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Abstract 
Fuzzy ARTMAP (FAM) is currently considered to be one of the premier neural network architectures in solving 
classification problems. One of the limitations of Fuzzy ARTMAP that has been extensively reported in the 

literature is the category proliferation problem. That is Fuzzy ARTMAP has the tendency of increasing its network 

size, as it is confronted with more and more data, especially if the data are of the noisy and/or overlapping nature. 

To remedy this problem a number of researchers have designed modifications to the training phase of Fuzzy 

ARTMAP that had the beneficial effect of reducing this category proliferation. One of these modified Fuzzy 

ARTMAP architectures was the one proposed by Gomez-Sanchez, and his colleagues, referred to as µARTMAP. In 

this paper we present reasonable analytical arguments that demonstrate of how we should choose the range of the 

some of the µARTMAP other parameters. Furthermore, we perform an exhaustive experimentation to find the best 

µARTMAP network for a variety of problems (simulated and real problems). Through this experimentation we 

were able to identify good default values for the µARTMAP network parameters in a variety of problems. Finally, 

we identified the best performing µARTMAP network (from the set of parameter values that we have experimented 

with) and we compared it with other ART networks, including other ART networks that claim that resolve the 

category proliferation problem in Fuzzy ARTMAP. 

1. Introduction 

The Adaptive Resonance Theory (ART) was developed by Grossberg (see Grossberg, 1976). One of the most 

celebrated ART architectures is Fuzzy ARTMAP (see Carpenter, et al., 1992), which has been successfully used 

in the literature for solving a variety of classification problems. Some of the advantages that Fuzzy ARTMAP 

possesses is that it can solve arbitrarily complex classification problems, it converges quickly to a solution 

(within a few presentations of the list of the input/output patterns belonging to the training set), it has the ability 

to recognize novelty in the input patterns presented to it, it can operate in an on-line fashion (new input/output 

patterns can be learned by the system without re-training with the old input/output patterns), and it produces 

answers that can be explained with relative ease. 

One of the limitations of Fuzzy ARTMAP that has been extensively reported in the literature is the 

category proliferation problem. That is Fuzzy ARTMAP has the tendency of increasing its network size, as it is 

confronted with more and more data, especially if the data are of the noisy and/or overlapping nature. To remedy 

this problem a number of researchers have designed modifications of the training phase of Fuzzy ARTMAP that 

have had the beneficial effect of reducing this category proliferation (e.g., Verzi, et al., 2001, Anagnostopoulos, 

et al., 2003, and Gomez-Sanchez, et al. 2002). 

In this paper we focus our attention on one of these Fuzzy ARTMAP modifications that is the one 

introduced by Safe µARTMAP (see Gomez-Sanchez, et al., 2001). As it has been reported in the literature, 

µARTMAP’s approach to reduce the category proliferation problem is to allow categories in Fuzzy ARTMAP to 

encode input patterns that belong to different labels, thus eliminating the need of creating a new category every 

time an input pattern appeared in the vicinity of categories of different labeling than the one that the input 

pattern possessed. Furthermore, µARTMAP allowed some of the mixed label categories to be destroyed if they 

were too entropic (i.e., mixing of the labels within a category was too excessive). µARTMAP enforces the 

category destruction through a set of maximum allowed entropic thresholds. After a category is destroyed 

µARTMAP allows the creation of categories of smaller size, than the category that is destroyed. The 

performance (size of architecture created, and classification accuracy achieved on unseen data) by µARTMAP 

depends on the choice of the network parameters (i.e., entropic thresholds, baseline vigilance parameter, choice 

parameter, and order of pattern presentation in the training set). As an enhanced version of µARTMAP, Safe 

µARTMAP does not allow a category to expand too quickly, and avoids the creation of highly overlapped 



categories. 

In this paper we contribute to the existing µARTMAP literature and in a bigger context the ART literature 

by presenting reasonable analytical arguments that demonstrate of how we could choose the range of the 

entropic thresholds. Furthermore, we perform an exhaustive experimentation to find the best µARTMAP 

network for a variety of problems (simulated data and real data). Through this experimentation we were able to 

define good default values for the µARTMAP network parameters, applicable to a variety of problems. Finally, 

we identified the best performing µARTMAP network (from the set of network parameter values that we have 

experimented with) and we compared it with other best performing ART networks, such as Fuzzy ARTMAP (see 

Carpenter, et al., 1992), Ellipsoidal ARTMAP (see Anagnostopoulos, et al., 2001), Gaussian ARTMAP (see 

Williamson, 1996 and 1997), and their semi-supervised versions (see Anagnostopoulos, et al., 2003). 

 

2. The µµµµARTMAP Architecture 
The block-diagram of the µARTMAP architecture is shown in Figure 1. The µARTMAP architecture of the 

block diagram of Figure 1 has three major layers. The input layer ( aF1 ) where the input patterns (designated by 

I ) are presented, the category representation layer ( aF2
) where compressed representations of these input 

patterns are formed (designated as a

jw  and called templates), and the output layer ( bF2
) that holds the labels of 

the categories formed in the category representation layer. Another layer shown in Figure 1, and designated by 
aF0
, is a pre-processing layer and its functionality is to pre-process the input patterns prior to their presentation 

to µARTMAP. The pre-processing operation, called complementary coding, takes an input pattern a  and 

expands it by appending to it the complement of a, designated as 
c

a . That is, the input pattern I  to 

µARTMAP is now equal to 

),( c
aaI =  

where a1a −=c , or in other words every component of the complement vector is equal 1 minus the 

corresponding component of the original vector. It is assumed here that every component of the original vectors 

a lies in the interval ]1,[ ee −  (where e  is a small positive number, as explained in “µARTMAP 

Parameters”), and if it does not we normalize it so that it does. The number of nodes in the input layer of 

µARTMAP is equal to 
aM2 (where 

aM is the dimensionality of the vector a ), and we use the index i to 

designated a generic node in the input layer. The number of committed nodes in the category representation 

layer is equal to 
aN  (and this number is changing dynamically throughout the training process of µARTMAP 

as more nodes are committed to correctly encode the input patterns) and we use the generic index j to designate 

one of these nodes. The number of nodes in the output layer of µARTMAP is equal to 
bN  (and 

bN  

corresponds to the number of distinct labels of the pattern classification task that µARTMAP is focusing on), 

and we use the generic index k to designate a node in the output layer. 

There are a number of weights in the µARTMAP architecture that are worth mentioning: (a) The vector of 

weights (templates) emanating from every node in the category representation layer and converging to all the 

nodes in the input layer. For example, the vector of weights emanating from node j in the category 

representation layer and converging to all the nodes in the input layer is designated by 
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as their representative node in the training process of µARTMAP. (b) The vector of weights emanating from 

every node in the category representation layer and converging to all the nodes in the output layer. For example, 

the vector of weights emanating from node j in the category representation layer and converging to all the nodes 

in the output layer is designated by ),,,,( 1
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vector represents the number of times that node j has been chosen by an input pattern, it encoded this input 

pattern, and the label of this input pattern was label k. 

µARTMAP operates in two phases: The training phase and the performance phase. In the training phase of 

µARTMAP we have a collection of input/associated labels pairs (called training set), and we present it to 



µARTMAP, one input/associated label pair at a time, in a manner that will be further explained below, until 

µARTMAP maps the input patterns to their associated labels within a certain degree of tolerance. This tolerance 

is explicitly expressed by the entropic thresholds that µARTMAP enforces. A generic input/output pair in the 

training set is designated as )}(,{ II label , and the labels of patterns are represented by an index k, where 

bNk ≤≤1 . The performance phase of µARTMAP will be explained after the training phase has been 

discussed. 

The training phase of µARTMAP is succinctly described as follows (Steps 1-2): 

1. (Learning Phase) Find the nearest category in the category representation layer of µARTMAP that 

resonates with the input patterns. 

a. If the label of the input pattern is such that the entropy of this category does not exceed a 

pre-defined threshold update the weights of this category.  

b. Otherwise, reset the winner, and try the next winner. Uncommitted nodes are chosen if and 

only if we cannot find a winner node from the list of already committed nodes.   

2. (Offline Evaluation Phase) After the learning phase is finished (i.e., all input/associated label pairs of 

the training set have chose a committed node) we present all the patterns again to check the total 

entropy of the created categories, without changing any a

jw  vector. One pass of the learning phase 

and the offline evaluation phase is called one epoch. 

a. If the total entropy is below a designated threshold, training is completed. 

b. If not, the category that contributes the most to the total entropy value is destroyed, the 

vigilance threshold in µARTMAP is increased to be slightly higher than the vigilance level of 

the category destroyed, and the next epoch will be started. In the learning phase of the next 

epoch, however, we present to µARTMAP only the training patterns that chose the destroyed 

category in the learning phase (rather than offline evaluation phase) of this epoch or the 

previous epochs. In the offline evaluation of the next epoch, we still present all the patterns. 

The nearest category (mentioned in Step 1) to an input pattern I  presented to µARTMAP is determined by 

finding the category that maximizes the function: 
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The above function is called the bottom-up input (or choice function) pertaining to the aF2
 layer node j with 

category representation (template) equal to the vector a

jw , due to the presentation of input pattern I . This 

function obviously depends on the µARTMAP parameterα , called choice parameter, which assumes values in 

the interval ),0( ∞ . In most simulations of ART architectures the useful range of α  is the interval (0, 10). 

Larger values of α create more category nodes in the category representation layer of µARTMAP. 

The resonance of a category (also mentioned in Step 1) is determined by examining if the function, called 

vigilance ratio, and defined below 
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satisfies the following condition: 

a

a

j ρρ ≥),( wI  

If the above equation is satisfied we say that resonance is achieved. The parameter 
aρ  appearing in the above 

inequality is called vigilance parameter and assumes values in the interval [0, 1]. For Fuzzy ARTMAP, this 

parameter is globally applied to all categories. In µARTMAP, however, each category has its own 
aρ  

parameter, which is initialized as the global vigilance level when the category is committed and will not be 

changed afterwards; the global vigilance level is never used in the vigilance test, and it will not affect the 

existing categories’ 
aρ  parameters even when it is raised according to (5). At the beginning of training this 



parameter is set equal to a baseline vigilance level, designated by
aρ , which assumes values in the interval [0, 

1], and is set by the user. After training commences the vigilance level is allowed to change and become larger 

than the baseline vigilance level, as categories in µARTMAP are destroyed for being too entropic (see Step 4 of 

the algorithm). Increased values of the vigilance level produce more nodes in the category representation layer 

of µARTMAP. If a chosen category j in µARTMAP passes the resonance test then this category is allowed to 

encode the presented input/associated label pair in the following manner: 
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where )(Ilabelk = . The update of the templates, illustrated by the above equation, has been called 

fast-learning in the ART literature. The update of the inter-ART weights vector ab

jW is such that the component 

of this weight that leads us to the correct label (i.e., )(Ilabel ) is increased by 1, while the rest of the components 

remain unchanged. So, during training the component ab

jkW of the vector ab

jW is equal to the number of times 

that category j encoded a pattern and this pattern had a k as its corresponding label (belonging to class k.) 

If the category j is chosen and it resonates but the entropy of this category is higher than the allowable 

entropic threshold of a category, then this category is reset and the algorithm goes back to examine the rest of 

the categories to identify a new winner that resonates. Note that in this case the vigilance level is not increased 

and this is one of the differences between µARTMAP and the Fuzzy ARTMAP algorithms. The entropy of a 

category is defined by the following equation. 
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In the above equations )( jentropy measures the entropy of node j, and jh is the value of this entropy 

weighted by the relative frequency with which this node has encoded input/associated label pairs before. The 

level of this weighted entropy of the node that µARTMAP allows is a µARTMAP parameter value, denoted as 

maxh , and it is value that has to be defined by the user. 

In Safe µARTMAP, the winner category must also pass a distance test if it is already committed: 
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where δ  is also specified by the user, taking value from ]1,0( aρ− . This test requires that the size change of 

the winner category should not be too large due to a single pattern. If the winner category fails this test, no other 

categories will be picked to learn this pattern at this point. Instead, this pattern remains “unlearned”. After all 

patterns are presented (which is called a pass), the unlearned patterns are presented again in the next pass. This 

time the previous winner categories may learn these patterns. If no pattern is learned in a whole pass, an 

unlearned pattern will be picked and a new category will be committed to learn this pattern; then all the other 

unlearned patterns are presented in the next pass. The above is repeated until all patterns are learned. In this way, 

the learning phase of a single epoch may consist of many passes. This is the only difference between Safe 

µARTMAP and the original µARTMAP. 

After the 1
st
 epoch of training is completed we examine the total entropy of the categories created. To do so 

we feed all the training input patterns to the trained µARTMAP architecture and we keep the count of how many 

times category j has been chosen by a pattern in the training set whose corresponding label is label k. In this 

cycle (referred to as off-line evaluation phase) a pattern chooses the category that receives the highest bottom-up 

input. At the end of this processing cycle we would have calculated a matrix ][ ab

jk

ab V=V . The total entropy of 

the categories in µARTMAP is now defined as: 
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If the total entropy H is larger than a pre-specified (by the user) threshold, designated as
maxH , then the total 

entropy is considered to be too high and the category j with the largest off

jh is chosen, and destroyed. Then, the 

patterns that chose this category as their representative category in the learning phase of one of the previous 

epochs are presented again to µARTMAP. The global vigilance parameter level is increased to a value slightly 

higher than the vigilance ratio of the destroyed category; that is it is increased as: 
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This way we are avoiding the creation of future categories in µARTMAP that are as entropic as the one that we 

have recently destroyed. As mentioned before, this new vigilance level will affect only the categories created in 

the next epoch (so that the destroyed category cannot be created again); the existing categories will keep their 

aρ  values. The parameter ρ∆  is chosen to be a small positive constant. This process of offline evaluation of 

the total entropy, destruction of the most entropic category, and re-representation of the patterns that accessed 

this category in the epoch prior to the offline evaluation continues until we end up with a collection of categories 

whose total entropy does not exceed the designated allowable total entropic threshold of
maxH . At that time, we 

consider µARTMAP’s training complete. 

In all of the above equations there is a specific operand involved, called fuzzy min operand, and designated 

by the symbol ∧ . The fuzzy min operation applied on two vectors x and y , designated by yx ∧ , is a vector 

whose components are equal to the minimum of the corresponding components of x and y . Another specific 

operand involved in these equations is designated by the symbol || ⋅ . In particular, || x  is the size of the vector 

x and it is defined to be the sum of its components. 

As we have already mentioned an input pattern I presented at the aF1 layer of µARTMAP has the 

following form: 
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The assumption here is that the input vector a is such that each one of its components lies in the interval ]1,0[ . 

Any input pattern can be, through appropriate normalization, be represented by the input vectora , where 

aM stands for the dimensionality of the input pattern. The above operation that creates I from a is called 

complementary coding and it is required for the successful operation of µARTMAP. 

The dimensionality of the input patterns in µARTMAP (i.e., 
aM ) is determined by the problem at hand. 

The same is true for the number of nodes (i.e., 
bN ) in the output layer of µARTMAP. The number of nodes 

aN  created in the category representation layer of µARTMAP is a parameter that is determined by the problem 

at hand and the values of the other µARTMAP parameters. µARTMAP has 5 parameter values that need to be 

specified before its training phase can be implemented. We have already talked about three of them (choice 

parameterα , and baseline vigilance parameter level 
aρ , and the parameter ρ∆ ). These parameters are 

common in many ART architectures and their effect on the ART architectures has been studied. µARTMAP is 

introducing two more parameter values, i.e., 
maxh and 

maxH , whose effect has been less studied, and 

consequently the setting of these parameters by the user becomes a more difficult task. In this paper we are 

explaining through some theoretical arguments how to choose 
maxh and 

maxH , and we are validating this 

theory by performing a number of experimental results. 

In the performance phase of µARTMAP, a test input is presented to the input layer of µARTMAP and the 

node in the category representation layer that receives the maximum bottom-up input is chosen (say node j). 

Then the predicted label for this test input is chosen to be the label that most often node j has been mapped to in 



µARTMAP’s training process. That is the predicted label of this input is chosen to be the label k that maximizes 
ab

jkW . 

3. µ3. µ3. µ3. µARTMAP Parameters 

3.1 Parameter α  and e  

The choice parameter α  affects the competition of the nodes, according to (1). It is desired that: 

1) if a point is inside two boxes, it should choose the smaller one; 

2) if a point is inside one box, no matter how large it is, and outside another box with sufficient distance, it 

should choose the former one. 

As a reminder the µARTMAP and Fuzzy ARTMAP represent the input data in terms of boxes (hyper-rectangles) 

that cover within their boundaries all the input patterns that chose this box as their representative box. Condition 

1) requires simply 0>α .  Condition 2) cannot be satisfied if || a

jw  can be arbitrarily small (or the box can be 

arbitrarily large). For the databases with input patterns, whose components, are normalized to lie in [0, 1], no 

positive α  value allows a box to cover the whole input space (which means 0|||| =∧= a

j

a

j wIw ) and satisfies 

condition 2) at the same time. The authors of µARTMAP adjusted the algorithm by normalizing the input 

elements to the interval ]1,[ ee −  instead of [0, 1] (Gomez-Sanchez, personal communication), and require that: 

1) eM a

a

j 2||min =<< wα , so that when a point is inside a box, the corresponding jT  is close to one even 

if the box covers the whole input space. 

2) 1<<e , or otherwise the vigilance test would always pass when the vigilance parameter 
aρ  is small, since 

eMeM aa

a

j 22|||| =≥∧ IwI  

In our experiments, the choice parameter α  was set to 0.01 and 0.001 for all ART algorithms the 

minimum 
aM  was 2. Due to the above constraints ( 1400/1 <<<< e ), we set e  to 0.05 in our experiments. 

for the µARTMAP. We also did some preliminary experiments and found that the µARTMAP is not sensitive to 

α  or to e  as long as the above constraints are satisfied. 

3.2 Parameter 
maxH  

The parameter 
maxH  controls the impurity of the whole network. It terminates the training process to prevent 

over-training. 
maxH has a direct effect on the final accuracy of the µARTMAP. Setting 0max =H  means that 

the ARTMAP must have 100% accuracy on the training set in the offline evaluation, which is usually 

impractical. In most cases, 0max =H  not only keeps the training algorithm running for a long time, but also 

over fits the network to the training set, resulting in many trivial nodes that increase the network size and 

negatively affect the generalization (accuracy on unseen data). On the other hand, setting 
maxH  to a very high 

value will terminate the training process too soon and result in low generalization, as well. 

Apparently, the proper 
maxH  value is problem-dependent. Nevertheless, we can come up with some 

estimates of the total entropyH . First, let 
bN  denote the number of classes (namely the number of nodes in 

the output layer), and Â  represent the expected accuracy given by the user and assumed in the interval 

]1,/1( bN . If there is a known theoretical optimal accuracy in a problem, assume Â  is equal to this  

theoretically optimal accuracy. Of course, Â  is sometimes unknown. Nevertheless, estimating Â  (using for 

example information existing in the literature) is much easier than guessing 
maxH . Our experiments show that 

when the accuracy of the network on the training set reaches Â , the network tends to have the best accuracy on 

unseen patterns, as long as the training parameters are set properly. It can be proved that the entropy H  is 

bounded as follows: 
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LH  is the entropy when Â/1  is an integer and the proportions of the classes in all categories are either 0 or 

Â . 
UH  is the entropy when the proportion of the major class in each category is Â  and the other classes are 

evenly distributed for all categories. 

However, neither 
LH  nor 

UH  is a good estimate for 
maxH , since both of them can be quite different 

from the actual entropy. Two other estimates for the entropy H are given below: 
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where p  is the solution in [0, 1] to the equation ( ) ( ) App bN ˆ11 =−−  . 1EH  is the entropy when the 

accuracies of all the categories are either 1 (pure categories) or 
bN/1  (completely impure categories); 2EH  

is the entropy when the accuracies of all the categories are Â , and the proportion of the minor classes within 

each category forms a geometric progress. 

In our experiments, we have used all these estimates of the entropy to come up with legitimate values of 

maxH to run our µARTMAP experiments. 

3.3 Parameter 
maxh  

The parameter 
maxh  controls the impurity of each node (category). A node may be both very large and very 

pure (which means most of the patterns that select it have the same class label). µARTMAP allows a large node 

to be created by allowing 
aρ  to be zero, and maintains the accuracy by controlling the impurity. This is the 

main reason why µARTMAP can achieve a good accuracy with very few nodes. 

The parameter 
maxh  affects the training process mostly in the first epoch. From the second epoch, only the 

patterns learned by the category that is removed in the previous epoch will be presented. If these patterns are 

learned in exactly the same order as last time, then the entropy test will always pass no matter whether they go 

to a new category, since when each one of these patterns is learned, the total number of learned patterns || abW  

is no less than last time, and )(|| jentropyab

jW  will never increase when a pattern is removed from category j, 

due to the convexity of the entropy function. If the learning order is changed, due to the increased vigilance 

level, the entropy test may fail. 

Setting 0max =h  means all the nodes must be completely pure when created or expanded; they may 

become impure as more patterns are presented and more nodes are created. This has the similar drawback as in 

0max =H . Setting ∞=maxh  means that the entropy test always passes. 

According to (3), it is difficult to estimate a good 
maxh  value, since || ab

jW , the number of patterns 

learned by category j, is not easy to predict. Moreover, 
jh  is much more sensitive to the order in which the 

patterns are presented than the total entropy in the offline evaluation phase. For example, suppose there is only 

one category in the network, and the first four patterns it learned have class labels 1, 1, 1, 2. Its 
jh  would be 0, 

0, 0, 0.8113 after it learned these patterns. If we swap the second and the fourth pattern, then its 
jh  would be 0, 

1, 0.9183, 0.8113 after it learned these patterns. If we had set 9.0max =h , then this category could learned all 

the four patterns in the first case (before the swapping), but it could not learn the pattern with class label 2 in the 

second case. 

Nevertheless, we assume the proper value of 
maxh  is proportional to the proper value of 

maxH . We expect 

the optimal 
maxmax Hh ratio to be problem-dependent. Furthermore, it is very difficult to estimate this ratio, 



and definitely a lot more difficult than it was estimating
maxH . In our experiments, we varied the ratio between 

maxh  and 
maxH  in order to search for the optimal one. 

3.4 Parameters 
aρ , ρ∆ , and δ  

The baseline vigilance threshold 
aρ  can be initialized as any value in [0, 1].  Only in the first epoch 

aρ  

explicitly depend on 
aρ . From the start of the second epoch, 

aρ  is determined by the size of the most 

entropic node and ρ∆ , according to equation (5). However, it can be easily shown that 
aa ρρ ≥  in all 

epochs, and thus 
aρ  is still important for µARTMAP. For 0=aρ  µARTMAP allows an arbitrarily large box 

to be created in the first epoch. For 1=aρ  µARTMAP allows only zero-sized boxes. In our experiments, we 

varied 
aρ  within the set of values {0, 0.2, 0.4, 0.6, 0.8}. 

ρ∆  is introduced only to make sure the most entropic category cannot be created again after it is removed. 

Apparently, ρ∆  should not be set too high to avoid increasing 
aρ  too quickly. If ρ∆  is too small, however, 

a category may be created with entropy close to that of the removed category, which means the total entropy 

may drop very slowly and it may take many epochs to finish µARTMAP’s training. ρ∆  is also difficult to 

estimate since the size of the most entropic category in a certain epoch is obviously dependent on the 

distribution of the patterns. Nevertheless, our experiments showed that the performance of µARTMAP is not 

sensitive to ρ∆  as long as it is in a reasonable range. In our experiments, we fixed ρ∆  to the value of 0.02. 

The parameter δ  controls the size change per pattern of each category, according to (4). This parameter 

alleviates the overlapping problem in µARTMAP and reduces the effect of µARTMAP’s dependence on the 

order of pattern presentation in the training set. Small δ  means that the size change must be small. Usually it 

will cause longer training times because in each epoch, more patterns will be placed into the unlearned set for 

many passes, until they are finally learned. If 0=δ , then no category can increase its size, which is equivalent 

to set 1=aρ . If 
aρδ −≥ 1 , then (4) is always satisfied, and Safe µARTMAP reduces to µARTMAP. The 

optimal δ  value is also dependent on the distribution of patterns. Although δ  makes the algorithm less 

sensitive to the order of pattern presentation in the training set, the optimal value of δ  depends on the 

distribution of the data points more than the other parameters does. 

4 Experiments 

We have performed a number of experiments with µARTMAP. The purpose of these experiments was two-fold: 

First, to compare µARTMAP’s performance with the performance of other ART classifiers in the literature, 

including ART architectures that claimed that they have also addressed the category proliferation problem in 

Fuzzy ARTMAP. Secondly, we have made an effort to identify “optimal” settings of the network parameters in 

µARTMAP. In the sequel, we are reporting results from both of these sets of experiments. 

4.1 Databases 

We experimented with both artificial and real databases. The specifics of these databases are given below. 

1. Gaussian Databases (G#c-##) 

These are artificial databases, where we created 2-dimensional data, Gaussianly distributed, belonging to 

2-class, 4-class, and 6-class problems. In each one of these databases we varied the amount of overlap of 

data belonging to different classes. In particular, we considered 5%, 15%, 25%, and 40% overlap. Note 

that 5% overlap means the optimal Bayesian Classifier would have 5% misclassification rate on the 

Gaussianly distributed data. There are a total of 3×4=12 Gaussian databases. We name the databases as 

“G#c-##” where the first number is the number of classes and the second number is the class overlap. For 

example, G2c-05 means the Gaussian database is a 2 class and 5% overlap database. 

2. Modified Iris Database (MOD-IRIS) 



In this database we started from the IRIS dataset (see Hettich et al, 1998) of the 150 3-class problem. We 

eliminated the data corresponding to the class that is linearly separable from the others. Thus we ended up 

with 100 data-points. From the 4 input attributes of this IRIS dataset we focused on only 2 attributes 

(attribute 3 and 4) because they seem to have enough discriminatory power to separate the 2-class data. 

Finally, in order to create a reasonable size dataset from these 100 points (so we can reliably perform 

cross-validation to identify the optimal µARTMAP parameters) we created noisy data around each one of 

these 100 datapoints (the noise was Gaussian of zero mean and small variance) to end up with 

approximately 10,000 points. We named this database Modified Iris. 

3. Modified Abalone Database (ABALONE) 

This database is originally used for prediction of the age of an abalone (see Hettich et al, 1998). It contains 

4177 instances, each with 7 numerical attributes, 1 categorical attribute, and 1 numerical target output 

(age). We discarded the categorical attribute in our experiments, and grouped the target output values into 

3 classes: 8 and lower (class 1), 9-10 (class 2), 11 and greater (class 3). This grouping of output values has 

been reported in the literature before. 

4. Page Blocks Database (PAGE) 

This database represents the problem of classifying the blocks of the page layout in a document (see 

Hettich et al, 1998). One of the noteworthy points about this database is that, its major class has a high 

probability of occurring (above 80%). 

 

The data in each one of the above databases was split into a training set, a validation set, and a test set. The 

percentage of classes in each one of these subsets resembled the percentage of classes in the original dataset. 

The summarized specifics of each one of these databases are depicted in Table 1. 

 

Database Name 
# Training 

Instances 

# Validation 

Instances 

# Test 

Instances 

# Numerical 

Attributes 

# Classes 

( bN ) 

% Major 

Class ( 0A ) 

Expected 

Accuracy ( Â ) 

G2c-05 500 5000 5000 2 2 1/2 0.95 

G2c-15 500 5000 5000 2 2 1/2 0.85 

G2c-25 500 5000 5000 2 2 1/2 0.75 

G2c-40 500 5000 5000 2 2 1/2 0.6 

G4c-05 500 5000 5000 2 4 1/4 0.95 

G4c-15 500 5000 5000 2 4 1/4 0.85 

G4c-25 500 5000 5000 2 4 1/4 0.75 

G4c-40 500 5000 5000 2 4 1/4 0.6 

G6c-05 504 5004 5004 2 6 1/6 0.95 

G6c-15 504 5004 5004 2 6 1/6 0.85 

G6c-25 504 5004 5004 2 6 1/6 0.75 

G6c-40 504 5004 5004 2 6 1/6 0.6 

MOD-IRIS 500 4800 4800 2 2 1/2 0.95 

ABALONE 501 1838 1838 7 3 1/3 0.6 

PAGE 500 2486 2487 10 5 0.832 0.95 

 

Table 1: Databases used in the µARTMAP experiments 

4.2 Parameter Settings: 

For each database, we simulated Safe µARTMAP with all the following combinations of the five Safe 

µARTMAP parameters αρ ,,, maxmax ahH  and δ . 
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We experimented with all the combinations of the above parameters, which amounted to 5×6×5×2×3=900 

combinations. 

 

4.3 Experiment Procedure – Experimental Results 

As we have emphasized above, our experiments were divided into two parts. In the first part, we compared Safe 

µARTMAP with other ARTMAP classifiers - Fuzzy ARTMAP, Ellipsoidal ARTMAP, Gaussian ARTMAP, 

distributed Gaussian ARTMAP, and their semi-supervised versions. For each database, we evaluated all the 

possible parameter combinations of Safe µARTMAP for a 100 different orders of the pattern list presentation. 

(the performance of µARTMAP depends on the order according to which patterns are presented in the training 

set). The 100 orders were fixed in all experiments and are exactly the same as those used to test the other 

ARTMAP algorithms. Therefore, for each database, we trained 900×100=90000 µARTMAP networks; we 

picked the network maximizing the following score: 

( )2/50

0

0.9
ˆ

a bN NA A
score

A A

−
=

−
 

where A  is the accuracy on the validation set, 
aN  is the number of categories formed in the training phase of 

µARTMAP, and 
0A , Â , and 

bN  are given in Table 1 . The accuracy is normalized to approximately [0, 1] 

so that we can compare the scores corresponding to different databases without bias. Apparently, the above score 

is monotonically increasing with A  and monotonically increasing with 
aN ; when 

aN  is small, 

0/ ≈∂∂ aNscore .  

The results are depicted in Table 2. In Table 2 we are showing the performance (in terms of accuracy on 

the test set and size) of the ART network that maximized the score value.  

 

 
Safe 

µAM 
FAM ssFAM EAM ssEAM GAM ssGAM dGAM ssdGAM 

G2c-05 95.22 2 90.80 14 94.90 2 91.72 26 94.94 2 94.06 4 94.48 4 95.22 4 95.22 2 

G2c-15 85.00 2 77.68 47 84.80 3 77.88 79 85.20 2 84.86 6 85.04 2 84.76 8 85.02 2 

G2c-25 74.98 2 64.36 75 74.60 2 65.06 123 74.50 2 74.88 6 75.10 2 74.90 7 75.10 2 

G2c-40 61.40 3 53.84 110 61.34 3 53.58 177 60.98 2 59.64 12 61.30 3 60.30 9 61.32 3 

G4c-05 95.04 4 92.84 21 94.10 7 92.96 24 94.14 4 94.84 10 94.80 4 94.84 10 94.80 4 

G4c-15 83.28 4 77.52 55 81.40 11 78.12 76 83.20 4 84.00 18 84.24 9 84.00 18 84.20 9 

G4c-25 74.50 4 67.06 101 70.80 9 66.58 110 72.72 4 73.74 49 72.32 21 74.60 46 74.96 35 

G4c-40 59.76 5 48.52 127 58.48 14 49.58 161 55.62 13 58.08 36 59.10 14 58.92 36 59.40 14 

G6c-05 93.57 9 91.85 26 91.42 11 92.30 23 93.80 7 94.49 12 94.40 8 94.68 13 94.84 6 

G6c-15 80.92 6 76.23 58 81.11 7 76.09 85 81.80 6 84.67 19 84.35 13 85.03 19 83.87 11 

G6c-25 70.74 13 66.66 87 69.62 15 63.74 124 71.10 7 73.24 30 72.86 20 73.65 32 73.22 20 

G6c-40 58.03 11 51.40 196 56.35 17 50.69 193 54.21 17 58.51 70 55.65 13 59.03 70 55.50 13 

MOD-IRIS 94.92 2 91.93 23 93.41 8 93.37 28 94.54 2 94.50 4 94.54 2 94.52 4 94.54 2 



ABALONE 57.18 4 46.40 29 59.52 6 46.24 86 56.80 7 45.87 12 55.10 3 46.13 12 55.10 3 

PAGE 88.82 6 83.27 10 90.63 3 76.71 34 89.54 3 85.52 9 89.34 5 85.52 9 89.34 5 

µAM: Safe µARTMAP; FAM: Fuzzy ARTMAP; EAM: Ellipsoidal ARTMAP; GAM: Gaussian ARTMAP; 

dGAM: Distributed Gaussian ARTMAP; ss* : semi-supervised version 

 

Table 2: Best Performance of All ART Algorithms 

 

The above table shows that µARTMAP tends to yield a small network with high accuracy. As it can also 

be seen from the table, safe µARTMAP outperforms in terms of size Fuzzy ARTMAP, Ellipsoidal ARTMAP 

and Gaussian ARTMAP, and compares very favorably with ssFAM, ssEAM, and ssGAM and ssdGAM. 

Actually, the algorithms that produce as good results as safe µARTMAP are ssEAM and ssdGAM.  

 

In the second part of our experiments, we elaborated on the search of the optimal parameter settings for 

Safe µARTMAP. For the Gaussian databases (for which we know the exact value of Â ), we examined the 

parameters of the best networks we previously selected. For each parameter combination and each Gaussian 

database, we set the score of the parameter combination as the maximum score of the 100 networks trained with 

that parameter combination (these 100 networks correspond to the 100 different orders of the training patterns 

during Safe µARTMAP’s training). Then, for every parameter combination we have 12 of these maximum 

scores (one maximum score for each of the 12 Gaussian datasets). We sum up these 12 maximum score numbers 

for every parameter combination, and then we rank these sums from highest to lowest. The 5 highest of these 

sums of maximum scores point us to the 5 default Safe µARTMAP that we chose as a good set of parameters to 

experiment with, for any database of interest. To verify our claim, that the thus chosen 5 sets of default 

parameter values are good sets of parameters to experiment with, we are showing (in Table 3) Safe 

µARTMAP’s performance (number of categories and accuracy on the test set) for the best Safe µARTMAP 

parameter values (set of columns designated as Best in the table) and for the 5 default parameter values that 

were identified from our experimentation of the Gaussian datasets, and explained above. Each performance cell 

in Table 3 is made up of three numbers: the accuracy on the test set in percentage, the number of categories, and 

the number of epochs spent on training. An obvious observation, as we compare the results of Safe 

µARTMAP’s performance for the best parameter setting (which is database dependent and as such very time 

consuming to produce), and Safe µARTMAP’s performance for the 5 default parameter settings, is that the 

default parameters produce good results. It is also important to know that the identification of good, default 

parameter values for Safe µARTMAP is saving us significant computations when Safe µARTMAP is used with 

a new database. Furthermore, the identification of good, default parameter values is essential in cases where the 

number of data-points in our dataset is not large enough to allow us the luxury of splitting the data into training 

and validation sets and performing cross-validation using the validation set.  

 

 

Rank Best 1 2 3 4 5 

maxH  - 4H  
4H  

4H  
4H  

4H  

maxmax Hh  - ∞ ∞ 1 ∞ ∞ 

aρ
 - 0.4 0 0.2 0 0.2 

α  - 0.001 0.01 0.001 0.001 0.001 

( )aρδ −1  - 0.2 0.2 0.2 1 1 

G2c-05 95.22 2 1 95.16 2 14 95.14 2 4 95.20 2 1 95.20 3 10 95.20 3 10 

G2c-15 85.00 2 1 85.06 2 4 84.98 3 15 85.06 2 1 85.24 2 27 85.24 2 27 

G2c-25 74.98 2 1 74.96 2 16 74.96 3 18 74.18 2 1 75.02 3 8 75.02 3 8 

G2c-40 61.40 3 1 61.54 4 8 61.34 4 18 61.44 3 10 61.32 4 32 61.32 4 32 

G4c-05 95.04 4 22 94.82 4 25 94.36 6 50 94.64 4 1 94.46 6 48 94.46 6 48 



G4c-15 83.28 4 20 81.74 6 44 84.18 7 65 83.58 9 82 83.64 9 61 83.64 9 61 

G4c-25 74.50 4 44 74.78 5 37 75.06 6 52 75.06 4 48 75.02 6 49 75.02 6 49 

G4c-40 59.76 5 39 59.26 4 52 59.76 5 39 58.84 5 41 59.72 7 37 59.72 7 37 

G6c-05 93.57 9 9 93.09 10 85 91.87 9 74 93.23 10 58 93.53 13 93 93.53 13 93 

G6c-15 80.92 6 1 81.18 12 100 81.87 13 100 81.16 14 76 82.27 12 100 82.27 12 100 

G6c-25 70.74 13 88 71.18 13 83 69.54 14 85 69.76 11 100 69.16 13 90 69.16 13 90 

G6c-40 58.03 11 100 56.77 16 100 56.45 13 81 56.41 13 100 56.30 14 77 56.30 14 77 

MOD-IRIS 94.92 2 2 94.92 4 10 95.15 4 19 94.92 4 16 94.63 3 10 94.63 3 12 

ABALONE 57.18 4 4 55.06 2 2 54.08 2 4 54.52 3 2 53.59 2 6 53.59 2 6 

PAGE 88.82 6 17 88.34 5 10 92.32 5 24 89.14 8 35 89.75 4 11 89.75 4 11 

 

Table 3: Best Parameter Combinations 
Although the networks were ranked by cross-validation, the accuracy on the validation set is not shown, because 

it is always close to the accuracy on the test set. 

 

According to the above table, we obtained the following optimal settings, assuming the maximum number 

of epochs is large enough: 

001.0  ,0   ,   , max4max ==∞== αρahHH  

We do not claim an optimal δ  value because it depends on the size of the training set (and the relationship is 

not clear yet). For 
maxH , we are very confident since all the best 5 parameter combinations have this value. In 

fact, all the best 65 networks have 
4max HH = . This result is not surprising, since 

4H  is a good estimate of 

the entropy without over-training. 0 =aρ  means we should allow a category to be very large in the first 

epoch, which is one of the benefits of µARTMAP.  001.0=α  agrees with the results for the other ARTMAP 

architectures.  

Although the optimal value of 
max h  seems unexpected, it can be explained as follows. This value allows a 

category to be very impure and tends to result in many more epochs of training because many impure categories 

must be removed in the future. In the first epoch, large categories will be created due to the small 
aρ  value. In 

only a few epochs, the size of the categories will be controlled by 
aρ  only. The number of categories will be 

very small in the beginning and it will grow slowly afterwards, until the total entropy is no more than
maxH . 

Therefore, the minimum number of categories may be achieved. Of course, sufficient epochs of training must be 

allowed, or otherwise the training process would be terminated prematurely and the network performance would 

be even worse than when 0 max =h . In contrast, setting 0 max =h  will cause a large number of categories to 

be created in the first epoch, including many trivial categories. In this case, the training process may finish in 

only one epoch, resulting in a network that may still be over-trained, exhibiting poor generalization.   

5 Summary  

Safe µARTMAP is one of the advanced ARTMAP architectures, which can produce small size classifiers with 

high accuracy. The main issue of using µARTMAP is the correct selection of its many parameters. In this paper, 

we studied the effect of the parameters, both theoretically and experimentally. Furthermore, we have identified a 

procedure that came up with a way of choosing good default µARTMAP parameter values, independently of the 

database used, despite the obvious fact that the best µARTMAP parameter values are data-base dependent. This 

is a significant simplification for anyone experimenting with µARTMAP on new datasets. Furthermore, it is also 

very beneficial in cases when the dataset is small and we do not have the option of splitting the dataset in 

training and validation sets. Also, we compared the performance of µARTMAP with a number of ART 

classifiers, including a number of them that have been reported in the literature and claim that they also address 

the category proliferation problem in Fuzzy ARTMAP. The result from this experimentation is that µARTMAP 

outperforms Fuzzy ARTMAP (FAM), Ellipsoidal ARTMAP (EAM), and Gaussian ARTMAP (GAM), and it 

exhibits comparable performance with semi-supervised EAM and distributed GAM.  Finally, it is worth 



pointing out that our performance comparison of various ART algorithms and the identification of good, default 

parameter values for µARTMAP relied on a performance measure (score) that takes into consideration both the 

accuracy of the network on a cross-validation set and the size of the network that training creates. Despite its 

obvious benefits this is an approach that has not been quantified in the ART literature before. 

 

Figure 1: The block diagram of a µARTMAP Architecture 
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