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ABSTRACT 
The gap statistic is a statistical method for determining 
the number of optimal clusters for an unsupervised 
clustering algorithm and has been shown to outperform 
other cluster validity indices for the K-means clustering 
algorithm. In this paper, we assess the performance of the 
gap statistic when applied to the Fuzzy C-Means (FCM) 
algorithm and introduce a fuzzy gap statistic. We compare 
the gap statistic performance versus the partition 
coefficient and entropy indices introduced by Bezdek, the 
Xie-Beni and extended Xie-Beni indices, and the 
Fukuyama-Sugeno index. We show that the fuzzy gap 
statistic is more robust than the ordinary gap statistic for 
the IRIS data set, and we show promising results when 
comparing the gap statistic to the traditional fuzzy 
clustering indices. 
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1.  Introduction 
 
The Fuzzy C-Means (FCM) algorithm [1] is an 
unsupervised clustering algorithm, which assigns a fuzzy 
membership to each data point based upon its proportion 
of membership to each of the identified cluster means. 
The problem, as with many unsupervised clustering 
algorithms, is in determining the optimal number of 
clusters, which is usually a user-specified parameter. Sub-
optimal clustering performance results from specifying 
too many or too few clusters. Many cluster validity 
indices have been devised to address this issue such as 
Bezdek’s partition coefficient and entropy indices [2], the 
Xie-Beni and extended Xie-Beni indices [3], and the 
Fukuyama-Sugeno index [4]. Each of these cluster 
validity indices provides a unique measure of the 
clustering quality for a specified number of clusters. The 
optimal number of clusters is assessed by comparing the 

clustering quality measured by these indices as the 
number of user-specified clusters is altered.   

The gap statistic, introduced by Tibshirani [5], 
was shown to outperform other cluster validity indices for 
the K-means algorithm, based upon identifying the a 
priori, known number of clusters within the dataset. The 
gap statistic works by computing an error measure, based 
upon the pooled within-cluster sum of square distances 
around the cluster means, for the dataset and comparing 
this to the expected value of the measure for a null-model 
(contains only a single cluster) generated from a reference 
distribution. Tibshirani further shows that a uniform 
distribution is the ideal reference distribution in terms of 
maximizing the gap statistic sensitivity. Like the cluster 
validity indices, the gap statistic is measured for several 
different, user-specified number of clusters. A heuristic is 
employed to find the optimal number of clusters as the 
minimum number of clusters which provides a decrease in 
the gap statistic. The gap statistic is applicable to any 
clustering algorithm for which the within-cluster sum of 
square distances is optimized. 

The fuzzy partition matrix generated by the 
Fuzzy C-Means algorithm (FCM) must be made crisp 
prior to application of the existing gap statistic algorithm. 
In this paper, a fuzzy gap statistic is introduced, which 
does not discard the information contained within the 
fuzzy partition matrix while estimating the optimal 
number of clusters.  Our experiments demonstrate some 
improved robustness, when comparing the fuzzy gap 
statistic with the ordinary gap statistic. Furthermore, our 
results indicate that there is merit in examining the fuzzy 
gap statistic more carefully, since it has produced some 
very promising results for the benchmark IRIS dataset, 
compared to the other fuzzy cluster validity indices.  

In Section 2 we provide a brief review of the 
Fuzzy C-Means algorithm and the gap statistic along with 
an introduction to the fuzzy gap statistic for FCM. In 
Section 3 we provide a discussion of the experiments and 
results. The summary of our work and conclusions are 
included in Section 4. 
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2.  Applying the Gap Statistic to FCM 
 
2.1 Fuzzy C-Means 
 
The Fuzzy C-Means (FCM) algorithm is an unsupervised 
clustering algorithm, which partitions data into clusters 
using fuzzy membership. Each data point, ,jx  is assigned 
a fuzzy membership, based upon its membership to each 
cluster, { }1| 0 1, 1.0c

jk jk jk jkku u u u== ∈ ≤ ≤ =∑  where, 

,c  is the number of clusters, ,j  is the data point index, 
,k  is the cluster index, and jku ∈U  is the membership 

value of data-point j to cluster k where U is the fuzzy 
partition matrix. Each cluster, ,k  is also assigned a 
representative center, .n

k ∈v  By employing fuzzy 
membership, the FCM algorithm allows partial 
membership of each data point to each cluster. The goal 
of FCM is to create a partitioning of the data, for a 
specified number of clusters, that minimizes the following 
objective function 

                        ( ) 2
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= −∑∑ x v  (1)  

where, ,A  refers to a generalized norm (e.g., 2,A =  
refers to the Euclidean norm), and, ,m is the fuzzy factor 
index and controls the shape of the membership functions. 
As 1,m →  the partitions become crisp and FCM 
approaches the behaviour of the K-means algorithm.  

Several indices exist to determine the overall 
“goodness of fit” for a specified number of clusters. These 
indices include Bezdek’s partition coefficient, ,PCv and 
partition entropy, ,PEv indices; the Xie-Beni index, ,XBv  

and extended Xie-Beni index ,
FCM
XB mv ; and the Fukuyama-

Sugeno index, .FSv  Note that the listed indices all utilize 
the information contained in the fuzzy partition matrix, 
highlighting the possible importance of including this 
information in a gap statistic implementation. 
 
2.2 Gap Statistic 
 
The gap statistic is a cluster validity measure based upon 
a statistical hypothesis test.  The null hypothesis states 
there is a single cluster within the data. The gap statistic 
works by comparing the within-cluster similarity for the 
data set under consideration versus the expected within-
cluster similarity of data points generated from a null- 
model reference distribution at each value of .k   

An error measure, or within-cluster similarity, 
,kW  is defined as 

                                '
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where kW  is the pooled with-in cluster sum of squares 
around the cluster means, ,k  is the number of clusters, 

,rC  is the set of points in cluster ,r iid ′  is the Euclidean 
distance between points i and ,i′  and rn  is the number of 
points within cluster .r  The gap statistic is, then, defined 
as 

                   ( ) ( ){ } ( )*log logk kGap k E W W= −  (3)  

where ( ){ }*log kE W  is the expected value of the error 

measure, ,kW  for a null-model reference distribution.  
Equation (3) is then used to generate the gap curve.  The 
error measure, ,kW  will decrease monotonically as the 
number of clusters, ,k is increased; however, it will 
decrease more rapidly when the optimal number of 
clusters is reached and, then, continue to decrease at its 
previous rate. The gap curve, representing the difference 
between the expected error measured and error measure, 
will increase sharply just prior to reaching the optimal 
number of clusters and, then, level out. The goal of the 
gap statistic heuristic is to discover this point, which is 
often referred to as the “elbow” in the gap curve. Figure 
8, referred to later in the experimental results, depicts a 
typical example of the gap curve. 

Samples originating from the null-model 
reference distribution are generated by randomly 
sampling a uniform distribution either covering the extent 
of each dimension of the dataset under test or the 
principal components of the dataset to create a more 
compact distribution. 

To obtain ( ){ }*log kE W , a Monte Carlo 

simulation is performed B  times where *
kW  is measured 

from a new sample of the reference distribution. The 
expected value is, then,  

                       ( ){ } ( )*

1

1log log .
B

k kb
b

E W W
B =

= ∑  (4) 

The simulation error associated with the Monte Carlo 
simulation can be computed as  

                             ( ) 1 1/ks sd k B= +  (5) 

where the standard deviation is 

              ( ) ( ) ( )( )
1
221 log log .kb kb

b

sd k W W
B

⎡ ⎤
= −⎢ ⎥
⎢ ⎥⎣ ⎦
∑  (6) 
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Once the gap statistic is computed for each number of 
clusters, ,k  the optimal number of clusters, ,k  is the 
smallest, ,k  such that  

                       ( ) ( ) 11 .kGap k Gap k s +≥ + −  (7)  

2.3 Fuzzy Gap Statistic 
 
An obvious solution for applying the gap statistic to FCM 
is to form a crisp partition by “hardening” the fuzzy 
partition matrix prior to computing the gap statistic. 
However, this methodology discards potential information 
contained in the fuzzy memberships. As stated in [6], 
fuzzy sets “provide information about overlap and 
substructure within the data.” Detection of this 
substructure may be important when determining the 
optimal number of clusters.  

The goal, here, is to create an error measure for 
use with the gap statistic that incorporates the fuzzy 
membership data. Equation (2) can be modified to an 
equivalent form where the summation of distances from 
each point to its corresponding cluster center is computed  
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where ,  denote the usual vector inner product. Through 
some additional manipulation, we obtain 
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On the other hand, the sum of all pair-wise distances can 
be written as 
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As a result, we obtain 
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which indicates that the sum of square of pair-wise 
distances within a particular cluster is equal to the sum of 
square of distances to the cluster mean times the number 
of data points within the cluster, .kn  

As a result, we can create a new formulation for 
the error measure, ,kW  as  

                              2
2

1 r

k

k i r
r i C

W x v
= ∈

= −∑∑  (12) 

where rC  is the set of data points belonging to cluster 
,r and rv  is the cluster center.  Comparing (12) with (1), 

we observe that mJ  is similar to ,kW  and, in fact, is 
referred to as the pooled within cluster sum of square 
distances within the FCM literature.  This suggests mJ  
can be used as an error measure to create a fuzzy gap 
statistic.   

                     ( ) 2
,

1 1

k n
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m k ri i r A
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where, ,m  is the fuzzy factor index, ,k  is the number of 
clusters, ,n  is the number of data points, ,ix  is the ith data 
point, and rv is the cluster center for cluster .r  As an 
additional motivation, note that as 1m → , ,m kJ  
approaches the behavior of .kW   The gap statistic is now 
defined as 

                ( ){ } ( )*
, ,( ) log logm k m kGap k E J J= −  (14) 

where ( ){ }*
,log m kE J  is the expected value of the error 

measure, ,m kJ , for a null-model reference distribution  
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The standard deviation now becomes 

        ( ) ( ) ( )( )
1
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The heuristic for selecting the optimal number of clusters 
based upon the gap statistic remains the same as before.   
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3.  Experiments and Results 
 
The IRIS data set from the UCI repository [7] and the 4-
NORM data set from Bezdek [2] are used for comparison 
of the performance of the cluster validity indices versus 
the gap statistic and are commonly seen in the literature 
for this type of comparison.  The 4-NORM data set 
consists of 4 clusters of 4-variate data ( 4x∈ ) with the 
center of each cluster projected 3 units along one of each 
of 4 axes. The covariance of each cluster is 1 ,−Σ = Ι  and 
there are 200 data points in each cluster for a total of 800 
data points.  

With these experiments, and for the same 
dataset, it is recognized that FCM will produce different 
results based upon its random initialization. Furthermore, 
the Monte Carlo simulations performed as part of the gap 
statistic measure will also yield different results. 
Therefore, we performed 50 trials on each data set for 
each of the cluster validity mechanisms considered.  

For each case, we vary the fuzzy factor index, 
,m  over the values of 1.2, 2.0 and 7.0. While the ideal 

range suggested by Pal [2] is [1.5, 2.5], we are interested 
in examining the robustness of fuzzy gap statistic versus 
the gap statistic over a wider range of values.  

For the IRIS data set and 2.0,m =  and 1.2,m =  
both the gap statistic and fuzzy gap statistic perform well, 
and, in fact, both methods consistently predict 3 clusters. 
Note that, with the exception of the Fukuyama-Sugeno 
index, FSv , the remaining cluster validity indices 
consistently identify 2 clusters.    

For the case 7.0,m =  for the IRIS dataset, the 
fuzzy gap statistic consistently identifies 3 clusters; 
however, the ordinary gap statistic identifies both 3 and 4 
clusters with more samples at 4 clusters, suggesting that 
the fuzzy gap statistic is more robust as the fuzzy factor, 

,m  is varied. The remaining cluster validity indices, with 
the exception of the extended Xie-Beni index, , ,FCM

XB mv  
tend to consistently identify 2 clusters.   
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Figure 1  Histogram of the number of clusters identified by each index 
out of 50 trials for the IRIS data set and m = 1.2. Note that a value of 6 
implies cluster sizes >= 6 and the order (top to bottom) in the legend 
represents the order (left to right) within in each group of the bar plot. 
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Figure 2  Histogram of the number of clusters identified by each index 
out of 50 trials for the IRIS data set and m = 2.0. Note that a value of 6 
implies cluster sizes >= 6 and the order (top to bottom) in the legend 
represents the order (left to right) within in each group of the bar plot. 
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Figure 3  Histogram of the number of clusters identified by each index 
out of 50 trials for the IRIS data set and m = 7.0. Note that a value of 6 
implies cluster sizes >= 6 and the order (top to bottom) in the legend 
represents the order (left to right) within in each group of the bar plot. 
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Figure 4  Histogram of the number of clusters identified by each index 
out of 50 trials for the 4-NORM data set and m = 1.2. Note that a value 
of 6 implies cluster sizes >= 6 and the order (top to bottom) in the 
legend represents the order (left to right) within in each group of the bar 
plot. 
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Figure 5  Histogram of the number of clusters identified by each index 
out of 50 trials for the 4-NORM data set and m = 2.0. Note that a value 
of 6 implies cluster sizes >= 6 and the order (top to bottom) in the 
legend represents the order (left to right) within in each group of the bar 
plot. 
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Figure 6  Histogram of the number of clusters identified by each index 
out of 50 trials for the 4-NORM data set and m = 7.0. Note that a value 
of 6 implies cluster sizes >= 6 and the order (top to bottom) in the 
legend represents the order (left to right) within in each group of the bar 
plot. 

In summary, for the IRIS data set, both the gap 
statistic and fuzzy gap statistic are able to identify 3 
clusters within the IRIS data set while the remaining 
indices appear to report 2 clusters or are inconsistent. As 
m  is increased, the fuzzy gap statistic appears to be the 
most robust since the ordinary gap statistic performance 
begins to break down at 7.0m = in terms of consistency. 

The results appear quite different for the 4-
NORM data set (Figures 4 through 6). First, we note that 
all of the FCM cluster validity indices, with the exception 
of ,FSv  identify 4 clusters at 1.2,m =  are split between 
identifying 2 and 4 clusters at 2.0,m =  and are split 
between identifying 2 and 6 clusters at 7.0.m =  Note that 
the FCM cluster validity indices are incapable of 
identifying a single cluster and this is an advantage of the 
gap statistic. 

The gap statistic, on the other hand, performs 
quite differently. Overall, we note that both the gap 

statistic and fuzzy gap statistic choose between either 1 or 
4 clusters at 1.2m =  and 2.0.m =  The fuzzy gap statistic 
also appears to choose 1 cluster more often than the gap 
statistic for the case 2.0.m =  For the case, 7.0,m =  both 
forms of the gap statistic choose 1 cluster.  It would also 
appear that the fuzzy gap statistic tends towards the 
decision to report 1 cluster quicker than the ordinary gap 
statistic as m is increased. 

It is interesting, however, to observe the gap 
curve for the 4-NORM dataset, as depicted in Figures 7 
through 8, for the fuzzy gap statistic. Tibshirani reports 
that the heuristic (7) used by the gap statistic is not 
designed to handle the case where smaller sub-clusters are 
contained within a larger cluster, and, in these cases, the 
gap curve, generated by (3), should be manually 
reviewed. Note that there is a distinct “elbow” at 4.k =  
We also see that there is a “flat” region, within the 
simulation error, when progressing from 1k = to 2.k =  
This gap curve can be interpreted to indicate there are 4 
sub-clusters within one larger cluster, which is arguably 
correct for the 4-NORM dataset.  Furthermore, the gap 
curve provides a stronger indication for 4 clusters than a 
single cluster, which the heuristic (7) fails to recognize 
since it stops as soon as the single cluster is recognized. 
This suggests additional research is needed to investigate 
possible modifications to (7) in these cases.  In summary, 
the gap curve indicates the gap statistic is correctly 
identifying the number of clusters for the 4-Norm dataset 
despite the failure of the heuristic (7). 

At 7.0,m =  it appears that all FCM cluster 
validity indices are no longer able to distinguish the 4 
clusters within the data and become inconsistent as they 
are unable to report a single cluster, while both forms of 
the gap statistic identify a single cluster. Observing the 
gap curve in Figure 9, we see that there is no longer any 
evidence for clusters within the data, supporting the claim 
of a single cluster, in this case.  

 

 
Figure 7  The fuzzy gap curve when applied to the 4-NORM data set 
when m = 1.2.  The “elbow” in the curve at k = 4 is readily evident as 
well as a flat response at k = 1 indicating 4 sub-clusters within one larger 
cluster. 
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Figure 8  The fuzzy gap curve when applied to the 4-NORM data set 
when m = 2.0.  The “elbow” in the curve at k = 4 is readily evident as 
well as a flat response at k = 1 indicating 4 sub-clusters within one larger 
cluster. 

 
Figure 9  The fuzzy gap curve when applied to the 4-NORM data set 
when m = 7.0.  The flat response, here, indicates a null-model or single 
cluster. 

4.  Conclusion 
 

Overall, we observe promising results for the fuzzy gap 
statistic that are worth investigating further.  
Predominantly, we note improved robustness as the fuzzy 
factor, ,m  is changed between 1.2 and 7.0 for the IRIS 
data set.  Although the appropriate number of clusters is 
still a rather subjective issue, it is interesting to note that 
only the gap statistic identifies 3 clusters for the IRIS data 
set.  It seems, then, that future research of this concept 
may be merited with more focused investigation on the 
specific impacts of including a fuzzy factor in the gap 
statistic in terms of sensitivity as well as into alternative 
heuristics for selecting the optimal number of clusters 
using the gap statistic. 
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