for the algorithm need to be large enough to justify parallelism. For some of the training
set sizes, the speed-up is slightly above linear. This behavior is attributed to caching
effects. When there are greater numbers of processors in the pipeline each processor has
fewer templates. This means that more of the templates can remain cached for the
competition loop versus a processor with more templates.

5. CONCLUSIONS
 In this paper, we have extended the implementation of one of our no match tracking
ARTMAP architectures (Fuzzy ARTMAP) to 2 other variations of the ARTMAP neural
network (Ellipsoidal ARTMAP and Gaussian ARTMAP). These no match tracking
variants allowed us to focus on the parallelization of the competition process in
ARTMAP. We have showed that this parallel implementation of the FAM variant is
theoretically sound (results were reported in Castro, et al., 2004, and omitted due to lack
of space) and exhibits good workload balancing properties. We also showed
experimentally (by working with the Covertype database) that this algorithm exhibited
linear speed-up when the number of processors in the pipeline is increased for all these
no-match tracking ART variations. We expect that the parallelization strategy introduced
for the no-match tracking ART structures discussed in this paper can be readily extended
to other classifiers, neural network based or not, that share commonalities with the ART
classifiers. In particular, these are classifiers that rely on an exemplar structure to
compress (group) their input patterns and on a competitive loop that chooses the
exemplar that best matches the incoming input patterns.

ACKNOWLEDGEMENTS

Jimmy Secretan and Michael Georgiopoulos would like to acknowledge the partial
support of the NSF CRCD grant, no: 0203446. Georgios Anagnostopoulos and Michael
Georgiopoulos would also like to acknowledge the partial support of the NSF CCLI
grant, no: 0341601.

REFERENCES
Anagnostopoulos G., and Georgiopoulos, M., “Ellipsoid ART and ARTMAP for incremental
clustering and classification,” IEEE-INNS International Joint Conference on Neural Networks 2001
(IJCNN 2001), Washington, DC, July 14-19, 2001, pp. 1221-1226.

Anagnostopoulos, G. C., and Georgiopoulos, M., “Putting the utility of match-tracking in Fuzzy
ARTMAP to the test,” In Proceedings of the Seventh International Conference on Knowledge-based
Intelligent Information Engineering, Vol. 2, pp. 1-6, KES, 2003.

Carpenter, G. A., Grossberg, S. Markuzon, N., Reynolds, J. H., Rosen, D. B., “Fuzzy ARTMAP: A
neural network architecture for incremental learning of analog multi-dimensional maps,” IEEE
Transactions on Neural Networks, Vol. 3, No. 5. pp. 698-713, 1992.

Castro, J., “Modifications of the Fuzzy-ARTMAP Algorithms for Distributed Learning in Large
Data Sets,” PhD. Dissertation, University of Central Florida, Summer 2004.

Malkani, A. and Vassiliadis, C.A., “Paralllel implementation of the Fuzzy ARTMAP neural network
paradigm on a hypercube,” Expert Systems, Vol. 12, No. 1, 1995, pp 39-53.

Manolakos, E. S., “Parallel Implementation of ART1 neural networks on Processor Ring
Architectures”, in Parallel Architectures for Artificial Neural Networks, editors N. Sundararajan and
P. Saratchandran, IEEE Computer Society Press, 1998.

Carpenter, G. A., Grossberg, S., Markuzon, N., Reynolds, J. H., “Fuzzy ARTMAP: A neural
network architecture for incremental supervised learning of analog multi-dimensional maps,” IEEE
Transactions on Neural Networks, Vol. 3, No. 5, 1992, pp. 698-713.

Grossberg, S., “Adaptive pattern recognition and universal recoding II: Feedback, expectation,
olfaction, and illusions,” Biological Cybernetics, Vol. 23, 1976, pp. 187-202.

Williamson, J. R., “Gaussian ARTMAP: A Neural Network for Fast Incremental Learning of Noisy
Multi-Dimensional Maps,” Neural Networks, Vol. 9, No. 5, 1996, pp. 881-897.

Williamson, J. R., “A constructive, incremental-learning network for mixture modeling and
classification,” Neural Computation, Vol. 9, 1997, pp. 1517-1543.

Figure 1. Processor pipeline architecture for NMT- ART.

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30 35

S
p

ee
d

u
p

Number of Processors

Speedup of Parallel NMT-FAM on Covertype Database

256,000 patterns
128,000 patterns
64,000 patterns
32,000 patterns

Figure 2. Forest Covertype Database Speed-Up Results for NMT-FAM

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 5 10 15 20 25 30 35

S
p

ee
d

u
p

Number of Processors

Speedup of parallel NMT-EAM on Covertype Database

256,000 patterns
128,000 patterns

64,000 patterns
32,000 patterns

Figure 3. Forest Covertype Database Speed-Up Results for NMT-EAM

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30 35

S
p

ee
d

u
p

Number of Processors

Speedup of Parallel NMT-GAM on Covertype Database

256,000 patterns
128,000 patterns

64,000 patterns
32,000 patterns

Figure 4. Forest Covertype Database Speed-Up Results for NMT-GAM

APPENDIX

Process),,, ,(pnk aa βρ

1 INIT)(p

2 continue while

3 do

4 mySharesmyTemplate > while

5 do

6 EXTRACT-TEMPLATE { }()i

ktowsmyTemplate)1(, −

7 SEND-NEXT (){ }()piTwnk iii ,,1:,,,, K=I

8 RECV-NEXT { }()11 ,2,,1:,, ++ = k

i

k newNodespiwnk K

9 SEND-NEXT { }()newNodespiwk i

kto ,2,,1:,)1(K=−

10 RECV-NEXT (){ }()piTwk i

k

i

k

i

k ,,1:,,, 11)1(K=−−− I

11 1+← knewNodesnewNodes

12 { }i

kwS 1+←

13 { }pi ,,2,1in each for K

14 ()STwWINNER aa

iii ,,,,, do βρI

15 SsmyTemplatesmyTemplate ∪←

16 EOF=−
i

k 1I if

17 FALSE←continuethen

18 { }i

ktowS)1(else −←

19 { }pi ,,2,1in each for K

20 ()STwWINNER aa

i

k

i

k

i

k ,,,,, do 111 βρ−−−I

21 () ()i

k

i

k

i

k

iii TwTw 111 ,, ,, −−−← II

22 { }pi ,,2,1in each for K

23 ()smyTemplateTwWINNER aa

iii ,,,,, do βρI

24 1 if −= nk

25)()(ifthen ii wclassclass =I

26 then

27 { }ii wsmyTemplatesmyTemplate ^I∪←

28 ienewTemplat I← else

29 nodesnewNodesenewTemplatindex +←)(

30 { }ii wsmyTemplatesmyTemplate ,I∪←

31 1+← newNodesnewNodes
32 0 if >newNodes

33 then

34 newNodesnodesnodes +←

35 






←
n

nodes
myShare

36 SEND-NEXT (){ }()none,0none,,,nk

37 RECV-NEXT { }()11 ,2,,1:,, ++ = k

i

k newNodespiwnk K

38 { }piwsmyTemplatesmyTemplate i

k 2,,1:1 K=∪← +

