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Abstract 
It is well known that the Bayesian Classifier is the optimal classifier provided that p(X|c), the probability density 
function (PDF) with input attribute X given class c is known for any possible X and c. In practice, however, 
these PDFs are seldom given. Therefore, the Bayesian Classifier usually serves merely as a theoretical reference 
during the evaluation of other practical approaches. On the other hand, the Probabilistic Neural Network (PNN) 
attempts to estimate the PDFs with the instances in the training database, as well as a preset “smoothing 
parameter”, which might be uniform or variable among each attribute and/or each class. Although it is proved 
that the estimate will approach the real PDF asymptotically if the training database contains sufficient number of 
instances, the choice of the smoothing parameter still affects the estimate when the number of training instances 
is finite. Although the cross validation could help identify a good setting for the smoothing parameters, this 
approach is extremely expensive due to the time complexity of the PNN in its performance phase. In this paper, 
we discuss the relationship between this parameter and some of the data statistics, and attempt to develop a 
simple approach to determine this parameter without relying on cross validation tests that are time consuming. 
We explain why these parameters can vary in a certain range, while maintaining the network’s accuracy, as most 
experiments have shown, and even provide the quantitative expression of this range. Finally, we show that our 
approach is superior to the cross validation approach by conducting a number of experiments. 

1. Introduction 
The Bayesian classifier is the best classifier that one can build in terms of minimizing the misclassification error 
on unseen data. This property though of the Bayesian classifier holds true under the assumption that the 
conditional probability distributions, referred to as class conditional probabilities, from which the data are drawn 
are known. In practice, these probabilities are not known but are estimated from the data given, by using 
legitimate approaches for estimating them. One such approach is the Parzen window approach (Parzen, 1962), 
extended by Cacoullos (1966), which estimates the class conditional probabilities as sum of Gaussian functions 
centered at the training points and having appropriately chosen widths (variances), designated from now on as 
smoothing parameters. Parzen’s approach works well under some reasonable assumptions regarding the choice 
of the smoothing parameters and when the training data becomes very large the approximation becomes equal to 
the actual class conditional probabilities. In the case though where the training data sets are of finite size (as it is 
usually the case in practice) the right choice of the smoothing parameters is essential for the good performance 
of the classifier. PNN (Specht, 1990), invented by Specht, is actually Bayes classifier where the class conditional 
probabilities are approximated by using the Parzen’s approach. 

One of the major issues associated with the PNN classifier is how to choose the smoothing parameters 
involved in the Gaussian functions utilized to estimate the class conditional probabilities. Specht, suggested 
using cross validation to estimate the smoothing parameters (see Specht, 1992) This is a reasonable approach if 
we assume that there is only one smoothing parameter that we focus on optimizing. But if we want to use a 
different smoothing parameter per dimension of the input data and per class to which the input data belong, we 
end up having to optimize a large number of parameters and the problem quickly becomes exponentially 
complex.  Another way of dealing with this issue of smoothing parameters is to cluster the training data and 
approximate the class conditional probabilities by Gaussian functions centered at the cluster points instead of the 
actual training points. The clustering of the data gives the additional capability of estimating the smoothing 
parameters of these Gaussian functions as the within-cluster standard deviations. Clustering procedures that have 
been used in the literature in relation to the PNN neural network are: Burrascano, 1991 (used LVQ approach), 
Traven, 1991 (used K-Means clustering), Tseng, 1991 (used mixture of Gaussians).  

All of the above reported approaches for estimating the smoothing parameters are incurring a computational 
expense for estimating the parameters. For instance, a single run of the cross-validation has a complexity of 

, where )( VT PTPTO TPT  is the number of points in the training set and VPT  is the number of points in the 
validation set. Another problem with the cross-validation approach is that we have to do many such runs over a 
variety of smoothing parameter values to reliably estimate their optimal values.   

Our approach, attempts to determine a good estimate of the optimal smoothing parameters with a time 
complexity of . No cross-validation is required. This is a significant computational advantage and it 
also an advantage in practical situations, where the dataset given is small, and we do not have the luxury of 
defining a sizable cross-validation set.  
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2. PNN Preliminaries 
The Bayes classifier is based on the following formula for finding the class that a datum belongs. x
 

( | ) ( )
( | )

( )
j j

j

p c P c
P c

p
=

x
x

x
 

In particular, we calculate the above probabilities for every class j of our pattern classification task, and we 
assign datum x  to the class j that maximizes this probability. In order to calculate the above probabilities one 
needs to estimate the class conditional probabilities and the a-priori probabilities  for every 

class j  (the calculation of is not needed because it is a common factor in all of these probabilities and can 

be cancelled out). The a-priori probabilities  are calculated from the given training data. The class 

conditional probabilities can also be calculated from the training data by using the approximation 
suggested by Parzen (see Parzen, 1962). In particular, in Specht’s PNN paper the approximation suggested by 
Parzen is utilized to estimate these class conditional probabilities, as follows:  
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where  is the dimensionality of the input patterns, D jPT  represents the number of training patterns belonging to 

class j , j
rX  denotes the r-th such training pattern, x  is the input pattern to be classified, and σ  is the 

smoothing parameter that we talked about earlier. It is pointed out in Specht, 1990, that this estimation will 
approach asymptotically the real PDF if: 
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and:  
 lim

j
jPT

PT σ
→∞

= ∞  (3) 

Equation (1) is the basis of the PNN classifier. The smoothing parameter σ  should be selected properly. If 
σ  is too small, the estimated PDF will be so non-linear that the PDF at a testing point will be almost zero if this 
point is not close enough to any one of the training points, thus reducing the network’s capacity to generalize. If, 
on the other hand, σ  is too large, then over a wide range of input values the estimated PDF will be almost 
constant (proportional to the number of training patterns belonging to the class), and in that case the actual 
values of the training and test patterns does not seem to play any role in the determination of which class the test 
input pattern belongs.  

How to select this parameter, however, is still an issue of difficulty, especially when we use smoothing 
parameters that depend on the dimension and the class of the data. In that case, the above formula for the 
estimation of the class conditional probabilities becomes.  
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where ijσ is the smoothing parameter across dimension i for the training points belonging to class j. 
In the following we present four different approaches of selecting the smoothing parameters (one of them is 

the expensive cross validation approach, and another one is our inexpensive approach).  
 

3. Candidate Solutions for Choosing the Smoothing Parameters 
In this paper, we compare the following four approaches to find the smoothing parameters in the PNN: 
a) Simply try the sigma parameters as the in-class standard deviation for each dimension and each class (that is, 

, where i is the dimension index and j is the class index). As analyzed in Appendix I, this 
approach is risky, but we still run experiments following this method. 

( j
ij iSTD Xσ = )

b) Evaluate ( )j
ij j iv STD Xσ =  where jv  can be chosen from {0.5, 0.25} for each class. Although there are 

only two candidates, the number of combinations is as high as 2J  where J  is the number of classes. 
Choose the best accuracy on the test set among all the 2J  combinations of the jv ’s. 



c) (Our approach) solve for the sigma parameters ijσ  as described in the section 4. 
d) Based on the results given in option c), evaluate k ijσ  for k = 0.5, 1, 2 and pick the best one. This approach 

is different from option b), each time we multiply k to all ijσ ’s, and thus there are only 3 trials for each 
database. 

4. Algorithm Description (Approach c) 
As we have mentioned above, the formula used for the estimation of the class conditional probabilities is given 
below.  
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According to Appendix I, we should not set ijσ  to ( )j
iSTD X , the unbiased standard deviation of j

irX . 
Nevertheless, we can set ijσ  proportional to ( )j

iSTD X , or equivalently, we first standardize the patterns in 
each class (not among the whole database) and find out the optimal ( )/ j

ij iSTD Xσ ratio. The benefit of this 
approach is that our result will be invariant of the scale of any dimension. Our analysis and experiments show 
that we should set ( ) ( )min 4 ,0.5 j

ij j id STD Xσ = , where  is the average value of the minimum distance 
between two input points belonging to class 

jd
j . Computing  directly is too time-consuming. Therefore, we 

estimate  by sampling the points. We can sample  points and calculate  distances: the distance 
between the first sample and the second sample, the distance between the third and the fourth, etc. Let  denote 
the expected value of the minimum distance of the above  distances. When the PDF is fixed and  is 
sufficiently large,  depends on  as well as , the actual dimensionality of the points in class 
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according to the following equation (for more information about this equation, please refer to appendix III). 
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Here  means the number of free dimensions, instead of the number of linearly independent vectors. For 
example, when the input points are distributed in a unity circle in a 2-D space, their attributes x and y are linearly 
independent; however, there is only one free dimension – the angle – among the points. Since the linear 
measures (such as the rank, the eigenvalues, etc) are unable to derive  directly, we repeat sampling with 
various  values and solve for  and  with the corresponding observed values . The pseudo code is 
included in Figure 1. 
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Notations and parameters: 
jPT : Number of input points in class j  

D : Number of dimensions of the input points 
maxK : Maximum Repeat Times (natural number). Typical 4max =K  

NM FF , : Sample Size Factor (small positive number). Typical 4,8 == NM FF  
 
Main Procedure: 
For each class j  

 Compute ( )j
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End For 
 
Subroutine Mean-Min-Distance (  ),, NMj

,...,2,1 For m =  M
  Randomly pick a point from class X j . 
  For n 1=  N,...,2,
    Randomly pick a point X  from class n j , different from .  X
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  End For 
  Find the smallest D2  elements from  22

2
2

1 ,..., mNmm ddd
  Find the largest element (denoted by d ) in the above 2

m D2  elements 
 End For 
 Return [ ]2

mm
dmean  

 
Note: the smallest  elements for each  can be cached so that when we double  next time, only  more 
patterns have to be picked, which halves the computational complexity. 

D2 m N N

Figure 1: Algorithm of our solution to the smoothing parameters 



The least-square-error solution to the linear equations can be explicitly given as: 
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In practice, computing ( )  directly is not efficient in both time and space. A recursive algorithm can 
be applied, which is shown in Figure 2. 
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Note: the update of P  is very simple because ( )TPa  is only 2-by-1, ( )1+TaPa  is a scalar, and (  is 1-by-2. )aP
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Figure 2: Recursive LSE Solution Algorithm 

5. Complexity Analysis of The Algorithmic Approach c 
In the worst case, assume  is large enough, or jPT jNjM PTFPTF << , , so that 

( ) ( )jNjjMj PTFONPTFOM == , . Also assume 1max ≥= KK j . The subroutine Mean-Min-
Distance  has a complexity of . This subroutine is called for  times, with ( NMj ,, ) )(DMNO 1+jK jMM =  
and . The overall complexity is j

K
jj NNNN j2,...,2,= ( ) ( )maxmax 22 K

jNMj
K

j PTFDFONDMO = . Solving the 
linear equation has a constant time complexity. Therefore, the whole algorithm has a computational complexity 
of ( )NM

K FFPTDO ⋅⋅⋅⋅ max2 , where PT  is the total number of points. Since are small constants, 
this complexity is negligible in comparison with the complexity of the classification process of PNN. 
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6. Experiments 
In our experiments, we compared the four approaches, mentioned in Section 3, of finding the smoothing 
parameters in the PNN. In particular, the four approaches are repeated below.  
a) Set the sigma parameters as the in-class standard deviation for each dimension and each class. The time for 

finding the sigma parameters is ignored. 
b) Evaluate ( )j

ij j iv STD Xσ =  where jv  can be chosen from {0.5, 0.25} for each class. The time for finding 
the sigma parameters is defined as the total time for all the 2J  runs of the PNN algorithm. 



c) Apply the sigma parameters ijσ  given from our approach directly. The time for finding the sigma 
parameters is defined as the time for running our approach (see also Section 5 for the calculation of the 
complexity of this approach). 

d) Evaluate k ijσ  for k = 0.5, 1, 2 and pick the best one. The time for finding the sigma parameters is defined as 
the total time for the 3 runs of the PNN algorithm. 

 

6.1 Databases 
The databases used in our experiments are listed below: 

Database Name # Training 
Patterns 

# Test 
Patterns 

# Numerical 
Attributes # Classes % Major Class 

Grass and Trees 2000 4000 1 2 1/2 
Modified Iris 500 4800 2 2 1/2 
Page Blocks 500 2486 10 4(5) 0.832(0.8826) 

Abalone 501 1838 7 3 1/3 
Satellite 4435 2000 36 6 0.2417 

Note: The numbers between parentheses reflects the test set, if different from the training set 

Figure 3: Statistics of Databases 
 
To demonstrate that the standard deviation is not directly related to the optimal sigma value, we created an 
artificial database “Grass and Trees” that contains only one attribute. The first class is uniformly distributed in [0, 
1]. The second class has five clusters, centered at 0, 0.25, 0.5, 0.75, and 1, respectively. Each cluster has also 
uniform distribution with range 0.05. Both classes occupy 50% of the instances. It can be shown that the Bayes 
Classifier would have 90% accuracy on this database. We used 1000 points for training and another 2000 points 
for testing. The following figures show that it is difficult to guess the optimal sigma value using the standard 
deviation, while our approach produces very accurate estimates.  
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Figure 4: Estimates of the PDFs for Database “Grass and Trees” 

 
The rest of the databases in the above table are the benchmark databases provided by UCI Repository  (see 

Hettich et al, 1998). We selected the ones with sufficient size (but not too large since the enumeration would take 
a long time) in order to make our results statistically significant. The “Iris” database represents the classification 
problem of the iris plants, which can be easily solved using even linear classifiers. We introduced noise to 
generate enough data points, and removed the two attributes with least correlation to the class label. 
 

“Page Blocks” database consists of the attributes of page layouts in a document with various block types. In 
the raw database, approximately 90% of the instances belong to the “text” block type. To increase the difficulty, 
we reduced the percentage of the major class and removed one class in the training set. The test set preserves all 
the 5 classes. 

“Abalone” database is used for predicting the age of abalones. In our case, we removed the categorical 
attribute and grouped the targets into three classes: 8 and lower, 9-10, 11 and greater, as other researchers have 



done in the past. The resulting classes, however, are still highly overlapped in the attribute space and current 
Machine Learning algorithms can attain only 50%~60% accuracy. 

“Satellite” database is the largest tested. It provides the multi-spectral values extracted from satellite images 
corresponding to 6 types of soil (previously 7 types, one of which used to be “mixed soil” and was removed due 
to the doubt about its validity). 

 

6.2 Experimental Results 

Option a 
STDσ =  

Option b 
Enumeration 

Option c 
Solving ijσ  

Option d 
Variation of ijσDatabase Name 

Time for 
a Single 

Run %Acc Time %Acc Time %Acc Time %Acc 

Grass and Trees 1.422 66.23 5.738 66.13 0.06 89.62 4.947 89.62 
Modified Iris 0.204 94.06 1.811 94.65 0.047 94.92 0.64 94.92 
Page Blocks 0.203 85.89 16.206 92.00 0.016 86.85 0.625 89.22 

Abalone 0.125 52.18 3.549 52.18 0.015 51.58 0.406 51.58 
Satellite 3.734 82.95 2943.7 90.50 0.344 90.50 11.563 90.50 

Time is measured in seconds 
The highlighted columns correspond to our approach 

Figure 5: Time and accuracy of four approaches. 
 
The above table shows the performance of the four approaches. The first column is the time to run PNN only 
once, and it is simply used as a reference. 

For option a) which simply sets the ijσ  as the standard deviation, the elapsed time for computing ijσ  can 
be ignored. However, this option is sometimes risky; its accuracy is close to that of wild guessing (see example 
above, referred to as “Grass and Trees”). 

Our solution is satisfactory (approaches c and d) in most of the cases. The time elapsed for solving ijσ  is 
much smaller than a single run of the PNN algorithm. Note that the accuracy on the first database is very close to 
the theoretical optimum, which means our approach is robust against clustering and noise. The accuracy on 
“Page Blocks” is not as good as the best one, but we believe that the main reason is the statistical discrepancy 
between the training set and the test set. Both the Bayes Classifier and the PNN rely on the priori probability of 
each class. PNN estimates it using the training set if it is not given; if the training set does not reflect the priori 
probabilities, the PNN cannot approximate the Bayes Classifier even if the smoothing parameter are 
appropriately optimized. 

Enumeration of different scales of the standard deviation is comparable to our approach in accuracy except 
for the first database, but at a high computational cost. For the satellite database, it required almost 10,000 times 
longer than our approach, while achieving the same accuracy. Of course, one can argue that we evaluate only 
two ijσ  candidates, one for each class. Remember, the time complexity grows exponentially with the number of 
candidates per class. Even for a simple database such as “Grass And Trees”, it is difficult to locate the 
approximate optimal range for ijσ , which does not depend on the standard deviation only. Therefore, it is not 
practical to apply enumeration to optimize ijσ . 

As a compromise, it is reasonable to vary the smoothing parameter returned from our approach by a fixed 
number of scales (approach d). As shown in the above table, this option is more computationally complex than  
approach c, but reasonably so, and furthermore it improves the accuracy. 



7. Summary 
Setting the proper smoothing parameter in the PNN is important for achieving high accuracy. Searching for the 
optimal parameter by cross validation is usually too expensive, especially when the parameter depends on both 
the class label and the attribute (see approach b, discussed above). In this paper, we modeled the smoothing 
parameter as a diagonal matrix and proposed an effective approach to determine it. Our approach (approach c) is 
very computationally efficient (compared to the cross validation approach) and achieved high accuracy 
Experiments show that our approach is satisfactory in most cases, regardless of the number of 
instances/classes/dimensions. Even in case that the accuracy of our approach is not high enough, it can be 
improved by varying our estimated smoothing parameter (approach d). 
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Appendix I – Relationship between σ and STD(X) 
Consider the 1-dimensional case. The PDF is estimated as 
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where [ ]E X denotes the expected value of the random variable X . It can be easily proved that 
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Therefore, the estimated PDF is not the real PDF since the variance is different, unless jσ  is zero, which always 
over fits the network to the training set. In fact, if we seek for another kernel function ( , )F x X  such that 
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This observation leads to the constraint (3). It also suggests that 2 j
j VAR Xσ ⎡ ⎤<< ⎣ ⎦ , or . The 

above result is also applicable to the multi-dimensional case. 

j
j STD Xσ ⎡ ⎤<< ⎣ ⎦

Appendix II – Relationship between σ and d 
Now we assume that the attributes have been standardized within each class, that is, ST  is always one. 
An important requirement for the 

jD X⎡ ⎤⎣ ⎦
σ  value of a single class can be derived from a simple model. Assume that the 

patterns in this class are uniformly distributed within a D-dimensional hyper cube whose range in every 
dimension is ( , , and the training data set contains PT  (the subscript j is omitted since only 
this class is discussed) exemplar points regularly located as an array in the hyper-box, as shown in Figure 6.  

)L L− (2 1)Dm= +

-L -d    0 d L 

Figure 6: A simple model 
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Figure 7: Estimated PDF with various 2σ
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The figure reflects the case where  for simplicity. Actually m and n can be much larger. One 
of the points is (  and one of its neighbors is

4, 2m D= =
0,0,0, ,0)⋅ ⋅ ⋅ ( ,0,0, ,0)d ⋅ ⋅ ⋅ , where ( )2 2 1d L m= + . This model 

may seem too ideal, but it will be shown that the results can be applied to more general cases. 
Consider the center P in a “cell” box which has the following 2D  corners , ((0,0,0, ,0)⋅ ⋅ ⋅ , 0,0, ,0)d ⋅ ⋅ ⋅ , 

, … . Obviously(0, ,0, ,0)d ⋅ ⋅ ⋅ ( , , , )d d d⋅ ⋅ ⋅ ( / 2, / 2, , / 2)P d d d= ⋅⋅⋅ , with equal distance to each 
corner: . Since the points are uniformly distributed, it is expected that the estimated PDF at P is the 
same as that at the origin: 

2 2 / 4Pd Dd=

 
1 2 1 2

2 2
2 2

1 1
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2 2 2
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After some calculations, the above equality leads to the following equation: 
2( 0.5)i

i i

k
∞ ∞

−

=−∞ =−∞

=∑ ∑  where 
2

2exp
2
dk
σ

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
 

Numerical solution of this equation yields  2 20.476dσ ≥
Now consider a similar model in which the training patterns are distributed in a hyper cube with half 

volume as the previous one, but with the same density. That is, all the patterns with positive x1 (coordinate in the 
first dimension) are removed. Then, consider the point ( ,0,0, 0Q q d )= × ⋅ ⋅ ⋅  where q is positive. The estimated 
PDF at Q should be small enough because Q is outside the region where the training patterns are distributed. 
With derivations similar to the above ones, the following condition should be met: 
  2 20.476 4.58d dσ≤ ≤ 2

Thus, the smoothing parameter is allowed to vary in a certain way. To show this more clearly, we plot the PDF 
with various 2σ  in Figure 7, assuming the training instances are {–50, -49, …, 0} (which means ). 2 1d =

Although 0.5dσ =  seems to approximate the PDF very well, we should set 2σ  higher. The reason is that 
we do not expect the PDF to drop sharply at the boundary of the training points, since the training set is only part 
of the data set. Therefore, we prefer to choose 2dσ = . 

The above analysis is based on the regular model shown in Figure 6. In practice, however, the data points 
are seldom regularly distributed and thus the minimum distance of a uniformly distributed data set would be 
much smaller than d  defined in this model, even when the number of points is the same.  We can then do the 
following: For each point X , find the 2  nearest points of , record the distance between  and its farthest 
neighbor among the 2  nearest ones, and estimate d as the average such distance among all X ’s. After 
estimating d , we should set 

D X X
D

4dσ =  because: a) some of the points are relatively far from its nearest neighbor, 
and b) the standard deviation of the estimated distance is usually comparable to the distance itself. 

Another issue is that setting ( )4 j
ij j id STD Xσ =  for each dimension might not be optimal. The reason is 

that by assuming diagonal jΣ , we imply that all the attributes are independent, which is not true in many cases. 
Consider an example where all the attributes are equal within any instance, and they are uniformly distributed 
with unity variance across the instances in the same class. Apparently, 2

jd  is proportional to the number of 
attributes. When the number of attributes is sufficiently large, jd  can exceed one. In this case, although the 
marginal PDFs are estimated very well, the PDF in the whole space is not accurate. Considering the constraint 
that  given from Appendix I, we set ( j

ij iSTD Xσ << ) ( ) ( )min 4 ,0.5 j
ij j id STD Xσ = , where the constant 0.5 

was determined by experimentation.  



Appendix III – Analysis on Sampling 
For large data sets, it is not necessary to examine every pattern in order to compute d . Suppose N  
( PT N PT≤ ≤ ) pairs of points are randomly picked and the expected value of the minimum distance between 
each pair is , then d̂

D

N
PTdd

1

ˆ ⎟
⎠
⎞

⎜
⎝
⎛≈  

The first ideal model can help to explain this approximation. Suppose we have observed a value of d , and now 
more points are then added to the model so that PT  is 2

ˆ
D  times as large as before, doubling the density of the 

data set in every dimension and thus halving d. After this procedure is repeated for T times where T is small so 
that /N PT  is not too small, PT  becomes  and d turns 2 , while  and N remain as before, which 
verifies our approximation.  

2nT PT T d− $d

If σ  is set proportional to d , it is not difficult to verify that (2) is true, and (3) is true when  (1n > 1n =  
seldom happens; (2) and (3) is a sufficient condition instead of a necessary one, as Figure 7 shows).  

There is another reason why N  should be large. If a class is separated into C clusters, then it is reasonable 
to require at least 4C patterns to be present in each cluster, which means 24PT C≥ . If 4N P= T , then 

8N C≥ . Assume that for each random selection all the candidate patterns have the same probability to be 
chosen, and that all clusters have the same number of patterns. When we choose a pattern X  and N  other 
patterns, the probability that none of the N  patterns falls in the same cluster as  is: X

81(1 ) CP
C

= −  

It can be proved that  for any C >0, indicating that the result should be typical. A 
general designing rule can be derived: if 

8 3.3546 10P e−≤ = × 4−

aP e−≤  is desired and at least patterns for each cluster can be 
assumed, where , then 

2b C
0, 0a b> > ( )/N a b PT=  is sufficient.  

Although a and b seem problem-dependent by definition (and thus new parameters are introduced to solve 
for the old one, σ ), they are merely thresholds that can be predefined and do not need to be accurate. For 
example, if  is fixed to 8 when the PNN is designed, then a problem that requires  can be 
solved with sufficient accuracy, because more patterns than the minimum will be chosen. 

/a b 16, 4a b= =
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