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Abstract— Genetic algorithms have been used to evolve sev-
eral neural network architectures. In a previous effort, we
introduced the evolution of three well known ART architects;
Fuzzy ARTMAP (FAM), Ellipsoidal ARTMAP (EAM) and
Gaussian ARTMAP (GAM). The resulting architectures were
shown to achieve competitive generalization and exceptionally
small size. A major concern regarding these architectures, and
any evolved neural network architecture in general, is the
added overhead in terms of computational time needed to
produce the finally evolved network. In this paper we investigate
ways of reducing this computational overhead by reducing the
computations needed for the calculation of the fitness value
of the evolved ART architectures. The results obtained in this
paper can be directly extended to many other evolutionary
neural network architectures, beyond the studied evolution of
ART neural network architectures.

I. INTRODUCTION AND MOTIVATION

GENETIC ARTMAP (GART) architectures were intro-
duced in [1] and [2]. It was shown that the these

architectures were able to achieve very competitive classifi-
cation accuracy and exceptionally small-size classifiers when
compared to other classifiers in the literature (see [3], [4]).
When compared to other ART architectures such as ssFAM,
ssEAM, ssGAM [5] and safe-microARTMAP (see [6]), it
was shown that these architectures were able to achieve a
better generalization and smaller than or equal size network
(in almost all problems tested), requiring reduced compu-
tational effort to achieve these advantages. In addition, the
genetic ART architectures have the advantage of alleviating
the need for tweaking algorithm parameters; a well known
issue with many other ART and non-ART classifiers.

GART [4] uses a genetic algorithm (GA) [7] to evolve
simultaneously the weights, as well a the topology of FAM,
EAM or GAM neural networks. Genetic algorithms (GAs)
are a class of population-based stochastic search algorithms
that are developed from ideas and principles of natural
evolution. An important feature of these algorithms is their
population based search strategy. Individuals in a population
compete and exchange information with each other in order
to perform certain tasks. GA’s are capable of finding the
global optima rather than the local optima as is the case
with gradient descent procedures. Genetic algorithms have
been extensively used to evolve (optimize) artificial neural
networks [8], [9], [10]. The majority of this work, though,
has been focused on MLP neural networks [11]. However, a
number of authors proposed using evolutionary optimization
algorithms with other neural network models such as RBF
neural networks [12], [10]. In [11] a comprehensive literature
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TABLE I

ALLOCATION OF CPU TIME.

Total Training Time Validation Time Algorithm Time
Time Seconds % Seconds % Seconds %
19.22 2.63 13.66 16.53 86.02 0.06 0.32
25.61 2.55 9.95 23.05 89.99 0.02 0.06

119.36 2.55 2.13 116.52 97.62 0.30 0.25
30.08 2.59 8.62 27.34 90.91 0.14 0.47
27.88 2.64 9.47 25.08 89.97 0.16 0.56
21.44 2.50 11.66 18.78 87.62 0.16 0.72
20.50 2.56 12.50 17.86 87.12 0.08 0.38
58.69 2.56 4.37 55.90 95.25 0.22 0.38

111.08 2.52 2.27 108.26 97.47 0.30 0.27
22.88 2.55 11.13 20.28 88.67 0.05 0.20
26.14 2.42 9.27 23.67 90.56 0.05 0.18

review was conducted to summarize the prior efforts that
aimed at combining evolutionary optimization algorithms
with neural networks.

The evolution of ART architectures with genetic algo-
rithms was introduced for the first time in [1] and extended
in [2]. Genetic ART starts with a population of trained
ART networks, whose number of nodes in the hidden layer
and the values of the interconnection weights converging to
these nodes are fully determined (at the beginning of the
evolution) by ART’s training rules. To this initial population
of networks, GA operators are applied to modify these
trained networks (i.e., number of nodes in the hidden layer,
and values of the interconnection weights) in a way that en-
courages better generalization and smaller size architectures.

During the Evaluation step, the genetic algorithm esti-
mates the performance (prediction error) of a solution (ART
network) by measuring the classification error rate on a
validation set. It was found that the majority of the CPU
time spent by the genetic algorithm, is used for measuring
the classification error (more than 80%) as shown in Table
I. Therefore, techniques that can reduce this time component
have the potential of reducing the overall convergence time
of the GA, when used to evolve ARTMAP NNs. Such im-
provement can be effective to the viability of many evolved
NN architectures.

Table I shows the allocation of CPU time for 10 replica-
tions (each row is an identical replication using a different
random number seed of the evolutionary process) for running
the Genetic ARTMAP algorithm using a sample database. It
can be observed that the majority of time is spent during the
validation of the solutions (members of the GA population).

The overall run time of the evolved ART architectures can
be expressed as follows,

Ttotal = Ttraining + Tvalidation + Talg (1)
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The training time, Ttraining , is time required to train the
initial population (using ART training rules). The component
designated as Talg refers to the overall housekeeping time
for the algorithm. The validation time, Tvalidation, is the
total time required to estimate the classification error (on
a validation set) of ART networks in the population, in
successive generations, until convergence. The validation
time, Tvalidation is dependent on the number of generations
until convergence, Gconv, population size, λ, number of
validation examples, nv , average number of categories in
each ART network, size(x) (taken over all generations and
all networks in the population), and the time it takes to
calculate the output signal (category match function and
category choice function) for a given category and a given
validation pattern , tCMF ;

Tvalidation = Gconv ∗ λ ∗ nv ∗ size(x) ∗ tCMF (2)

In this paper we try to reduce the validation time by reduc-
ing the number of validation points, nv. Genetic algorithms
are known for their suitability in problems where the fitness
evaluation is not reliable or noisy. The noise in estimating
objectives (such as classification error) has the effect of
causing noisy selection. This in turn might slow down the
convergence or convergence to a sub-optimal solution. The
noise in the estimation of classification error might be hard
to reduce, since we are limited by the data availability.
However, when a large amount of data is available for cross-
validation (our case of interest in this paper), it becomes time
consuming to obtain an estimate for classification error using
all the data. Therefore, evaluating the classification error for
a given network in a given generation using a randomly
sampled subset of the validation data might be beneficial
in reducing the convergence time.

Reducing the number of validation points used in esti-
mating the classification error of the produced ARTMAP
solutions leads to more noisy evaluations of the GA fitness
function. However, as suggested by [13], in some cases, the
use of fitness estimates with higher variance could actually
increase the quality of solutions obtained from the GA for
a fixed computational budget. If time is saved by making
faster, but noisier, estimates of the fitness function, then this
time can be effectively used to converge to a better solution.
To make a good judgement about this approach, one must
understand the operation of GA, and how the variance of
the estimate of the fitness function affects the progress rate
of finding optimal solutions. The effect of noise in GAs has
been studied by a number of researchers ([14], [15], [13],
etc). Their results provide insight to convergence properties
under noisy estimation of the fitness function.

In [16] the author presents a comprehensive survey of
fitness function approximation in evolutionary algorithms.
Fitness approximation, also referred to as evaluation relax-
ation, is applied when the fitness function is computationally
expensive, noisy, or difficult to define and evaluate. The
author identifies three levels of approximation and refer to

them as problem approximation, functional approximation
and evolutionary approximation. In problem approximation,
which is the approach adopted in this paper, the original
fitness function is replaced by a less expensive but less
accurate one such as in [13]. In function approximation,
an expression is constructed to approximate the evaluation
of the original fitness function. Evolutionary approximation
are methods that are specific to evolutionary algorithms
such as fitness inheritance [17], where the fitness value of
the offspring is estimated from that of their parents. This
approach relies on surrogate functions, which are used to
construct a relationship between offspring and parent fitness
values. In [18] the authors propose surrogate functions that
automatically adapts to the problem structure where the
structural form of the surrogate is inferred using a probabilis-
tic model and the coefficients of the surrogate are estimated
using a least squares method.

In this paper, we use a less expensive fitness function by
means of sampling. The sample size is controlled throughout
the evolution in such a way to keep a certain level of confi-
dence in the fitness value. The organization of the paper is as
follows: In section II we present some of the preliminaries
of the ART architectures (FAM, EAM, and GAM) that we
genetically evolve; however we assume that the reader is
somewhat familiar with the ART neural networks. In section
III we explain how the FAM, EAM and GAM architectures
are evolved to produce GFAM (genetic FAM), GEAM (ge-
netic EAM) and GGAM (genetic GAM). In section IV, we
provide an estimate for the number of validation points that
could be used in the evolution of ART neural networks,
and we justify, experimentally, that this estimate leads us to
computational savings for the evolutionary process needed
to produce GFAM, GEAM and GGAM. In section V, we
provide some arguments that verify that the experimental
results produced in section IV are justified on the premise
of the legitimacy of noisy evaluations of fitness functions in
the evolutionary process. In this section we find two sources
of variance of the evaluated fitness function and show that
time can be saved by properly sampling the validation set
to estimate the fitness function. Finally, in Section VI we
summarize our findings.

II. THE ARTMAP ARCHITECTURES

The Fuzzy ARTMAP (FAM) neural network architecture
was introduced by Carpenter and Grossberg in their seminal
paper [19]. Since its introduction, other ART architectures
have been introduced into the literature. The focus in this
paper is on Fuzzy ARTMAP and two other ART architec-
tures: Ellipsoidal ARTMAP [20] and Gaussian ARTMAP
[21]. We assume that the reader is familiar with the FAM,
EAM and GAM architectures. In this section we only provide
the necessary information that is needed to understand the
evolution of these ART structures, explained in detail in
Section III.

An ART architecture consists of an input layer, where the
inputs are applied, a category representation layer, where
categories (compressed representations of the input patterns
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Fig. 1. FAM Learning (2-D Example). (a) A category with 0 size; (b)
Introducing a new pattern I2, represented by a2; (c) The category expands
to include a2; (d) Since new pattern I3, represented by a3 is inside the
category, it doesn’t change its size; (e) New Pattern I4, represented by a4

is presented; (f) Since a4 is outside the category, the category is expanded
to include a4, within its boundaries

are formed), and an output layer where the correct mapping
between the input patterns and their associated labels are
established. Training in ART is achieved by presenting a
training set to the ART network. Given a set of inputs
and associated label pairs, I1, label(I1), I2, label(I2), ...,
IPT , label(IPT ) (called the training set), we want to train
ART to map every input pattern of the training set to its
corresponding label. To achieve the aforementioned goal we
present the training set to the ART architecture repeatedly, as
many times as it is necessary for ART to correctly classify
these input patterns. The task is considered accomplished
(i.e., learning is complete) when the weights in ART do not
change during a training set presentation, or after a specific
number of list presentations is reached.

The weights in ART correspond to compressed represen-
tations of the input patterns presented to the ART network
during its training phase. These compressed representations
have a geometrical interpretation. In particular, every node
(category) in the category representation layer of FAM has
weights that completely define the lower and upper endpoints
of a hyperbox. At the beginning of training, every category
of FAM starts as a trivial hyperbox (equal to a point) and
subsequently it expands to incorporate within its boundaries
all the input patterns that in the training phase choose this
hyperbox as their representative hyperbox, and are encoded
by it (see Figure 1, where the category expansion of FAM
is shown for an example dataset). The size of hyperbox is
measured as the sum of the lengths of its sides.

Also, every node (category) in the category representation
layer of EAM has template weights that completely define an
ellipsoid, through its center, direction of major axis, length
of the major axis, and ratio of lengths of minor axes to major
axis in the ellipsoid. At the beginning of training, every EAM
category starts as a trivial ellipsoid (equal to a point) and
subsequently it expands to incorporate within its boundaries
all the input patterns that in the training phase chose this
ellipsoid as their representative ellipsoid, and are encoded
by it (see Figure 2, where the category expansion of EAM
is shown for an example dataset). The size of the ellipsoid
is measured as the length of the major axis.

Finally, every node (category) in the category representa-
tion layer of GAM has template weights that define the mean
vector, the standard deviation vector of a multi-dimensional
Gaussian distribution, and the number of points that are

jm jd

1Im �j

4I

3I

1I

2I

1I jm jd

2I

1I

3I

jm jd

2I

1I

4I

3I
jm

jd
2I

1I

a b c d

Fig. 2. EAM Learning (2-D Example). (a) A category with 0 size; (b)
Introducing a new pattern I2; the category expands to include I2; (c)
Introducing a new pattern I3; since the category includes I3, it does not
change its size; (d) Pattern I4 is presented; since this pattern is outside the
category, the category is expanded to include I4 within its boundaries.
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Fig. 3. GAM Learning (1-D example). (a). A category with 0 size ; (b)
Introducing a new pattern I2 ; the category characteristics (mean, standard
deviation, of the Gaussian curve, as well as number of points encoded by
the Gaussian curve) change to include the new knowledge that the new input
pattern brings.

associated with this Gaussian distribution. At the beginning
of training, every category of GAM starts as a collection
of Gaussian distributions in every dimension, with mean
equal to the input pattern that was first encoded by this
category, and a small standard deviation vector (part a of
Figure 3); as training progresses in GAM this GAM category
is modified to incorporate the information of the additional
input patterns that are encoded by it (see part b of Figure 3
for an illustration of how the GAM category is modified for
an example dataset). At any point in time the mean vector
of this Gaussian distribution, corresponding to a category, is
equal to the mean vector of all the input patterns encoded
by the category, and the variance vector of the Gaussian
distribution is equal to the variance vector corresponding
to the input patterns that were encoded by the category,
while the number of the points associated with this Gaussian
distribution are the number of points that chose this category
as their representative category.

It is also worth mentioning that the categories in FAM,
EAM and GAM are allowed to expand up to a point allowed
by a threshold, controlled by a network parameter denoted
as the baseline vigilance parameter (ρ̄a). This parameter
assumes values in the interval [0, 1]. Small values of this
parameter allow the creation of large categories, while large
values of this parameter allow the creation of small cate-
gories. In the one extreme when ρ̄a is equal to 0, a FAM
or EAM category, equal to the whole input space, could be
created, while at the other extreme when ρ̄a is equal to 1 only
point categories are formed. In GAM, small values of this
parameter allow more and more patterns to be encoded by
a GAM category, while large values of this parameter allow
only a few patterns to be encoded by a GAM category. It
turns out that this parameter has a significant effect on the
number and type of categories formed, and consequently it
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affects the performance of these networks.
The performance of ART networks is measured in terms of

the number of categories created in its training phase (small
number of categories is good), and how well it generalizes
on unseen data (high generalization accuracy is good). The
performance of an ART architecture depends on the choice
of the vigilance parameter. It has been a known fact that
performance in ART is also affected by the order according
to which training data are presented to an ART architecture.

III. GENETIC ART ARCHITECTURES

GFAM, GEAM, and GGAM are evolved FAM, EAM,
GAM networks, respectively, that are produced by applying,
repeatedly, genetic operators on an initial population of
trained FAM, EAM, or GAM networks. GART uses an
evolutionary approach to find networks that achieve opti-
mal performance in terms of two objectives: maximizing
classification accuracy and minimizing complexity (size) of
ARTMAP classifier. Figure 4 lists the pseudo-code for the
basic steps of GART.

P (0)← Generate-Initial-Population();
for t← 1 to Genmax do

Evaluation();
if stopping criteria met then exit for;
P ′(t)← Selection(P (t));
P (t)← Reproduction(P ′(t));

end
return Best Network in P (t);

Fig. 4. Pseudo Code of GART Algorithm

The algorithm starts by generating an initial population,
P (0), of ARTMAP networks (FAM, EAM or GAM), each
one of them trained with a different value of the baseline
vigilance parameter ρ̄a, and order of training pattern presen-
tation. In our implementation we fixed the population size,
Popsize = 20. The networks are encoded into chromosomes,
where each component (gene) represents a category (hidden
node) of an ART network. Each component contains the
weight information for the category. The chromosomes in
GART are variable length, where the length is equal to
the number of categories in the network represented by the
chromosome (see Figures 5, 6, 7).

A weighed sum approach is used to define a fitness
function that combines the two objectives of the optimization
problem; the error rate, perr(p), and size of the network,
size(p). The error rate, perr(p), corresponds to the error rate,
exhibited by the p-th network, on the validation set, while
size(p) is the number of categories of the p-th network. The
use of weighted sum approach is one of the simplest ways
of defining a fitness function that depends on two measures
(generalization of the network and size of the network) and
has been extensively adopted in the classification literature
(e.g., see [22]).

The use of weighted sum to combine two objectives
requires the proper scaling of the objective values so that
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one objective cannot dominate the other. Since perr(p) is
appropriately scaled between 0 and 1.0, it remains to scale
size(p). As it is not possible to determine the range of
size(p) for every classification problem, we estimate the
range from the initial population. We define the size scale
factor, sizemax, as the size of the network that minimizes
perr(p) in the initial population. Since we expect the GA to
improve the error rate and size in subsequent generations,
this choice is considered appropriate. The fitness function
fit(p) of the p-th network is defined as follows:

fit(p) = perr(p) + α
size(p)− Catmin

sizemax
(3)

Obviously, this fitness function decreases as perr(p) de-
creases or as size(p) decreases (hence the objective is to
minimize the above defined fitness function). The value of
Catmin is chosen to be equal to the number of classes of the
classification problem at hand. It is evident from the fitness
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standard deviation vector of the Gaussian curve, σa
j , and the number of

points represented by the Gaussian curve, na
j , as well as the label lj of the

category.
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equation that if the GA drops the size from sizemax to
Catmin, the fitness drops by approximately α. Therefore,
the maximum sacrifice in classification accuracy is equal
to α. In our work here we use a value of α = 0.01.
This indicate a maximum possible sacrifice of about 1%
from the best accuracy in the initial population. Extensive
experimentation showed that this value works well on a wide
range of datasets.

The algorithm runs for a maximum number of genera-
tions defined by Genmax. In our implementation we set
Genmax = 500. However, to avoid running GART for
unnecessarily large number of generations, the evolution is
also stopped when no significant improvement is achieved
for 50 consecutive generations.

The selection process creates a temporary population P ′,
where the parent chromosomes used to create the next
generation are selected. The parents are chosen using a
deterministic binary tournament selection, as follows: Ran-
domly select two groups of two chromosomes each from the
current generation, and use as a parent, from each group, the
chromosome with the best fitness value in the group.

The algorithm implements elitism as follows: it finds the
best NCbest chromosomes (i.e., the chromosomes having
the NCbest highest fitness values) from the current gen-
eration and copies them to the next generation, P (t + 1)
without change. In our implementation we choose a value of
NCbest = 3.

Once the selection step determines the parents, reproduc-
tion operators are used to create individuals for the next
generation. The two well-known operators for reproduction
in GAs are crossover and mutation. In this work, in addition
to crossover, two mutation-based operators are proposed. The
first is referred to as the Mutation operator, and it performs
Gaussian mutations on the weights of the categories of the
ARTMAP network. The second operator, referred to as the
Prune operator, prunes a network by deleting a number of
categories from that network (structural mutation).

To avoid the need for finding proper values for the
mutation and pruning probabilities, or setting default values
that might result in suboptimal operation, an adaptation
mechanism was employed to automatically adjust, based on
performance, the invocation of reproduction operators. This
performance based adaptation is implemented at the gene
(category) level. More specifically, adaptive, performance
based, parameters are computed for each component in the
individual. The performance feedback relies on a metric
defined for each category, referred to as the confidence
factor, CF (see [23]). The confidence factor is a metric
that measures the performance at the category level. The
performance of a category is defined in terms of its accuracy
and relative frequency of selection.

CF k
j (p) = 0.5Ak

j (p) + 0.5Sk
j (p) (4)

where Ak
j (p) is the accuracy of classification achieved by

category j, in the p− th network, that is mapped to label k,
relative to the best accuracy achieved by any category in the

same network that is mapped to the same label. Furthermore,
Sk

j (p) is the probability of selection of category j in the p−th

network, that is mapped to label k, relative to the maximally
selected category in the same network that is mapped to the
same label.

Once CF is calculated for each category, with probability
of 1−CF k

j (p), we delete categories from every chromosome
in the temporary population P ′(t). Also, the weights of every
category are mutated using a gaussian distribution that has
a mean of 0 and standard deviation of 0.05(1 − CF k

j (p)).
Therefore, categories with low CF are more likely to be
eliminated or more severely mutated.

The remaining (after elitism) chromosomes in P (t + 1)
are then replaced by chromosomes created by performing
crossing over pairs of parents in P ′(t). For each parent, p, p′,
a random cross-over point is chosen, designated as n, n′,
respectively. Then, all the categories with index greater than
n′ in the chromosome p′ and all the categories with index less
than or equal to index n in the chromosome with index p are
moved into an empty chromosome within the new generation.
As mentioned above, the evolutionary process continues until
one (of the two) stopping criterion is triggered.

IV. EXPERIMENTAL RESULTS

In this section we present an experimental demonstration
of the ideas outlined in this paper. Our claim is that computa-
tion time can be saved by taking a sample from the validation
set to estimate the error rate of a classification rule during the
genetic evolution. In evolving neural networks, the error rate
is the only (or the main) objective to be optimized. Without
loss of generality, we take evolution of ART networks as
example. ART networks are evolved by repeatedly applying
genetic operators to a population of ART networks. In every
generation the selection process determines the probability of
survival and breeding of an individual (network) based on its
performance. Similar to a number of evolved neural network
architectures, the evolved ART architectures introduced in
[4], the performance is measured using a fitness function
that is a linear combination of the error rate measured on
the validation set and the network complexity measured in
terms of the number of hidden nodes present in that network.
The claim presented in this paper is that making a faster but
noisier estimation of the validation error might eventually
achieve similar solution quality at reduced computational
cost. The fast estimation of classification error is made
by randomly sampling a subset of the available validation
samples each time we need to estimate the classification error
for a given network.

To come up with a reasonable estimate of the number
of samples (nv) that we want to sample from the available
validation data to estimate the value of the fitness function,
we proceed as follows. Given a classification rule R and
a classification problem C, define perr as the error rate
of R as a result of classifying patterns in C. If the class
labels of patterns in C are known, then applying R to C
and comparing the predicted and actual class labels, would
result in a population whose members are either ”correct”

3460 2008 IEEE Congress on Evolutionary Computation (CEC 2008)



or ”error”, resulting in the following equation that calculates
perr:

perr =
#errors

#patterns
(5)

The above evaluation of perr is accurate if we have
infinitely many patterns with known labels that we pass
through our classification rule R. However, while evolving
ART networks, each network (or solution), corresponding to
a classification rule R(x), is evaluated by applying it to a
sample of size nv patterns that belong to a classification
problem, C. Therefore, an estimate of perr is obtained,
denoted as p̂err, as follows:

p̂err =
#error(nv)

nv
(6)

The variance of this estimate is (see [24], page 388):

V ar(p̂err) =
perr(1− perr)

nv
(7)

It can be shown that estimate p̂err is normally distributed
according to N(perr, V ar(p̂err) for sufficiently large nv.
In our experiments we chose a half width of 0.01 for the
estimation of the classification error and confidence level
of 99%, and used equation 8 to determine the number of
patterns to be randomly chosen from the set of available
validation samples. However, other reasonable choices of half
width values and confidence levels can be used as well.

nv = (
zα/2

Halfwidth
)2p̂err(1− p̂err) (8)

The experiments presented in this section compare the
genetically engineered ART architectures introduced in [4],
which use all the validation patterns in every evaluation,
and the same genetically engineered ART architectures that
sample the validation set in every evaluation, as designated
by equation (8). The genetically engineered ART architec-
tures introduced in [4] include three architectures: Genetic
Fuzzy ARTMAP (GFAM), Genetic Ellipsoidal ARTMAP
(GEAM) and Genetic Gaussian ARTMAP (GGAM). The
results pertaining to GART without sampling the validation
patterns are referred as ”GFAM Old”, ”GEAM Old”, and
”GGAM Old”, while the results using the sampling according
to equation (8) are referred to as ”GFAM New”, ”GEAM
New”, and ”GGAM New”.

We have experimented with 9 databases, of which 4
are simulated databases and 5 are real databases. Each
database was randomly divided into three subsets; training,
validation and testing. The simulated databases include 2
Gaussian databases: G4C-25 and G6C-15. These are, 2-
dimensional databases with 4-classes and 6-classes, and
15% and 25% overlap, between the classes. The database
denoted by 1Ci/Sq is the benchmark one circle in a square
problem, 2-dimensional, two class classification problem.
The probability of finding a data point within a circle or
inside the square and outside the circle is equal to 1/2.
The rest of the databases were obtained from the UCI

repository (see [25]) and they include: Modified Iris, Page
blocks (PAGE), Pendigits, Satellite Image (SAT), Image
Segmentation (SEG), and Waveform (WAV). More details
about these databases can be found there.

For each of the 9 databases, we ran the ”old” and ”new”
architectures 10 times for 10 different initial seeds of the GA
optimization process. In Table II we compare the average
time (over the 10 replications) required for convergence for
the ”old” and ”new” architectures. In particular, we compare
the ”old” GFAM to the ”new” GFAM, the ”old” GEAM
to the ”new” GEAM, and the ”old” GGAM to the ”new”
GGAM. It can be observed from Table II that the time saved
in the ”new” implementation can reach up to 80% of time
that the ”old” took to converge, justifying the merit of the
proposed technique. We also record the best performance
achieved by both these implementations, in terms of percent
of correct classification (PCC) and network size, in Table III.
In this table it can be seen that both implementations were
able to converge to similar quality of solutions. Therefore,
the saving in time did not require a sacrifice in the quality
of the solutions achieved.

V. DISCUSSION

When the evaluation of solutions is not reliable, the genetic
algorithm may suffer from selection error. The result of
selection error is reduction in the efficiency of the genetic
algorithm and the possibility of reduction in the quality of
solutions returned. Selection error happens because the esti-
mation of the fitness function is not accurate. The inaccuracy
in the calculation of the fitness function estimation results in
incorrect assignment of fitness for solutions. Therefore, the
selection operator proceeds in a manner that is different than
the way it would have if the fitness function evaluations were
accurate.

In [26], [27] the operation of genetic algorithm is ex-
plained by understanding the allocation of trials to solutions.
This allocation of trials is determined by the selection mech-
anism in genetic algorithms. It is expected that the genetic
algorithm would allocate more trials to more promising
areas in the solution space. Let P (t) denote a population
of solutions, x ∈ P (t), at generation t, and P is of size λ. A
hyperplane H , also referred to as schema, defines a subset of
all the possible solutions of the problem, where the solutions
are referred to as instances of H . In binary coding, a schema
can be represented as a string of ones, zeros and asterisks,
where the asterisks serve as wildcards. For example, the
schema H = 1 ∗ ∗ ∗ 0 represents all strings that start with 1
and end with 0, and strings ”10110” and ”10010” are said
to be instances of H . Note that these two strings are also
instances of many other possible schemas. Therefore, when
the genetic algorithm is explicitly evaluating solutions in each
population of every generation, it is implicitly estimating the
average fitness of a much larger number of schemas, where
the average fitness of a schema is defined as the average
of fitness of all possible instances in that schema. This is
referred to as the implicit parallelism in genetic algorithms
(see [28], [7], [26]). Let μ(P, t) be the average fitness of
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TABLE II

COMPARING THE TRAINING TIME OF GENETIC ART WITH AND WITHOUT SAMPLING OF THE CROSS-VALIDATION SET.(α = 0.01, TAKE BEST OF 10

REPS)

GFAM GEAM GGAM
Old New % Time Saved Old New % Time Saved Old New % Time Saved

1Ci/Sq 68.51 22.12 67.72% 152.13 68.15 55.20% 142.29 28.31 80.10%
G4C-25 52.59 23.33 55.63% 82.99 47.21 43.11% 89.32 32.49 63.62%
G6C-15 92.01 27.49 70.12% 127.15 43.44 65.83% 137.82 34.67 74.84%

Iris 13.48 3.47 74.22% 21.56 7.51 65.18% 22.02 4.65 78.89%
page 52.97 13.36 74.77% 60.91 36.23 40.52% 75.03 20.78 72.30%

pendigits 1142.43 874.87 23.42% 4304.84 3923.03 8.87% 537.62 311.02 42.15%
sat 508.21 236.86 53.39% 1234.62 1037.92 15.93% 329.07 192.67 41.45%
seg 41.93 29.82 28.89% 88.45 81.31 8.07% 64.13 63.32 1.26%

wav 147.23 112.85 23.35% 369.38 338.54 8.35% 83.94 56.67 32.48%

TABLE III

COMPARING THE PERFORMANCE OF GENETIC ART WITH AND WITHOUT SAMPLING OF THE CROSS-VALIDATION SET

Old New
GFAM GEAM GGAM GFAM GEAM GGAM

PCC size PCC size PCC size PCC size PCC size PCC size
1Ci/Sq 98.07 31 99.70 2 99.83 2 97.67 31 99.27 2 98.93 2

G4C-25 74.94 4 75.14 4 75.24 4 74.98 4 74.96 4 75.22 4
G6C-15 84.75 6 85.01 6 84.97 6 84.85 6 85.09 6 85.11 6

Iris 94.96 2 95.04 2 94.75 2 95.08 2 95.04 2 94.94 2
page 96.59 5 95.09 5 96.34 6 96.56 5 95.30 5 95.56 5

pendigits 98.20 282 98.31 331 97.83 108 97.86 276 96.97 175 97.86 129
sat 88.90 310 87.85 203 88.35 118 88.40 184 87.30 173 88.15 127
seg 94.86 22 93.71 128 92.71 17 95.86 35 94.43 129 91.57 13

wav 85.90 4 87.15 4 87.50 3 84.05 4 86.60 8 87.65 4

solutions x ∈ P (t) at generation t, and similarly, μ(H, t) is
the average fitness of solutions that are instances of schema
H at generation t. Let M(H, t) be the number of solutions
in P (t) that are also instances of H at generation t. The
allocation of the search trials to schemas can be measured
by calculating the expected value of M(H, t + 1), that is,
the number of solutions that are instances of H in the next
generation (see [26]):

E(M(H, t + 1)) = M(H, t)
μ(H, t)

μ(P, t)
(9)

This result indicates that the number of trials allocated
to an above-average hyperplane H grows exponentially over
time. It was shown (see [26]) that this exploration rate is
optimal (or close to optimal) search strategy. This result also
indicates that the ability of genetic algorithm to find good
solutions is determined by the ability to accurately estimate
the average fitness of a given hyperplane H over successive
generations. The accurate evaluation of the average fitness of
a given hyperplane is equivalent to making accurate selection.
The reliability of (implicitly) evaluating the fitness of a
hyperplane can be measured by its variance. The larger the
variance, the larger is the selection error and therefore, the
less efficient is the genetic algorithm.

The average fitness of solutions that are instances of
H is estimated based on a sample from all the possible
instances of H . Therefore, the sampling distribution has
variance σ2

r =
σ2

H

r where r is the number of trials allocated
to schema H , and σ2

H is the variance of the fitness of all
instances of H . The number of trials, r, is dependent on the

population size and the number of generations the algorithm
runs. Therefore, increasing r can be done by increasing either
the population size or the maximum number of generations,
or both. Increasing r would result in improved estimation of
the average fitness of H and therefore, would result in the
GA finding better solutions. However, if the measurement
of each of the r trials is not reliable (i.e., nv is not large
enough), then there is another source of variance. The larger
the variance of estimating the fitness in each of the r trials
is, the larger the variance of the estimation of the average
fitness of a given hyperplane becomes, and consequently the
worse is the selection error. To improve the performance of
the genetic algorithm, the variance of the estimation of the
average fitness of a given hyperplane should be reduced. It
can be shown (see [13]) that the variance of the estimation
of the fitness of a given hyperplane, p̂H

err, is given by the
following formula:

V ar[p̂H
err ] =

σ2

H

r
+

perr(1− perr)

rnv
(10)

where, in the above equation perr(1− perr) is the variance
of the binomial distribution of the error rate averaged over
all possible instances of H .

From the above equation it is obvious that we can decrease
the variance of the estimate of the average hyperplane fitness
value by increasing r, or increasing nv, or increasing both.
Increasing nv is an expensive proposition (see Table I). A
more reasonable approach is to increase r, and decrease
nv so that rnv remains approximately constant. Our dis-
cussion above, and equation 10 indicate that the favorable

3462 2008 IEEE Congress on Evolutionary Computation (CEC 2008)



experimental results that were obtained in Section IV for
the evolved ART neural networks, where an appropriate
size (nv) of a validation set was chosen, would extend to
other datasets (beyond the ones that we experimented with
in Section IV) and to other neural network architectures
(beyond the paradigm of ART neural network architectures
that we emphasized in this paper).

VI. CONCLUSION

In this paper we have introduced a technique that can be
used to significantly improve the efficiency of many evolved
neural network architectures. The technique proposed capi-
talizes on the ability of genetic algorithm to operate effec-
tively in noisy environments. It was shown experimentally,
and argued qualitatively, that relying on faster, but noisier,
estimation of classification error during the evolution of neu-
ral networks might be beneficial to the overall computational
cost of evolving neural network architectures. Some of the
time saved by making fast evaluations of the classification
error of the evolved neural networks is used to allow the
evolutionary process to reach the desired level of solution
quality faster, despite the fact that more generations might
be needed to achieve this goal.

The merit of the proposed technique was illustrated using
a family of evolved ART neural network architectures. It
was shown, using the technique proposed in this paper, that
significant amount of computational time (as much as 80%
in some cases) can be saved if we rely on noisy calculations
of the classification error but allow the GA process to evolve
over a higher number of generations. We also demonstrated
that this improvement in efficiency did not affect the quality
(accuracy and size) of the classifier network produced. Our
claim though is that these beneficial results would extend
to other classification problems (beyond the ones we ex-
perimented with in this paper) and to other neural network
architectures (beyond the ART neural networks considered
in this paper).
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