LETTER Communicated by Donald Specht

Gap-Based Estimation: Choosing the Smoothing Parameters
for Probabilistic and General Regression Neural Networks

Mingyu Zhong
myzhong@ucf.edu

Dave Coggeshall
david.coggeshall@gmail.com
Ehsan Ghaneie
Ehsan.Ghaneie@gmail.com
Thomas Pope
ThomasPope@gmail.com
Mark Rivera
mark.rivera@gmail.com
Michael Georgiopoulos
michaelg@mail.ucf.edu
School of Electrical Engineering and Computer Science, University of Central Florida,
Orlando, FL 32816, U.S.A.

Georgios C. Anagnostopoulos

georgio@fit.edu

Department of Electrical and Computer Engineering, Florida Institute of Technology,
Melbourne, FL 32901, U.S.A.

Mansooreh Mollaghasemi

mollagha@mail.ucf.edu

Department of Industrial Engineering and Management Systems,
University of Central Florida, Orlando, FL 32816, U.S.A.

Samuel Richie

richie@mail.ucf.edu

School of Electrical Engineering and Computer Science, University of Central Florida,
Orlando, FL 32816, U.S.A.

Probabilistic neural networks (PNN) and general regression neural net-
works (GRNN) represent knowledge by simple but interpretable mod-
els that approximate the optimal classifier or predictor in the sense of
expected value of the accuracy. These models require the specification
of an important smoothing parameter, which is usually chosen by cross-
validation or clustering. In this article, we demonstrate the problems with
the cross-validation and clustering approaches to specify the smoothing
parameter, discuss the relationship between this parameter and some of

Neural Computation 19, 2840-2864 (2007) © 2007 Massachusetts Institute of Technology

Gap-Based Estimation 2841

the data statistics, and attempt to develop a fast approach to determine
the optimal value of this parameter. Finally, through experimentation, we
show that our approach, referred to as a gap-based estimation approach, is
superior in speed to the compared approaches, including support vector
machine, and yields good and stable accuracy.

1 Introduction

Classification and regression are two types of common problems in science,
technology, and even our daily life. Assuming that the inputs and outputs
have a fixed and known relationship expressed by the conditional proba-
bilities, it can be proven that the optimal classifier is the Bayes classifier and
the optimal predictor is expressed by the conditional expected value of the
output given the inputs. In practice, the probabilities representing the input-
output relationship are not known but are estimated from the given train-
ing instances by using legitimate approaches for their estimation. One such
probability estimation approach is the Parzen window approach (Parzen,
1962), extended by Cacoullos (1966), which estimates the class-conditional
probabilities as a sum of gaussian functions centered at the training points
with appropriately chosen widths (standard deviations), designated from
now on as smoothing parameters. Parzen’s approach works well under
some reasonable assumptions regarding the choice of the smoothing pa-
rameters, and when the training data size becomes very large, the approx-
imation becomes equal to the actual class-conditional probabilities. When
training data sets are of finite size (as is usually the case in practice), the right
choice of smoothing parameters is essential for good performance of the
classifier. Probabilistic neural networks (PNN), invented by Specht (1990),
approximates a Bayes classifier where the class-conditional probabilities
are estimated by using Parzen’s approach with gaussian kernels. General
regression neural network (GRNNS), also invented by Specht (1991), is the
PNN'’s regression counterpart.

One of the major issues associated with the PNN and GRNN is how
to choose the smoothing parameter(s) involved in the gaussian functions
utilized to estimate the conditional probabilities. Unlike linear discriminant
analysis (LDA) and quadratic discriminant analysis (QDA) or expectation-
maximization algorithms where the number of gaussian functions is preset
to a small number, PNN or GRNN applies a variable number of kernels
(one per each training example), and consequently the maximum likeli-
hood estimate of the smoothing parameter is zero, resulting in an estimate
of the class-conditional probabilities as a series of impulses, thus affecting
negatively the generalization. Specht (1992, 1994) suggested using cross-
validation to estimate the smoothing parameters. This approach, although
simple, has two major drawbacks. The first is that choosing the right can-
didate values for validation is not as simple as one expects. Although the

2842 M. Zhong et al.

smoothing parameter represents the standard deviation in the gaussian
kernels, we show that in a one-dimensional example (each input has only
one attribute), the smoothing parameter should be chosen less than the
standard deviation of the observed instances. In fact, the optimal smoothing
parameter can be much smaller than the standard deviation of the observed
instances. Consequently, the theoretical range of the optimal smoothing pa-
rameter is infinitely wide if one chooses the smoothing parameter based on
the standard deviation only. The second drawback is that cross-validation
is very time-consuming. The time complexity of cross-validation in PNN or
GRNN is O(D-PT-PV), where D is the dimensionality of the input, PT is the
number of instances in the training set, and PV is the number of instances
in the validation set. If N candidate smoothing parameters are examined,
the time complexity of cross-validation is O(N-D-PT-PV).

To overcome the first difficulty, Galleske and Castellanos (2002) proposed
the ellipsoidal model to estimate the smoothing parameters. However, their
approach is based on the most complicated PNN structure: each instance
corresponds to an individual covariance matrix as the smoothing parameter.
To optimize the matrix for each instance, one has to find out the “closest”
instance belonging to another class. Therefore, the time complexity issue is
not solved but rather worsened.

Another way of dealing with this issue of smoothing parameters is to
cluster the training data and approximate the class-conditional probabili-
ties by gaussian functions centered at the cluster points instead of the actual
training points. The clustering of the data gives the additional capability
of estimating the smoothing parameters of these gaussian functions as the
within-cluster standard deviations. Clustering procedures that have been
used in the literature for the PNN neural network are the learning vec-
tor quantization (LVQ) approach (Burrascano, 1991), K-means clustering
(Traven, 1991), mixture of gaussians (Tseng, 1991), and the dynamic decay
adjustment (DDA) approach (Berthold, 1998). These approaches modify
PNN by reducing the number of kernels. For example, the DDA approach
actually optimizes the smoothing parameter for radial basis function (RBF)
networks. In this article, we stick with the PNN model (one kernel per in-
stance) and attempt to find out whether these clustering approaches can
simplify the optimization of the smoothing parameters of PNN signifi-
cantly. We apply an unsupervised variant of gaussian ARTMAP (GAM)
(Williamson, 1996, 1997), which is similar to RBF, to cluster the data. We
call this clustering variant gaussian ART (GART). Although this approach
compresses the training data and may determine a better value for the
smoothing parameter than cross-validation, it tends to deteriorate the esti-
mate of the probability density functions (PDFs), as shown in this article.

Our approach attempts to determine a good estimate of the op-
timal smoothing parameters with a time complexity of O(D-PT). No
cross-validation is required. This is a significant computational advantage,
and it is also an advantage in practical situations, where the data set given is

Gap-Based Estimation 2843

small, and we do not have the luxury of defining a sizable cross-validation
set.

The organization of the letter is as follows. Section 2 introduces PNN and
GRNN, including their clustered versions. Section 3 discusses the effect of
the smoothing parameter on PNN and GRNN. Section 4 describes our
approach of choosing the smoothing parameter. Section 5 compares our
approach of choosing the smoothing parameter to other commonly used
approaches. Section 6 provides a summary of our work and concluding
remarks. For the rest of the article, we assume that the reader is familiar
with GAM.

2 Preliminaries

2.1 Probabilistic Neural Network. The Bayes classifier is based on the
following formula for finding the class to which a datum x belongs:

P(cjlx) = fKIepPe)) @.1)

f)

The above probabilities for every class j in our pattern classification task
are calculated, and the datum x is classified as belonging to the class j that
maximizes this probability. In order to calculate the above probabilities,
one needs to estimate the class-conditional probabilities f(x|c;) and the a
priori probabilities P(c;) for every class j (the calculation of f(x) is not
needed because it is a common factor in all of these probabilities and can
be cancelled out). The a priori probabilities P(c;) are calculated from the
given training data. The class-conditional probabilities f(x|c;) can also be
calculated from the training data by using the approximation suggested
by Parzen (1962). In particular, the following approximation is utilized to
estimate these class-conditional probabilities (see Specht, 1990):

PT; [_ x=x)(x=x)) } ’ 2.2)

1
fIe) = GeyprgDpT, 22 O 27

where D is the dimensionality (number of attributes) of the input patterns,
PT represents the number of training patterns belonging to class j, X/ de-
notes the rth such training pattern, x is the input pattern to be classified,
and o is the smoothing parameter. Cacoullos (1966) points out that this es-
timation will approach asymptotically the real probability density function
(PDF) if both of the following equations are true:

lim o =0 (2.3)
PTj—o0
lim PTjo =o0. (2.4)

PTj—o0

2844 M. Zhong et al.

Equation 2.2 is the basis of the PNN classifier. The smoothing parameter o
should be selected properly, as further discussed in section 3. In general, the
smoothing parameters may depend on the dimension and the class of the
data. For simplicity, we assume attribute independence, so that the smooth-
ing parameter does not become a matrix for each class. The above formula
for the estimation of the class-conditional probabilities now becomes

(x|c;) = Z _iw (2.5)
fxies (2r)D/ZFL 10ijPT; oF = 29 ’ .

] r=1

where o;; is the smoothing parameter across dimension i for the training
points belonging to class j.

2.2 General Regression Neural Network. For regression problems, it
is not difficult to prove that the solution minimizing the expected mean
square error is the conditional expected value given below:

"o ¥f
E(yx) = fi (2.6)
2o O)y
In practice, the joint PDF f(x, y) is estimated by
fy) = — (2.7)

PT(27T)(D+1 /2]_[1-:0 oi

Equations 2.6 and 2.7 can be used to show that E(y|x) can be estimated by

PT D (xi—Xi)?
Zr:l Yr eXp [_ Zi:l : 207]
PT D (u=Xi?] '
Zr:l exp [_ Zi:l * 207]

E(ylx) = (2.8)

where o; is the smoothing parameter across dimension i.

2.3 Clustered PNN and GRNN. As shown above, both PNN and
GRNN simply memorize all the training instances to perform classifica-
tion or regression. To compress the training instances, one can cluster them
and represent them by the clusters centers. Thus, each cluster center is es-
sentially a training instance with a certain multiplicity. When applied to
PNN or GRNN, we should expect the smoothing parameter to depend on
the clusters. When clustering is applied to the PNN training data, it is not

Gap-Based Estimation 2845

difficult to see that the modified version of equation 2.5 is

N2
NN p (-X}
pI 2, o &P |:_ 2zt (27) :|

N.
(20)P2 3,1 Njr

: (2.9)

where N/ is the multiplicity of, or the number of, original training instances
covered by the rth cluster in class j, while o/, and X! are the smoothing
parameter and the mean value of the ith dimension for the rth cluster in
class j, respectively.

Similarly, the GRNN equation, when clustering is applied to the GRNN
training data, becomes

PT yN, D (x—X;)?
Rt 2, o exp [_ il o 201,27"

PT N, [D (x,'—)_(,-r)z])
exp|— i—1 5.2
Zr_l H1D=1 Gir Zl_l 2“,%

E(ylx) = (2.10)

3 Analysis of the Smoothing Parameter in the
One-Dimensional Cases

3.1 Nonclustered Cases. For simplicity, let us first consider only one di-
mension and one class without clustering. In this case, equation 2.5 reduces
to

1 & (x — X,)?
fx)= (27)26 PT ;exp |:_ - 202] : 3.1)

It is not difficult to prove that
VAR(X) = VAR(X) + 02, (3.2)

where the left-hand side represents the expected value of the variance of the
point x using the estimated PDF given in equation 3.1, and VAR(X) stands
for the expected value of the variance of the point x using the true PDF. In
order to produce an accurate estimate of the PDF, a necessary condition is

o < STD(X), (3.3)

where STD(X) is the unbiased standard deviation of X. This conclusion
agrees with equation 2.3, since the standard deviation usually approaches
a positive constant number when the number of instances goes to infinity.
Note that setting o; to a large value can smooth out the i th attribute, mak-
ing the corresponding marginal PDF constant (almost zero) in the whole

2846 M. Zhong et al.

space. This could be beneficial for removing irrelevant attributes for classi-
fication, but it alters the PDFs, while our goal in this article is to accurately
estimate the PDFs, which can be used by algorithms other than PNN or
GRNN. On the other hand, o; cannot be too small; otherwise, the PDF be-
comes spiky (consisting of a number of impulse functions) at the training
points and is almost zero at other places, which causes the overtraining
problem.

To understand the effect of the smoothing parameter better, consider an
example where the training set is {—10, —9, ..., 10} and is taken from a
uniform distribution in the range [-10.5, 10.5]. In practice, even if the points
are uniformly distributed, the observed instances are not likely to be equally
spaced; here we simply use this ideal case to demonstrate our idea, which
will be further discussed in section 4. Figure 1 shows the resulting estimated
PDF in three typical cases. In Figure 1a, the smoothing parameter is properly
set, and the estimated PDF is almost the same as the true one except near the
two bounds; for better generalization, we do not require the PDF to drop too
quickly to 0 outside the range [-10.5, 10.5] (see Figure 4b). In Figure 4b, the
smoothing parameter is too small, and the estimated PDF consists of spikes.
Although in this case the PDF outside the range [—10.5, 10.5] is accurate
and we will have few false positives, the PDF is too small inside the range
but off any training point. In a multidimensional space, once a test point is
not close enough to any training point, the estimated PDF is close to zero
for all classes, and the decision of the PNN is not reliable. In Figure 4c, the
smoothing parameter is too large, which means all the training points have
significant influence on the PDF at the test point even if they are far away
from the test point. When the true PDFs of two classes are overlapped, the
crossing points of the discriminant functions tend to be shifted from the true
ones (consider the extreme case 0 = oo, which shifts the crossing points to
0o, and the decision will be based on prior probabilities only). This figure
also verifies our previous statements. It shows that the standard deviation of
the observed attribute values is usually too large to be used as the smoothing
parameter. In appendix B, we prove that to estimate the norms accurately,
we should set the smoothing parameter much smaller than the standard
deviation.

3.2 Clustered Case. Suppose the previous training set with 21 instances
is clustered, with each cluster containing the same number of instances.
Figure 2 shows the effect of the cluster size and the smoothing parameter on
the PDF estimation. In this example, neither the cluster standard deviation
nor a reasonable value for the smoothing parameter yields an accurate PDF
for both the three-clustered and the seven-clustered case. Since clustering
represents multiple instances by their mean value, and as a result loses
considerable information, it is difficult to determine a good smoothing
parameter quickly.

Gap-Based Estimation 2847

0.05

0.02

0.01

20

(a) Reasonable Smoothing Parameter (0=2)

oo} L T
J“‘ MU UMM *‘L ‘ ‘
5 10 1

-20 -15 -10 -5 0 5 2

(b) Small Smoothing Parameter (0=0.25)

(c) Large Smoothing Parameter (o0=Standard Deviation=6.2)

Figure 1: Estimates of PDF with various o values (no clustering). Dash-dot
line: desired (true) PDFE. Gray solid line: gaussian function centered at a training
point. Black solid line: estimated PDF.

2848 M. Zhong et al.

o

AANNNA
Vi \/\'N/K

-20 -15 -10 -5 0 5 10 15 20

(¢) 7 clusters, 0=2

(d) 7 clusters, o =cluster standard deviation=1

Figure 2: Estimates of PDF with various o values (with clustering). Dash-dot
line: desired (true) PDFE. Gray solid line: gaussian function centered at a training
point (for better visualization, the gaussian functions in each cluster are summed
up instead of being overlapped). Black solid line: estimated PDF.

Gap-Based Estimation 2849

4 Our Approach: Gap-Based Estimation

4.1 Result from a Simple Model. Figure 1 indicates that the width of
gaussian kernels, which is directly controlled by the smoothing parameter,
should be related to the gap between two nearest points. Our proposed
approach, the gap-based estimation, originates from the following simple
idea: when the training points are equally spaced in (—L, 0] where L > 1, the
estimated PDF should (1) be almost constant at points located at the left of
the origin and (2) drop to almost zero at the points located at the right of the
origin (we allow, though, a transition interval where the value drops from
the constant value to the zero value). Numerical solution of the above two
constraints indicates that0.69d < o < 2.18d, whered is the distance between
two neighbors in the above model (see appendix C). In practice, the training
points are seldom equally spaced even if uniformly distributed. In this case,
we have to generalize the definition of d. If we define d as the average dis-
tance between a point and its nearest neighbor (i.e.,) ; min j#i |xi — xj|/N),
itis easy to prove thatd < dy = (max; x; — min; x;)/(N — 1), where d, is our
desired value if the points are uniformly distributed in 1D space (we can-
not apply dy directly to multidimensional spaces). This indicates that the
observed d is usually smaller than our desired value. It is also difficult to
provide an analytical expression to adjust d in a general case. To address
this problem, first we double the bounds as 1.38d < o < 4.36d and choose
o = 4d for better generalization. Second, we define d as the average value
of the largest distances between a point and its 2D nearest neighbors. If this
method is applied to our starting ideal model, the computed d is exactly
the same.

4.2 Samplingin Multidimensional Space. For multidimensional cases,
we should standardize each dimension first so that each dimension has
unity standard deviation before computing the gap, which prevents bias
toward dimensions with large data. In these cases,

o1 = min(4d, 0.5)STD(X), “.1)

where d is the average gap (roughly the average value of the minimum
distance) between two input points after standardization and STD(X;) is
the standard deviation of the ith dimension before standardization. Note
that 4d might be larger than 1 when the dimensions are not independent,
which is a challenge to us since the assumption of equation 2.5 is violated.
In this case, we replace 44 to 0.5 to retain the validity of inequality 3.3.
Computing d directly has a high computational complexity of O(PT?).
Therefore, we estimate d by sampling the points. We randomly choose M
points, where M <« PT when PT is large, and for each one (X) of these points,
we calculate the largest value of the minimum 2D distances to another small

2850 M. Zhong et al.

sample of N points, where N « PT when PT is large. However, two issues
are raised due to sampling.

First, if the points are distributed in clusters, it is possible that all the N
points are in a different cluster from the X, which causes d to be estimated
as the distance between clusters, despite the fact that we desire to obtain
the local distance among the points in the same cluster. Nevertheless, we
assume each cluster has the same number of points, which is at least 4C,
where C is the number of clusters. Hence,

PT > 4C? 4.2)

In this case, if we set N to be equal to 4+/PT, we can prove that the probability
that none of the N sampled points are in the same cluster as X does not
exceed e 8 =3.35x10~%. Even if some of the distances may be overestimated,
they are not likely to affect the final result after the sampling is repeated M
times.

Second, the observed average gap § in the sampled set is not approxi-
mately the same as, but instead proportional to, the desired average gap d
in the full data set. The constant of proportionality that connects § and d
depends on the parameters PT, N, and v, where v is the number of intrinsic
dimensionality. In particular, we have shown that the actual relationship
between § and d can be expressed by the following equation:

PT\Y*
s~ (W) d. (4.3)

Equation 4.3 can be explained below: when N = PT, § = d; when the num-
ber of samples per intrinsic dimension is halved but N; is still so large that
the samples are representative, N = 27"PT and § ~ 2d. This also implies
that under the same distribution with enough points, (PT)"/?d is a constant,
which means equations 2.3 and 2.4 are satisfied if we apply equation 4.1 to
set the smoothing parameter and v > 1. When equation 4.1 is applied and
v is 1, equation 2.4 is not satisfied, but it is not a necessary condition for the
estimated PDF to be asymptotically accurate. Our experiments show that
our approach works very well for one-dimensional databases.

As we mentioned above, v means the intrinsic dimensionality. For ex-
ample, when the data points of the data set are residing on the unit circle in
a 2D space, their attributes x and y can be expressed in terms of the angle of
the (x, y) point with respect to the horizontal axis. As a result, in this case,
although the data points are two-dimensional, they have only one intrinsic
dimension.

Equation 4.3 is a single equation with two unknowns (that is, d, which
we want to compute, and v, which is unknown). Ideally, two calculations
of § with different values of sample sizes N would be sufficient to produce

Gap-Based Estimation 2851

the needed value d and the unknown intrinsic dimensionality v. Due to the
randomness of the sampling procedure that leads to the computation of d,
however, two calculations of § are not enough. For the databases we have
experimented with, it turned out that five calculations of § are sufficient
for the calculation of d. To calculate d from the five equations of the form
depicted in equation 4.3, we utilized a least-square-error procedure.

4.3 Application to Classification Problems. So far we have discussed
the one-class case. For classification problems, there are two ways to set the
smoothing parameter:

1. For each class, compute o;; based on equation 4.1, by using only the
patterns in the corresponding class.

2. Apply equation 4.1 to all patterns regardless of their classes, and use
the computed o; for all classes.

Although the first method appears more reasonable, we argue that it is
less beneficial because each class occupies only a subset of the training
points, and thus for each class, the estimate of d becomes less accurate
after sampling (whose confidence relies on the data size), especially when
equation 4.2 is violated. Our preliminary experiments verify our argument,
although the corresponding results are not set out in this article.

5 Experiments

5.1 Experimental Procedures. We compare the following approaches
for choosing the smoothing parameters for both PNN and GRNN:

¢ Standard deviation: Set the smoothing parameters as the standard
deviation for each dimension without discriminating the class labels
(which is much better than using the in-class standard deviations in
our experiments, although the justification for this statement is not
included in this article).

¢ Cross-validation: The training set is divided equally to a learning
set and a validation set. We evaluate o; = kSTD(X;) for each attribute
X;, where k is chosen from {1/2, 1/4, 1/8, 1/16}, and STD(X;) is
computed as explained in the previous approach. The best k value is
selected according to the performance on the validation set. The time
for finding the smoothing parameters is defined as the total time for
all the runs of PNN/GRNN.

¢ Clustering: Run GART (see section 1) to cluster the training set. For
PNN, we run GART for each class separately (which is remarkably
faster than running GAM on the whole database). The initial standard
deviation y is set to STD(X;), and the baseline vigilance p is set to 0.5
(in fact, we tested higher values of p, but they required more time to

2852 M. Zhong et al.

converge, without significantly improving the attained accuracy). It
is known that GAM/GART is not sensitive to y as long as it is close
to the final cluster standard deviation. The parameter p controls the
size of the clusters: p = 0 means arbitrarily large clusters are allowed,
resulting in only one cluster for GRNN since all regression instances
are treated as in the same class; p = 1 means only zero-sized clusters
can be created, reducing to the noncluster case except when repeated
training instances are present. The time for finding the smoothing
parameters is defined as the time required for GART to converge.

® Gap-based estimation: Our approach is described in section 4.

In addition, we compared PNN with C-SVC (support vector classifier)
and GRNN with epsilon-SVR (support vector regressor). We applied the
radial basis function (RBF) kernel for both SVC and SVR as most other re-
searchers have done in earlier support vector machine (SVM) publications.
The implementations of SVC and SVR were downloaded from Chang and
Lin (2001), where the authors suggest grid search to optimize the param-
eters (for loose grid search, C = {275,274, ..., 21} and gamma = {275,
271, ..., 2%}). We followed these suggestions and found that using such
a wide range of each parameter is reasonable, because among the optimal
parameters in our experiments (one per database), min C = 275, max C =
215 min gamma = 2-15 and max gamma = 2.

All algorithms, including PNN, GRNN, GART, SVC, and SVR, are coded
efficiently in the same computer language (C/C++) and with the same
interface (Matlab MEX DLL). The recorded time does not include what is
spent on file input and output or displaying to the screen. All experiments
are carried out in the same and stable software environment.

5.2 Databases. The databases used in our experiments are listed in
Table 1. We used only large databases because they guarantee statistical
significance of the results presented here. Therefore, we did not use the
small databases as in Galleske and Castellanos (2002) and Berthold (1998).

To demonstrate that the standard deviation is not directly related to the
optimal smoothing value, we created an artificial database, Grass and Trees,
that contains only one attribute. The first class is uniformly distributed
in [0, 1]. The second class has five clusters, centered at 0, 0.25, 0.5, 0.75,
and 1, respectively. Each cluster has also uniform distribution with range
0.05. Both classes occupy 50% of the instances. It can be shown that the
Bayes classifier attains 90% accuracy on this database. Figure 3 shows that
it is difficult to guess the optimal smoothing value using the standard
deviation, while our approach produces very accurate estimates. Note that
the optimal smoothing parameter can be arbitrarily small when we increase
the number of clusters in class 2 while maintaining its overall standard
deviation.

Gap-Based Estimation 2853

Table 1: Statistics of Databases.

Number of Number of Number of

PNN Training Test Numerical =~ Number of % Minor
Databases Points Points Attributes Classes Classes”
Grass and Trees 2000 4000 1 2 50.000
Modified Iris 500 4800 2 2 49.812
Segmentation 210 2100 18 7 85.714
Page Blocks 2000 3473 10 5 10.193
Abalone 2088 2089 7 3 65.677
Satellite 4435 2000 36 6 76.950
Pen Digits 7494 3498 16 10 89.623
Optical Digits 3823 1797 62 10 89.872
Number of Number of Number of
GRNN Training Test Numerical Output Output
Databases Points Points Attributes Range® Variance®
Friedman 400 1000 5 27.116 27.094
Kinematics 4096 4096 8 1.4004 0.06853
Pumadyn 4096 4096 8 24.091 31.41
Bank 4096 4096 8 0.74548 0.023478
Abalone 2088 2089 7 26 10.544
Computer 4096 4096 12 99 348.85

?The percentage of the minor classes is 1 minus the percentage of the major training
class in the test set. This percentage represents the misclassification rate for the blind
classifier, which always predicts the class as the major training class without considering
the attributes).

UThe output range reflects the output in the test set.

“The output variance is computed as mean((yy — m)?), where y is the output in the test set
and m is the mean value of the outputs in the training set. This variance represents the
mean square error of the blind predictor (that is, the predictor that always predicts the
output as the mean training output without considering the attributes).

The rest of the databases are commonly used benchmark databases. We
selected the ones with sufficient size in order to make our results statistically
significant. We downloaded all the other classification databases from
Newman, Hettich, Blake, and Merz (1998), Friedman from KEEL (2002), and
Kinematics, Bank, and Computer from the Delve Repository (Rasmussen
et al., 1996). Following is a brief description of each database:

¢ The Iris database represents the classification task of iris plants. We
introduced noise to generate enough points and removed the two
attributes with the least correlation to the class label.

¢ The Segmentation database is created from 7 outdoor images of differ-
ent scenes. Three-by-three subimages are manually segmented from
the 7 images and are classified with the image features. The original
database contains 19 attributes, but the third attribute turns out to
be constant and thus is removed in our experiments. This database

2854 M. Zhong et al.

0 I I I I |

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

(a) True PDF

12

0.9

0.8

0.7

04 I I I I I I]
-0.2 0 0.2 0.4 0.6 0.8 1 1.2

(c) Estimated PDF with =S TD(X)

Figure 3: Estimates of the PDFs for Grass and Trees database. Black line: class 1;
gray line: class 2.

Gap-Based Estimation 2855

contains only 210 training points, which is a representative test to our
sampling methodology.

® The Page Blocks database consists of the attributes of page layouts in
a document with various block types. The major class “text” occupies
approximately 90% of the instances.

® The Abalone database is used for predicting the age of abalones. We
removed the categorical attribute in the original database because it is
not used on either PNN or GRNN. For PNN, we also grouped the out-
puts into three classes: 8 and lower, 9-10, and 11 and greater, as other
researchers have done in the past. The resulting classes, however, are
still highly overlapped in the attribute space, and current algorithms
can attain only approximately 60% accuracy.

¢ The Satellite database provides the multispectral values extracted from
satellite images corresponding to six types of soil (previously seven
types, one of which used to be “mixed soil” and was removed due to
doubts about its validity).

® The Pen Digits database stores the information of 250 digits. The at-
tributes are obtained from the coordinates of the points after spatial
sampling on the captured trajectories. Thirty writers contribute to the
training set and 14 to the test set.

¢ The Optical Digits database is also concerned with the recognition of
handwritten digits but without temporal information. The images are
divided into subimages, and the number of pixels in each subimage
serves as an attribute. The data from 30 writers are used for training
and those from the other 13 writers for testing. After two constant
attributes are removed from the original database, there are still as
many as 62 attributes.

¢ The Friedman database is artificial, and was first used by Friedman
(1991). The output is defined as y = 10sin(rx1x2) + 20(x3 — 0.5)* +
10x4 + 5x5 + &, where x1, X, X3, x4, and x5 are independent attributes
uniformly distributed in [0,1], while ¢ is gaussian noise with zero mean
and unity variance.

¢ The Kinematics database and the Pumadyn database are chosen from
two families generated from the simulation of two different robot
arms. They are concerned with the prediction of the end effector from
a target and the angular acceleration, respectively. For both databases,
we selected the nonlinear version with eight attributes and medium
noise.

¢ The Bank database is generated from a simulator that simulates bank
service. The task is to predict the fraction of customers who leave the
bank because all queues are full.

2856 M. Zhong et al.

® The Computer database consists of computer activity measures, such
as the reading and writing rates. The task is to predict the portion of
time that the CPUs run in user mode based on the various data transfer
rates.

5.3 Experimental Results. All the results are shown in Table 2. For PNN,
although the computation of the standard deviation is usually too fast to be
timed, it does not appear to be a good value for the smoothing parameters
due to its poor accuracy (excluding the blind classifier), especially when
the data are distributed in disconnected clusters (see the Grass and Trees
database).

The cross-validation approach works well in databases where the data
corresponding to different classes are small in number and belong to a single
connected cluster. However, since the number of candidate values is very
limited, cross-validation is sometimes risky, as shown in the experiments
with the Grass and Trees database.

The clustering approach tested here could work better than cross-
validation in defining reasonable smoothing parameters when class data
belong to disconnected clusters, but its accuracy is suspect, possibly due to
the weak relationship between the optimal smoothing parameter and the
cluster standard deviation, as illustrated in Figure 2. Note that the accuracy
is surprisingly low for Optical Digits. We examined the results and found
that GART outputs exactly one cluster per training point, due to the high
dimensionality, which means the distance among training points tends to be
large. The cluster standard deviation is usually too small, because the same
point is repeatedly chosen to construct a template. Of course, these results
reflect only the GART approach; one could improve the clustering approach
by using other clustering algorithms or more complicated estimation of the
smoothing parameters for each cluster.

Our approach always yields an accuracy that is equal or close to the best
one. Note that the accuracy of the Grass and Trees database is almost the
theoretical optimal one. Moreover, the time spent to produce the smoothing
parameters with our approach is an order of magnitude faster than the cross-
validation approach, and it is scalable to large databases (see Figure 4).
The experiments also demonstrate that our approach is robust, whether
or not the training set is noisy (as Grass and Trees, Modified Iris, and the
Friedman), small (as Segmentation), or high dimensional (which means
possible dependency among attributes; see Optical Digits).

In our experiments, the SVM accuracy is always better than the gap-
based estimate accuracy (except for the Grass and Trees problem), but not
significantly better in most instances. The time that it takes to choose the
correct SVM parameters is in most cases three to four orders of magnitude
larger than the time required by the gap-based estimate approach for choos-
ing PNN parameters, which leads us to the obvious conclusion that there is
merit in using the gap-based estimate PNN classifier or GRNN regressor.

2857

€040 049941 8CE'L GHETT ¥94°G1 8T€eL €99'q1 e 9¢e 8801 G8'87¢ wndwo)
9410 8481 05C'1 vder's €199 a0 €L1'S 09 697 775701 uoeqy
1€9°0 0ce Lyl L6C°S ¢HIl'C €000 2000 €000 9000 Ge100'0 €200 queq
1€9°0 L6L°€8 ¥res CH¥CT 80871 890°G1 8871 91481 0T'1L 0T¥'1€ udpeung
Y50 L81°9L €vea GHICT ¥100 6100 100 200 69000 6900 Sonewaury
9100 (74N L¥0°0 €400C 6Ty 6667 0Iey yece 1691 ¥60°LC Uewpatig
dey SGumeysn) uoneprep AAS deny Sumeysn) uomeprep UoneIAd(AAS 10SS2139Yy saseqereq
SSOID SSOID plepueis putd NNID
(spuodas) awry, 10117 arenbg ueay
09¢'1T g9z ¥96'91 €H498'8 44 GE'8L 8L'¢ 8T'¢ 8LC £8'68 spsi reondo
8¢6'1 168°¢C 61C'qC YH96'1 €Ce 089 L9C 8¢'8 V6’1 29'68 s3I uad
wie 8TC'8Y €9091 FHC0'T 026 qrel g6 00°€T 07’8 S6'9Z AN(PIeS
Gqcro [ad x4 ql1o0'1 €4699 8€°GE 1cov Ly'ae or'se [4°5%% 8999 SUOoTeqy
LSO €0TTE 95T’ s 8L¥ L19€ 90F 6LS roe 6101 $polg a8eq
0 1€0°0 1€0°0 19997 1801 rToe gL 8EHL 6 1268 uonejuswSag
G100 €900 L¥0°0 1d¢SL €9°G srs 8¢€'G 619 09'g 18'6¥ SLI PalJIPOIN
L¥0°0 ¥60°0 8490 €avee 0901 867¢ 0991 £€9°8¢ €91l 0009 SI9I], pue ssern
deny Sumesny) uoneprep DAS den Sumesn) uopepreA UOnRIAd(] DAS I9LISSe]D) saseqereq
-SS01D) SS01D) pIepuelg purg NNd
(spuodas) awir], (%) 93ey UOTIRDYISSL[ISIA

Gap-Based Estimation

‘synsay reyuswnadxy g d[qer,

2858 M. Zhong et al.

25
+
g 7 + 1
c
3
Q
L 15+ .
€ *
'_
® 1t .
g
o +
05| + _
++
07‘ | | | |
0 50k 100k 150k 200k 250k

Size of Training Database (# instances x # attributes)

Figure 4: Elapsed time of gap-based estimation versus database size.

In the experiments with GRNN, we have exactly the same observa-
tions: using the standard deviation is fastest but has the worst accuracy;
cross-validation has reasonable accuracy while its time is nonscalable; the
tested clustering approach using cluster standard deviations as smoothing
parameters is unstable in accuracy and expensive in time; our approach is
the fastest one (excluding the unreliable STD approach) with good accu-
racy; SVM has the best accuracy, but it requires the longest time to optimize
its parameters.

6 Conclusion

In this letter, we presented the gap-based approach of estimating the
smoothing parameters for both PNN and GRNN. Our approach was first
analyzed for an ideal problem and then applied to more general problems.
We utilized sampling techniques to reduce the computational complexity
of finding the smoothing parameters to a linear function of the training data
size. Our experiments showed that our proposed approach, the gap-based
estimate of the smoothing parameter, is faster than other commonly used
approaches for finding the smoothing parameters, such as cross-validation.
It was also demonstrated, through experimentation, that the gap-based
estimate of the smoothing parameters produced a PNN/GRNN network
with good and stable accuracy, comparable (albeit inferior) to the accu-
racy achieved by a SVM approach, but achieving this accuracy in orders of
magnitude faster than the SVM approach. The computational complexity
required by the gap-based estimate approach to produce the smoothing

Gap-Based Estimation 2859

parameter estimates in PNN/GRNN was low and scalable to larger
problems.

Appendix A: Pseudo-Code of Gap-Based Estimation

The parameters are

Kmax: Maximum repeat times (natural number); typical Kmax = 4

Fum, Fn: Sampling factor (small positive number); typical Fy =8,
Fn=14

Main Procedure

Compute STD(X;) fori =1,2,...,D

M = min(PT, |Fuv/PT))

N = min(PT, | Fx+/PT))

K = min(Kmax, Uogz PTTJ)

If K <1 (which means PT is small) then
d = AverageGap(M, PT)

Else
8k = AverageGap(M,2*N) fork=0,1,2,..., K
Solve the equations % log(%) +logd =logéy fork=0,1,2,...,K,

treating 1 and log d as unknowns.
End If
o; = min(4d, 0.5)STD(X;) fori =1,2,..., D

Subroutine AverageGap (M, N)

Form=1,2,....M

Randomly choose a point X.
Forn=1,2,...,N

Randomly choose a point X, different from X.

D

Xin — Xi |2
2 in i
B = 2 <STD(X1‘))

i=1

End For
Find the smallest 2D elements from d2,,d>2,, ..., d%y
Find the largest one (denoted by d2) in the above elements

End For

Return /mean[d?]
m

2860 M. Zhong et al.

Note that the smallest 2D elements for each m can be cached, so that
when we double N next time, only N more patterns have to be chosen,
which halves the computational complexity.

The least-square-error solution to the linear equations can be explicitly
given as:

1/v | _
[logd] =(ATA)'ATB

log(PT/Ny) 1 log dy
A i | B= i

log(PT/Nk) 1 log dy

In practice, computing (AT A)~'ATB directly is not efficient in either time
or space. A recursive algorithm can be applied, which is shown below:

_ [log(PT/No) 1 T -l _ or|logdy
PO_[log(PT/Nl) 1]’ P=(PgPo) . Q=P [1oga‘il]

Fork=2,...,K
a=[log(PT/N) 1]
P="P— (Pa’)@Pa’ +1)"!(aP)
Q=0Q+a'logdy

End For

1/v |
[logd] =rQ

Note that the update of P is very simple because (Pa’) is only 2-by-1,
(aPa’ + 1) is a scalar, and (aP) is 1-by-2.

Appendix B: Relationship Between ¢ and STD
Consider the one-dimensional case. The PDF is estimated as

PT, 2
1 (x—x))
xlcj)) = —— -
p(xlc;) oo PT, ;:1 eXp[Y

]

Let fx(x) = p(x|c;) stand for the estimated PDF and fx(x) represent the
real unknown PDF of the attribute X/ of class j. When PT; is sufficiently

Gap-Based Estimation 2861

large,

o1 C(x— X/)?
p——e—

B 1 o0 _(x _]/)2
- | ooe"P[o }fx(y)dya

where E[X] denotes the expected value of the random variable X. It can be
easily proven that

E[X]=E[X'], VAR[X]=VAR[X']+o07.

Therefore, the estimated PDF is not the real PDF since the variance is
different, unless o; is zero, which always overfits the network to the
training set. In fact, if we seek another kernel function F (x, X) such that
fx(x) = E[F (x, X)] for any x, the only solution is

_ 1 (x — X)?
F(xaX)—(S(X—X)—(lrlg})moexp[—T].

This observation leads to constraint 2.3. It also suggests that a]-z < VAR[X'],
or 0 < STD[X/]. The above result is also applicable to the multidimen-

sional case.

Appendix C: Relationship Between ¢ and 4

Now we assume that the attributes have been standardized within each
class, that is, STD[X'] is always one. An important requirement for the o
value of a single class can be derived from a simple model. Assume that
the patterns in this class are uniformly distributed within a D-dimensional
hypercube whose range in every dimensionis (—L, L), and the training data
set contains PT = (2m + 1)P (the subscript j is omitted since only this class
is discussed) exemplar points regularly located as an array in the hyperbox,
as shown in Figure 5.

The figure reflects the case where m = 4, D = 2 for simplicity. Actually
m and n can be much larger. One of the points is (0,0, 0, ...,0) and one
of its neighbors is (d, 0,0, ..., 0), where d = 2L /2m + 1). This model may
seem too ideal, but it will be shown that the results can be applied to more
general cases.

Consider the center P in a “cell” box that has the following 2P corners
0,0,0,...,0),(,0,0,...,0),(0,4,0,...,0),...(d,d,...,d).ObviouslyP =
(d/2,d/2,...,d/2).Since the points are uniformly distributed, it is expected

2862 M. Zhong et al.

-L -d 0 d L

Figure 5: A simple model.

that the estimated PDF at P is the same as that at the origin:

1 m m m 1 D ‘ d 2
EDVD IR I _20_2;(”01_2)

l’1:—?11 iz:—m iy,:—

m m m D
:JliD Z Z Z exp |:—2(1’22(i1d)2:|.
=1

h=—miy=—m iy=—m

After some calculations, the above equality leads to the following equa-
tion:

: ; d?
E k=057 — E ki where k = — .
where exp 257

i=—o00 i=—00

Numerical solution of this equation yields o > 0.476d>.

Now consider a similar model in which the training patterns are dis-
tributed in a hypercube with half volume as the previous one, but with the
same density. That is, all the patterns with positive x; (coordinate in the first
dimension) are removed. Then consider the point Q = (g xd,0,0,...,0)
where g is positive. The estimated PDF at Q should be small enough be-
cause Q is outside the region where the training patterns are distributed.
With similar derivations, the following condition should be met:

0.476d% < o2 < 4.584°.

Gap-Based Estimation 2863

62=d%/8 (k=0.0183)
62=d%/4 (k=0.1353)
02=d%/2 (k=0.3679)
6%=d? (k=0.6065)
02=2d? (k=0.7788)
62=4d? (k=0.8825)
62=8d? (k=0.9394)

> g & O 0O X +

-10 -8 -6 -4 -2 0 2 4 6 8 10

Figure 6: Estimated PDF with various o2

Thus, the smoothing parameter is allowed to vary in a certain way. To show
this more clearly, we plot the PDF with various o?in Figure 6, assuming
the training instances are {—50, —49, ..., 0} (d*> = 1).

Acknowledgments

This work was supported in part by the NSF grants: CRCD: 0203446, CCLI:
0341601, DUE: 05254209, IIS-REU: 0647120, and IIS-REU: 0647018.

References

Berthold, M. R. (1998). Constructive training of probabilistic neural networks. Neu-
rocomputing, 19, 167-183.

Burrascano P. (1991). Learning vector quantization for the probabilistic neural net-
work. IEEE Transactions on Neural Networks, 2, 458-461.

Cacoullos, T. (1966). Estimation of a multi-variate density. Annals of the Institute of
Mathematical Statistics, 18(2), 179-189.

Chang, T., & Lin, T. (2001). LIBSVM: A library for support vector machines. Available
online at http:/ /www.csie.ntu.edu.tw/~cjlin/libsvm.

Friedman, J. (1991). Multivariate adaptive regression splines (with discussion).
Annals of Statistics, 19, 1-141.

Galleske I., & Castellanos, J. (2002). Optimization of the kernel functions in a proba-
bilistic neural network analyzing the local pattern distribution. Neural Computa-
tion, 14, 1183-1194.

2864 M. Zhong et al.

KEEL (Knowledge Extraction Based on Evolutionary Learning) data sets. (2002).
Available online at http://www.keel.es/.

Newman, D. J., Hettich, S., Blake, C. L., & Merz, C. J. (1998). UCI Repository of
machine learning databases. Irvine: Department of Information and Computer
Science, University of California, Irvine. Available online at http://www.ics.
uci.edu/~mlearn/MLRepository.html.

Parzen, E. (1962). On estimation of probability density function and mode. Annals of
Mathematical Statistics, 33, 1065-1073.

Rasmussen, C. E., Neal, R. M., Hinton, G. E., Camp, D. van, Revow, M., Ghahramani,
Z., Kustra, R., & Tibshirani, R. (1996). The DELVE manual. Available online at
http:/ /www.cs.toronto.edu/~delve/.

Specht, D. F. (1990). Probabilistic neural networks and the polynomial Adaline as
complementary techniques for classification. IEEE Transactions on Neural Net-
works, 1(1), 111-121.

Specht, D. F. (1991). A general regression neural network. IEEE Transactions on Neural
Networks, 2, 568-576.

Specht, D. F. (1992). Enhancements to probabilistic neural networks. In Proceedings
of the IEEE International Joint Conference on Neural Networks (Vol. 1, pp. 761-768).
Piscataway, NJ: IEEE.

Specht, D. F. (1994). Experience with adaptive probabilistic neural networks and
adaptive general regression neural networks. In Proceedings of the IEEE World
Congress on Computational Intelligence (Vol. 2, pp. 1203-1208). Piscataway, NJ:
IEEE.

Traven, H. G. C. (1991). A neural network approach to statistical pattern classifi-
cation by “semi-parametric” estimation of probability density functions. IEEE
Transactions on Neural Networks, 2, 366-377.

Tseng, M.-L. (1991). Integrating neural networks with influence diagrams for multiple sen-
sor diagnostic systems. Unpublished doctoral dissertation, University of California
at Berkley.

Williamson, J. R. (1996). Gaussian ARTMAP: A neural network for fast incremental
learning of noisy multi-dimensional maps. Neural Networks, 9(5), 881-897.

Williamson, J. R. (1997). A constructive, incremental-learning network for mixture
modeling and classification. Neural Computation, 9, 1517-1543.

Received May 29, 2006; accepted December 6, 2006.

