
Probabilistic Neural Network: Comparison of the Cross-validation
Approach and a Fast Heuristic to Choose the Smoothing Parameters

M. Zhong (*), J. Hecker (*), I. Maidhof (*), P. Shibly (*), M. Georgiopoulos (*),
G. Anagnostopoulos (**), M. Mollaghasemi (*), and S. Richie (*)

(*) University of Central Florida, Orlando, FL, USA

 (**) Florida Institute of Technology, Melbourne, FL, USA

Abstract
It is well known that the Bayesian Classifier is the optimal classifier provided that p(X|c), the probability density
function (PDF) with input attribute X given class c is known for any possible X and c. In practice, however,
these PDFs are seldom given. Therefore, the Bayesian Classifier usually serves merely as a theoretical reference
during the evaluation of other practical approaches. On the other hand, the Probabilistic Neural Network (PNN)
attempts to estimate the PDFs with the instances in the training database, as well as a preset “smoothing
parameter”, which might be uniform or variable among each attribute and/or each class. Although it is proved
that the estimate will approach the real PDF asymptotically if the training database contains sufficient number of
instances, the choice of the smoothing parameter still affects the estimate when the number of training instances
is finite. Although the cross validation could help identify a good setting for the smoothing parameters, this
approach is extremely expensive due to the time complexity of the PNN in its performance phase. In this paper,
we discuss the relationship between this parameter and some of the data statistics, and attempt to develop a
simple approach to determine this parameter without relying on cross validation tests that are time consuming.
We explain why these parameters can vary in a certain range, while maintaining the network’s accuracy, as most
experiments have shown, and even provide the quantitative expression of this range. Finally, we show that our
approach is superior to the cross validation approach by conducting a number of experiments.

1. Introduction
The Bayesian classifier is the best classifier that one can build in terms of minimizing the misclassification error
on unseen data. This property though of the Bayesian classifier holds true under the assumption that the
conditional probability distributions, referred to as class conditional probabilities, from which the data are drawn
are known. In practice, these probabilities are not known but are estimated from the data given, by using
legitimate approaches for estimating them. One such approach is the Parzen window approach (Parzen, 1962),
extended by Cacoullos (1966), which estimates the class conditional probabilities as sum of Gaussian functions
centered at the training points and having appropriately chosen widths (variances), designated from now on as
smoothing parameters. Parzen’s approach works well under some reasonable assumptions regarding the choice
of the smoothing parameters and when the training data becomes very large the approximation becomes equal to
the actual class conditional probabilities. In the case though where the training data sets are of finite size (as it is
usually the case in practice) the right choice of the smoothing parameters is essential for the good performance
of the classifier. PNN (Specht, 1990), invented by Specht, is actually Bayes classifier where the class conditional
probabilities are approximated by using the Parzen’s approach.

One of the major issues associated with the PNN classifier is how to choose the smoothing parameters
involved in the Gaussian functions utilized to estimate the class conditional probabilities. Specht, suggested
using cross validation to estimate the smoothing parameters (see Specht, 1992) This is a reasonable approach if
we assume that there is only one smoothing parameter that we focus on optimizing. But if we want to use a
different smoothing parameter per dimension of the input data and per class to which the input data belong, we
end up having to optimize a large number of parameters and the problem quickly becomes exponentially
complex. Another way of dealing with this issue of smoothing parameters is to cluster the training data and
approximate the class conditional probabilities by Gaussian functions centered at the cluster points instead of the
actual training points. The clustering of the data gives the additional capability of estimating the smoothing
parameters of these Gaussian functions as the within-cluster standard deviations. Clustering procedures that have
been used in the literature in relation to the PNN neural network are: Burrascano, 1991 (used LVQ approach),
Traven, 1991 (used K-Means clustering), Tseng, 1991 (used mixture of Gaussians).

All of the above reported approaches for estimating the smoothing parameters are incurring a computational
expense for estimating the parameters. For instance, a single run of the cross-validation has a complexity of

, where)(VT PTPTO TPT is the number of points in the training set and VPT is the number of points in the
validation set. Another problem with the cross-validation approach is that we have to do many such runs over a
variety of smoothing parameter values to reliably estimate their optimal values.

Our approach, attempts to determine a good estimate of the optimal smoothing parameters with a time
complexity of . No cross-validation is required. This is a significant computational advantage and it
also an advantage in practical situations, where the dataset given is small, and we do not have the luxury of
defining a sizable cross-validation set.

)(TPTO

2. PNN Preliminaries
The Bayes classifier is based on the following formula for finding the class that a datum belongs. x

(|) ()
(|)

()
j j

j

p c P c
P c

p
=

x
x

x

In particular, we calculate the above probabilities for every class j of our pattern classification task, and we
assign datum x to the class j that maximizes this probability. In order to calculate the above probabilities one
needs to estimate the class conditional probabilities and the a-priori probabilities for every

class j (the calculation of is not needed because it is a common factor in all of these probabilities and can

be cancelled out). The a-priori probabilities are calculated from the given training data. The class

conditional probabilities can also be calculated from the training data by using the approximation
suggested by Parzen (see Parzen, 1962). In particular, in Specht’s PNN paper the approximation suggested by
Parzen is utilized to estimate these class conditional probabilities, as follows:

)|(jcp x)(jcP
)(xp

)(jcP
)|(jcp x

/ 2 2

1

() (1(|) exp
(2) 2

jPT j T j
r

j D D
rj

p c
PTπ σ σ=

)r⎡ ⎤− −
= −⎢ ⎥

⎣ ⎦
∑ x X x Xx (1)

where is the dimensionality of the input patterns, D jPT represents the number of training patterns belonging to

class j , j
rX denotes the r-th such training pattern, x is the input pattern to be classified, and σ is the

smoothing parameter that we talked about earlier. It is pointed out in Specht, 1990, that this estimation will
approach asymptotically the real PDF if:
 lim 0

jPT
σ

→∞
= (2)

and:
 lim

j
jPT

PT σ
→∞

= ∞ (3)

Equation (1) is the basis of the PNN classifier. The smoothing parameter σ should be selected properly. If
σ is too small, the estimated PDF will be so non-linear that the PDF at a testing point will be almost zero if this
point is not close enough to any one of the training points, thus reducing the network’s capacity to generalize. If,
on the other hand, σ is too large, then over a wide range of input values the estimated PDF will be almost
constant (proportional to the number of training patterns belonging to the class), and in that case the actual
values of the training and test patterns does not seem to play any role in the determination of which class the test
input pattern belongs.

How to select this parameter, however, is still an issue of difficulty, especially when we use smoothing
parameters that depend on the dimension and the class of the data. In that case, the above formula for the
estimation of the class conditional probabilities becomes.

()2

2
/ 2 1 1

1

1(|) exp
2(2)

j jPT D
i ir

j D
D r i ij

ij j
i

x X
P c

PT σπ σ = =

=

⎡ ⎤−
⎢ ⎥= −
⎢ ⎥
⎣ ⎦

∑ ∑
∏

x

where ijσ is the smoothing parameter across dimension i for the training points belonging to class j.
In the following we present four different approaches of selecting the smoothing parameters (one of them is

the expensive cross validation approach, and another one is our inexpensive approach).

3. Candidate Solutions for Choosing the Smoothing Parameters
In this paper, we compare the following four approaches to find the smoothing parameters in the PNN:
a) Simply try the sigma parameters as the in-class standard deviation for each dimension and each class (that is,

, where i is the dimension index and j is the class index). As analyzed in Appendix I, this
approach is risky, but we still run experiments following this method.

(j
ij iSTD Xσ =)

b) Evaluate ()j
ij j iv STD Xσ = where jv can be chosen from {0.5, 0.25} for each class. Although there are

only two candidates, the number of combinations is as high as 2J where J is the number of classes.
Choose the best accuracy on the test set among all the 2J combinations of the jv ’s.

c) (Our approach) solve for the sigma parameters ijσ as described in the section 4.
d) Based on the results given in option c), evaluate k ijσ for k = 0.5, 1, 2 and pick the best one. This approach

is different from option b), each time we multiply k to all ijσ ’s, and thus there are only 3 trials for each
database.

4. Algorithm Description (Approach c)
As we have mentioned above, the formula used for the estimation of the class conditional probabilities is given
below.

 ()2

2
/ 2 1 1

1

1(|) exp
2(2)

j jPT D
i ir

j D
D r i ij

ij j
i

x X
P c

PT σπ σ = =

=

⎡ ⎤−
⎢ ⎥= −
⎢ ⎥
⎣ ⎦

∑ ∑
∏

x (4)

According to Appendix I, we should not set ijσ to ()j
iSTD X , the unbiased standard deviation of j

irX .
Nevertheless, we can set ijσ proportional to ()j

iSTD X , or equivalently, we first standardize the patterns in
each class (not among the whole database) and find out the optimal ()/ j

ij iSTD Xσ ratio. The benefit of this
approach is that our result will be invariant of the scale of any dimension. Our analysis and experiments show
that we should set () ()min 4 ,0.5 j

ij j id STD Xσ = , where is the average value of the minimum distance
between two input points belonging to class

jd
j . Computing directly is too time-consuming. Therefore, we

estimate by sampling the points. We can sample points and calculate distances: the distance
between the first sample and the second sample, the distance between the third and the fourth, etc. Let denote
the expected value of the minimum distance of the above distances. When the PDF is fixed and is
sufficiently large, depends on as well as , the actual dimensionality of the points in class

jd
jd jN2 jN

jd̂

jN jN
jd̂ jN jD j ,

according to the following equation (for more information about this equation, please refer to appendix III).

jD

j

j
jj N

PT
dd

1

ˆ
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
≈

Here means the number of free dimensions, instead of the number of linearly independent vectors. For
example, when the input points are distributed in a unity circle in a 2-D space, their attributes x and y are linearly
independent; however, there is only one free dimension – the angle – among the points. Since the linear
measures (such as the rank, the eigenvalues, etc) are unable to derive directly, we repeat sampling with
various values and solve for and with the corresponding observed values . The pseudo code is
included in Figure 1.

jD

jD
jN jd jD jd̂

Notations and parameters:
jPT : Number of input points in class j

D : Number of dimensions of the input points
maxK : Maximum Repeat Times (natural number). Typical 4max =K

NM FF , : Sample Size Factor (small positive number). Typical 4,8 == NM FF

Main Procedure:
For each class j

 Compute ()j
iSTD for i X ,...,2,1= D

⎣ ⎦()
⎣ ⎦()

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢
=

=

=

j

j
j

jNjj

jMjj

N
PT

KK

PTFPTN

PTFPTM

2max log ,min

 ,min

 ,min

 If <jK (which means PT is small) then 1 j

 =jd Mean-Min-Distance (), , jj PTMj

,...,2,1,

, j
k

j NMj

 Else
 For k 0= jK

 Mean-Min-Distance (=jkd̂)2,
 End For

Solve the equations
jkj

jk

j

j

dd
N
PT

D
ˆlogloglog1

=+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
, jKk ,...,2,1= , with least

square error, treating
jD

1 and log as unknowns. jd

 End If
 () ()j

ijij XSTDd 5.0,min=σ for i D,...,2,1=

End For

Subroutine Mean-Min-Distance (),, NMj

,...,2,1 For m = M
 Randomly pick a point from class X j .
 For n 1= N,...,2,
 Randomly pick a point X from class n j , different from . X

 ∑
=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
=

D

i ij

iin
mn std

XX
d

1

2

2

 End For
 Find the smallest D2 elements from 22

2
2

1 ,..., mNmm ddd
 Find the largest element (denoted by d) in the above 2

m D2 elements
 End For
 Return []2

mm
dmean

Note: the smallest elements for each can be cached so that when we double next time, only more
patterns have to be picked, which halves the computational complexity.

D2 m N N

Figure 1: Algorithm of our solution to the smoothing parameters

The least-square-error solution to the linear equations can be explicitly given as:

()
()

() ⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

==⎥
⎦

⎤
⎢
⎣

⎡ −

jj jK

j

jKj

jj
TT

j

j

d

d

NPT

NPT

d
D

ˆlog

ˆlog

1log

1log

log
1 11

1
MMM BABAAA

In practice, computing () directly is not efficient in both time and space. A recursive algorithm can
be applied, which is shown in Figure 2.

BAAA TT 1−

PQ=⎥
⎦

⎤
⎢
⎣

⎡

j

j

d
D

log
1

Note: the update of P is very simple because ()TPa is only 2-by-1, ()1+TaPa is a scalar, and (is 1-by-2.)aP

()
() ()

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
==⎥

⎦

⎤
⎢
⎣

⎡
=

−

2

1
0

1

00
2

1
0 ˆlog

ˆlog
,,

1log
1log

j

jTT

jj

jj

d
d

NPT
NPT

AQPPPP

For jKk ,...,3=

()[]1log jkj NPT=a

()() ()aPaPaPaPP 11 −
+−= TT

jk
T d̂logaQQ +=

End For

Figure 2: Recursive LSE Solution Algorithm

5. Complexity Analysis of The Algorithmic Approach c
In the worst case, assume is large enough, or jPT jNjM PTFPTF << , , so that

() ()jNjjMj PTFONPTFOM == , . Also assume 1max ≥= KK j . The subroutine Mean-Min-
Distance has a complexity of . This subroutine is called for times, with (NMj ,,))(DMNO 1+jK jMM =
and . The overall complexity is j

K
jj NNNN j2,...,2,= () ()maxmax 22 K

jNMj
K

j PTFDFONDMO = . Solving the
linear equation has a constant time complexity. Therefore, the whole algorithm has a computational complexity
of ()NM

K FFPTDO ⋅⋅⋅⋅ max2 , where PT is the total number of points. Since are small constants,
this complexity is negligible in comparison with the complexity of the classification process of PNN.

max,, KFF NM

6. Experiments
In our experiments, we compared the four approaches, mentioned in Section 3, of finding the smoothing
parameters in the PNN. In particular, the four approaches are repeated below.
a) Set the sigma parameters as the in-class standard deviation for each dimension and each class. The time for

finding the sigma parameters is ignored.
b) Evaluate ()j

ij j iv STD Xσ = where jv can be chosen from {0.5, 0.25} for each class. The time for finding
the sigma parameters is defined as the total time for all the 2J runs of the PNN algorithm.

c) Apply the sigma parameters ijσ given from our approach directly. The time for finding the sigma
parameters is defined as the time for running our approach (see also Section 5 for the calculation of the
complexity of this approach).

d) Evaluate k ijσ for k = 0.5, 1, 2 and pick the best one. The time for finding the sigma parameters is defined as
the total time for the 3 runs of the PNN algorithm.

6.1 Databases
The databases used in our experiments are listed below:

Database Name # Training
Patterns

Test
Patterns

Numerical
Attributes # Classes % Major Class

Grass and Trees 2000 4000 1 2 1/2
Modified Iris 500 4800 2 2 1/2
Page Blocks 500 2486 10 4(5) 0.832(0.8826)

Abalone 501 1838 7 3 1/3
Satellite 4435 2000 36 6 0.2417

Note: The numbers between parentheses reflects the test set, if different from the training set

Figure 3: Statistics of Databases

To demonstrate that the standard deviation is not directly related to the optimal sigma value, we created an
artificial database “Grass and Trees” that contains only one attribute. The first class is uniformly distributed in [0,
1]. The second class has five clusters, centered at 0, 0.25, 0.5, 0.75, and 1, respectively. Each cluster has also
uniform distribution with range 0.05. Both classes occupy 50% of the instances. It can be shown that the Bayes
Classifier would have 90% accuracy on this database. We used 1000 points for training and another 2000 points
for testing. The following figures show that it is difficult to guess the optimal sigma value using the standard
deviation, while our approach produces very accurate estimates.

0 0.25 0.5 0.75 1
0

1

2

3

4

5
Actual PDFs

Class 1
Class 2

0 0.25 0.5 0.75 1
0

1

2

3

4

5

6

7
Estimated PDFs with Our Approach

0 0.25 0.5 0.75 1
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1
Estimated PDFs with σ j = 0.5STD(Xj)

Figure 4: Estimates of the PDFs for Database “Grass and Trees”

The rest of the databases in the above table are the benchmark databases provided by UCI Repository (see

Hettich et al, 1998). We selected the ones with sufficient size (but not too large since the enumeration would take
a long time) in order to make our results statistically significant. The “Iris” database represents the classification
problem of the iris plants, which can be easily solved using even linear classifiers. We introduced noise to
generate enough data points, and removed the two attributes with least correlation to the class label.

“Page Blocks” database consists of the attributes of page layouts in a document with various block types. In
the raw database, approximately 90% of the instances belong to the “text” block type. To increase the difficulty,
we reduced the percentage of the major class and removed one class in the training set. The test set preserves all
the 5 classes.

“Abalone” database is used for predicting the age of abalones. In our case, we removed the categorical
attribute and grouped the targets into three classes: 8 and lower, 9-10, 11 and greater, as other researchers have

done in the past. The resulting classes, however, are still highly overlapped in the attribute space and current
Machine Learning algorithms can attain only 50%~60% accuracy.

“Satellite” database is the largest tested. It provides the multi-spectral values extracted from satellite images
corresponding to 6 types of soil (previously 7 types, one of which used to be “mixed soil” and was removed due
to the doubt about its validity).

6.2 Experimental Results

Option a
STDσ =

Option b
Enumeration

Option c
Solving ijσ

Option d
Variation of ijσDatabase Name

Time for
a Single

Run %Acc Time %Acc Time %Acc Time %Acc

Grass and Trees 1.422 66.23 5.738 66.13 0.06 89.62 4.947 89.62
Modified Iris 0.204 94.06 1.811 94.65 0.047 94.92 0.64 94.92
Page Blocks 0.203 85.89 16.206 92.00 0.016 86.85 0.625 89.22

Abalone 0.125 52.18 3.549 52.18 0.015 51.58 0.406 51.58
Satellite 3.734 82.95 2943.7 90.50 0.344 90.50 11.563 90.50

Time is measured in seconds
The highlighted columns correspond to our approach

Figure 5: Time and accuracy of four approaches.

The above table shows the performance of the four approaches. The first column is the time to run PNN only
once, and it is simply used as a reference.

For option a) which simply sets the ijσ as the standard deviation, the elapsed time for computing ijσ can
be ignored. However, this option is sometimes risky; its accuracy is close to that of wild guessing (see example
above, referred to as “Grass and Trees”).

Our solution is satisfactory (approaches c and d) in most of the cases. The time elapsed for solving ijσ is
much smaller than a single run of the PNN algorithm. Note that the accuracy on the first database is very close to
the theoretical optimum, which means our approach is robust against clustering and noise. The accuracy on
“Page Blocks” is not as good as the best one, but we believe that the main reason is the statistical discrepancy
between the training set and the test set. Both the Bayes Classifier and the PNN rely on the priori probability of
each class. PNN estimates it using the training set if it is not given; if the training set does not reflect the priori
probabilities, the PNN cannot approximate the Bayes Classifier even if the smoothing parameter are
appropriately optimized.

Enumeration of different scales of the standard deviation is comparable to our approach in accuracy except
for the first database, but at a high computational cost. For the satellite database, it required almost 10,000 times
longer than our approach, while achieving the same accuracy. Of course, one can argue that we evaluate only
two ijσ candidates, one for each class. Remember, the time complexity grows exponentially with the number of
candidates per class. Even for a simple database such as “Grass And Trees”, it is difficult to locate the
approximate optimal range for ijσ , which does not depend on the standard deviation only. Therefore, it is not
practical to apply enumeration to optimize ijσ .

As a compromise, it is reasonable to vary the smoothing parameter returned from our approach by a fixed
number of scales (approach d). As shown in the above table, this option is more computationally complex than
approach c, but reasonably so, and furthermore it improves the accuracy.

7. Summary
Setting the proper smoothing parameter in the PNN is important for achieving high accuracy. Searching for the
optimal parameter by cross validation is usually too expensive, especially when the parameter depends on both
the class label and the attribute (see approach b, discussed above). In this paper, we modeled the smoothing
parameter as a diagonal matrix and proposed an effective approach to determine it. Our approach (approach c) is
very computationally efficient (compared to the cross validation approach) and achieved high accuracy
Experiments show that our approach is satisfactory in most cases, regardless of the number of
instances/classes/dimensions. Even in case that the accuracy of our approach is not high enough, it can be
improved by varying our estimated smoothing parameter (approach d).

Acknowledgment
This work was supported in part by a National Science Foundation (NSF) grant CRCD: 0203446. Georgios
Anagnostopoulos and Michael Georgiopoulos acknowledge the partial support from the NSF grant CCLI
0341601.

References
Burrascano, P., “Learning vector quantization for the Probabilistic Neural Network,” IEEE Transactions on
Neural Networks, Vol. 2, pp. 458-461, July 1991

Cacoullos, T., “Estimation of a multi-variate density,” Annals of the Institute of mathematical Statistics (Tokyo),
Vol. 18, No. 2, pp. 179-189, 1966.

Maloney P.S. et al., “Successful Applications of Expanded Probabilistic Neural Networks,” Intelligent
Engineering Systems Through Artificial Neural Networks, Eds. C. H. Dagli et al., ASME PRESS, New York,
1991

Hunter, A., “Feature Selection Using Probabilistic Neural Networks”, Neural Computing & Applications, Vol. 9,
Issue 2, pp 124-132, 2000.

Parzen, E., “On estimation of probability density function and mode,” Annals of Mathematical Statistics, Vol. 33,
pp. 1065-1073, 1962.

Specht, D.F., “Probabilistic Neural Networks and the Polynomial Adaline as Complementary Techniques for
Classification”, IEEE Transactions on Neural Networks, Vol.1, No.1, pp.111-121, March 1990

Specht, D.F., “Enhancements to Probabilistic Neural Networks”, Proceedings International Joint Conference on
Neural Networks (IJCNN '92), 1, pp. 761-768

Specht, D.F., “Experience with Adaptive Probabilistic Neural Networks and Adaptive General Regression Neural
Networks”, Proceedings of the IEEE World Congress on Computational Intelligence, Vol. 2, pp. 1203-1208,
1994

Traven, H. G. C., “A neural network approach to statistical pattern classification by ‘semi-parametric’ estimation
of probability density functions,” IEEE Transactions on Neural Networks, Vol. 2, pp. 366-377, May 1991.

Tseng, M-L., “Integrating Neural Networks with Influence Diagrams for Multiple Sensor Diagnostic Systems,”
Ph.D. Dissertation, University of California at Berkley, August 1991

Washburne, T.P. et al., “Identification of Unknown Categories with Probabilistic Neural Networks”, IEEE
International Conference on Neural Networks, vol.1, pp. 434 -437, 1993

Hettich, S. & Blake, C.L. & Merz, C.J. UCI Repository of machine learning databases
[http://www.ics.uci.edu/~mlearn/MLRepository.html]. Irvine, CA: University of California, Department of
Information and Computer Science, 1998.

Appendix I – Relationship between σ and STD(X)
Consider the 1-dimensional case. The PDF is estimated as

()2

2
1

1(|) exp
22

j jPT
r

j
r jj j

x X
p x c

PT σπσ =

⎡ ⎤−
⎢ ⎥= −
⎢ ⎥
⎣ ⎦

∑

Let ˆ () (|)jX
f x p x c= stand for the estimated PDF and ()Xf x represent the real unknown PDF of the attribute

jX of class j . When jPT is sufficiently large,

()

()

2

ˆ 2

2

2

1() exp
22

1 exp ()
22

j

X
jj

X
jj

x X
f x E

x y
f y dy

σπσ

σπσ

∞

−∞

⎧ ⎫⎡ ⎤−⎪ ⎪⎢ ⎥= −⎨ ⎬⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭
⎡ ⎤−

= −⎢ ⎥
⎢ ⎥⎣ ⎦

∫

where []E X denotes the expected value of the random variable X . It can be easily proved that

ˆ jE X E X⎡ ⎤ ⎡ ⎤= ⎣ ⎦⎣ ⎦ , 2ˆ j
jVAR X VAR X σ⎡ ⎤ ⎡ ⎤= +⎣ ⎦⎣ ⎦

Therefore, the estimated PDF is not the real PDF since the variance is different, unless jσ is zero, which always
over fits the network to the training set. In fact, if we seek for another kernel function (,)F x X such that

{ }() (,)Xf x EX F x X= , the only solution is
2

20

1 ((,) () lim exp
22

x XF x X x X
σ

δ
σπσ→

)⎡ ⎤−
= − = −⎢ ⎥

⎣ ⎦

This observation leads to the constraint (3). It also suggests that 2 j
j VAR Xσ ⎡ ⎤<< ⎣ ⎦ , or . The

above result is also applicable to the multi-dimensional case.

j
j STD Xσ ⎡ ⎤<< ⎣ ⎦

Appendix II – Relationship between σ and d
Now we assume that the attributes have been standardized within each class, that is, ST is always one.
An important requirement for the

jD X⎡ ⎤⎣ ⎦
σ value of a single class can be derived from a simple model. Assume that the

patterns in this class are uniformly distributed within a D-dimensional hyper cube whose range in every
dimension is (, , and the training data set contains PT (the subscript j is omitted since only
this class is discussed) exemplar points regularly located as an array in the hyper-box, as shown in Figure 6.

)L L− (2 1)Dm= +

-L -d 0 d L

Figure 6: A simple model

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

x

pd
f(x

)

σ2=d2/8 (k=0.0183)
σ2=d2/4 (k=0.1353)
σ2=d2/2 (k=0.3679)
σ2=d2 (k=0.6065)
σ2=2d2 (k=0.7788)
σ2=4d2 (k=0.8825)
σ2=8d2 (k=0.9394)

Figure 7: Estimated PDF with various 2σ

P

The figure reflects the case where for simplicity. Actually m and n can be much larger. One
of the points is (and one of its neighbors is

4, 2m D= =
0,0,0, ,0)⋅ ⋅ ⋅ (,0,0, ,0)d ⋅ ⋅ ⋅ , where ()2 2 1d L m= + . This model

may seem too ideal, but it will be shown that the results can be applied to more general cases.
Consider the center P in a “cell” box which has the following 2D corners , ((0,0,0, ,0)⋅ ⋅ ⋅ , 0,0, ,0)d ⋅ ⋅ ⋅ ,

, … . Obviously(0, ,0, ,0)d ⋅ ⋅ ⋅ (, , ,)d d d⋅ ⋅ ⋅ (/ 2, / 2, , / 2)P d d d= ⋅⋅⋅ , with equal distance to each
corner: . Since the points are uniformly distributed, it is expected that the estimated PDF at P is the
same as that at the origin:

2 2 / 4Pd Dd=

1 2 1 2

2 2
2 2

1 1

1 1 1 1exp () exp ()
2 2 2

n n

m m m D m m m D

l lD D
i m i m i m l i m i m i m l

di d i d
σ σ σ σ=− =− =− = =− =− =− =

⎡ ⎤ ⎡⋅⋅ ⋅ − − = ⋅⋅⋅ −⎢ ⎥ ⎢⎣ ⎦ ⎣
∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ⎤

⎥⎦

2ik

After some calculations, the above equality leads to the following equation:
2(0.5)i

i i

k
∞ ∞

−

=−∞ =−∞

=∑ ∑ where
2

2exp
2
dk
σ

⎛ ⎞
= −⎜ ⎟

⎝ ⎠

Numerical solution of this equation yields 2 20.476dσ ≥
Now consider a similar model in which the training patterns are distributed in a hyper cube with half

volume as the previous one, but with the same density. That is, all the patterns with positive x1 (coordinate in the
first dimension) are removed. Then, consider the point (,0,0, 0Q q d)= × ⋅ ⋅ ⋅ where q is positive. The estimated
PDF at Q should be small enough because Q is outside the region where the training patterns are distributed.
With derivations similar to the above ones, the following condition should be met:
 2 20.476 4.58d dσ≤ ≤ 2

Thus, the smoothing parameter is allowed to vary in a certain way. To show this more clearly, we plot the PDF
with various 2σ in Figure 7, assuming the training instances are {–50, -49, …, 0} (which means). 2 1d =

Although 0.5dσ = seems to approximate the PDF very well, we should set 2σ higher. The reason is that
we do not expect the PDF to drop sharply at the boundary of the training points, since the training set is only part
of the data set. Therefore, we prefer to choose 2dσ = .

The above analysis is based on the regular model shown in Figure 6. In practice, however, the data points
are seldom regularly distributed and thus the minimum distance of a uniformly distributed data set would be
much smaller than d defined in this model, even when the number of points is the same. We can then do the
following: For each point X , find the 2 nearest points of , record the distance between and its farthest
neighbor among the 2 nearest ones, and estimate d as the average such distance among all X ’s. After
estimating d , we should set

D X X
D

4dσ = because: a) some of the points are relatively far from its nearest neighbor,
and b) the standard deviation of the estimated distance is usually comparable to the distance itself.

Another issue is that setting ()4 j
ij j id STD Xσ = for each dimension might not be optimal. The reason is

that by assuming diagonal jΣ , we imply that all the attributes are independent, which is not true in many cases.
Consider an example where all the attributes are equal within any instance, and they are uniformly distributed
with unity variance across the instances in the same class. Apparently, 2

jd is proportional to the number of
attributes. When the number of attributes is sufficiently large, jd can exceed one. In this case, although the
marginal PDFs are estimated very well, the PDF in the whole space is not accurate. Considering the constraint
that given from Appendix I, we set (j

ij iSTD Xσ <<) () ()min 4 ,0.5 j
ij j id STD Xσ = , where the constant 0.5

was determined by experimentation.

Appendix III – Analysis on Sampling
For large data sets, it is not necessary to examine every pattern in order to compute d . Suppose N
(PT N PT≤ ≤) pairs of points are randomly picked and the expected value of the minimum distance between
each pair is , then d̂

D

N
PTdd

1

ˆ ⎟
⎠
⎞

⎜
⎝
⎛≈

The first ideal model can help to explain this approximation. Suppose we have observed a value of d , and now
more points are then added to the model so that PT is 2

ˆ
D times as large as before, doubling the density of the

data set in every dimension and thus halving d. After this procedure is repeated for T times where T is small so
that /N PT is not too small, PT becomes and d turns 2 , while and N remain as before, which
verifies our approximation.

2nT PT T d− $d

If σ is set proportional to d , it is not difficult to verify that (2) is true, and (3) is true when (1n > 1n =
seldom happens; (2) and (3) is a sufficient condition instead of a necessary one, as Figure 7 shows).

There is another reason why N should be large. If a class is separated into C clusters, then it is reasonable
to require at least 4C patterns to be present in each cluster, which means 24PT C≥ . If 4N P= T , then

8N C≥ . Assume that for each random selection all the candidate patterns have the same probability to be
chosen, and that all clusters have the same number of patterns. When we choose a pattern X and N other
patterns, the probability that none of the N patterns falls in the same cluster as is: X

81(1) CP
C

= −

It can be proved that for any C >0, indicating that the result should be typical. A
general designing rule can be derived: if

8 3.3546 10P e−≤ = × 4−

aP e−≤ is desired and at least patterns for each cluster can be
assumed, where , then

2b C
0, 0a b> > ()/N a b PT= is sufficient.

Although a and b seem problem-dependent by definition (and thus new parameters are introduced to solve
for the old one, σ), they are merely thresholds that can be predefined and do not need to be accurate. For
example, if is fixed to 8 when the PNN is designed, then a problem that requires can be
solved with sufficient accuracy, because more patterns than the minimum will be chosen.

/a b 16, 4a b= =

	1. Introduction
	2. PNN Preliminaries
	3. Candidate Solutions for Choosing the Smoothing Parameters
	4. Algorithm Description (Approach c)
	5. Complexity Analysis of The Algorithmic Approach c
	6. Experiments
	7. Summary
	References
	
	Appendix I – Relationship between  and STD(X)
	Appendix II – Relationship between  and d
	
	Appendix III – Analysis on Sampling

