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Abstract— In this work we present, for the first time, the
evolution of ART Neural Network architectures (classifiers)
using a multiobjective optimization approach. In particular, we
propose the use of a multiobjective evolutionary approach to
evolve simultaneously the weights, as well as the topology of
three well-known ART architectures; Fuzzy ARTMAP (FAM),
Ellipsoidal ARTMAP (EAM) and Gaussian ARTMAP (GAM).
We refer to the resulting architectures as MO-GFAM, MO-
GEAM, or MO-GGAM, and collectively as MO-GART. The
major advantage of MO-GART is that it produces a number of
solutions for the classification problem at hand that have diff-
erent levels of merit (accuracy on unseen data (generalization)
and size (number of categories created)). MO-GART is shown
to be more elegant (does not require user intervention to define
the network parameters), more effective (of better accuracy and
smaller size), and more efficient (faster to produce the solution
networks) than other ART neural network architectures that
have appeared in the literature.

I. INTRODUCTION

THE Adaptive Resonance Theory (ART) was developed
by Grossberg [1]. Some of the ART architectures that

have appeared in the literature include Fuzzy ARTMAP
(FAM) [2], Ellipsoidal ARTMAP (EAM) [3], and Gaussian
ARTMAP (GAM) [4]. All of these ART architectures possess
a number of desirable properties, such as they can solve
arbitrarily complex classification problems, they converge
quickly to a solution (within a few presentations of the list of
input/output patterns belonging to the training set), they have
the ability to recognize novelty in the input patterns presented
to them, they can operate in an on-line fashion (new input
patterns can be learned by the ART system without retraining
with the old input/output patterns), and they produce answers
that can be explained with relative ease.

One of the limitations of these ART architectures that has
been repeatedly reported in the literature is the category
proliferation problem. This refers to the problem where
ART, in the process of solving a classification problem,
creates unnecessarily large architectures. This problem is
more amplified when the data in the classification problem
are noisy, and/or significantly overlapping. Another limita-
tion of these ART architectures is the dependence of their
performance on the parameters chosen in the training phase
(e.g., vigilance parameter, choice parameter, order of training
pattern presentation). Good choices for these parameters
is problem dependent, thus requiring experimentation with
various parameter choices (an expensive proposition) in order
to obtain the best possibly performing ART network.

To alleviate these problems, we introduced genetic Fuzzy
ARTMAP (GFAM) in [5]. GFAM uses a genetic algorithm
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(GA) (see [6]) to evolve simultaneously the weights, as
well as the topology of FAM neural networks. In [7], we
extended these ideas to EAM and GAM, and introduced
several improvements to the GFAM evolutionary approach,
which resulted in significant gains in terms of efficiency.
Furthermore, in [7] we adopted an adaptive evolutionary
approach that eliminated the dependence of performance
on algorithm parameter settings. The resulting architectures
were referred to as GFAM, GEAM and GGAM, and collec-
tively as GART.

GART starts with a population of trained ART networks,
whose number of nodes in the hidden layer and the values
of the interconnection weights converging to these nodes are
fully determined (at the beginning of the evolution) by ARTs
training rules. To this initial population of ART networks,
GA operators are applied to modify these trained ART
architectures (i.e., number of nodes in the hidden layer, and
values of the interconnection weights) in a way that encour-
ages better generalization and smaller size architectures. The
optimization problem set up in GART has two objectives:
maximize classification accuracy on a validation set, and
minimize network complexity (size of the network), mea-
sured in terms of the number of hidden nodes (categories). In
GART, these two objectives were combined using a weighted
sum fitness function. A problem with this approach is that the
user has to a-priori specify their preference of accuracy and
complexity, by choosing the weights in this fitness function.
However, choosing good weights for the fitness function is
a data dependent problem. To overcome this limitation, the
user should run the algorithm for different settings of the
weights in the fitness function; an expensive proposition.
Furthermore, the weighted sum approach might not be able
to produce all possible solutions that might be of interest
to the user (for more details see Section II). Since genetic
algorithms are population-based approaches, they are suitable
for finding multiple solutions if an appropriate multiobjective
evolutionary algorithm (MOEA) is used.

The organization of the paper is as follows: In the next
section we present a brief review of the different MOEA’s
introduced in the literature. In section III we discuss the
proposed MO-GART algorithm. In section IV we evaluate
the performance of MO-GART and compare it with GART
and three other ART architectures: ssFAM, ssEAM and
ssGAM (see [8]). Finally, in section V, we summarize our
findings.

II. MULTIOBJECTIVE EVOLUTIONARY ALGORITHMS

Many real world problems involve simultaneous optimiza-
tion of conflicting objectives. This is the basic challenge
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of multiobjective optimization research. Evolutionary algo-
rithms have been used extensively to solve multiobjective
optimization problems, resulting in a body of knowledge
known as multiobjective evolutionary algorithms (MOEA).
A number of authors have published surveys of MOEA, such
as [9], and the reader can find more details about MOEA’s
there.

With conflicting multiple objectives, there is no single op-
timal solution, but rather, there are a set of good solutions. It
is often desirable to find these good solutions as they provide
alternative solutions to the problem at hand. Evolutionary
algorithms (EAs) are suitable for solving multiobjective
optimization problems because EAs are population based
search algorithms, and as such they can find, in a single
run, multiple good solutions on the surface defined by the
multiple objectives that are to be optimized.

A Pareto-optimal solution is a solution that is not domi-
nated by any other solution in the search space. The entire
set of such optimal solutions is often referred to as the Pareto
front. The main focus of most MOEA research is to minimize
the distance of the generated solutions to the true Pareto front
and to maximize the coverage (diversity) of the discovered
Pareto set. A good Pareto set may be obtained by appropriate
guiding of the search process through careful design of
the selection and fitness assignment strategies which is the
main challenge concerning multiobjective optimization using
GA’s. The selection operator (in single and multiobjective
optimization problems) determines the solutions that will
be selected for the reproduction of the next generation.
The selection operation emphasizes fit individuals in the
population by giving them a higher chance to breed. The se-
lection scheme should emphasize the characteristics of good
solutions in order for the evolutionary process to produce
better solutions in successive generations. In the presence of
multiple objectives, the determination of ”better solutions” is
not as straight forward as it is in the single objective case.
In review, the objective of the selection operation in a multi-
objective problem is to lead the evolutionary process to a set
of optimal solutions, rather than one optimal solution as in
the case of single objective problems.

One of the simplest approaches for dealing with a multi-
objective problem is to convert the problem into a single ob-
jective problem. This is done by implementing a mechanism
that combines the multiple objectives into a single objective.
These approaches try to converge to a specific point on the
Pareto front. Therefore the combining mechanism determines
the relative importance of the objectives. In these methods,
to generate the entire Pareto front, the analyst must perform
multiple runs and vary the conditions of the combining
mechanism. The simplest method for combining the objective
is the weighted sum approach. This can be expressed as
fit(x) =

∑L

i=1
wifi(x) where L denotes the number of

objectives and fi(x) denotes the i-th objective function.
This is the approach that was adopted in GART [7] and
a number of other evolutionary Neural Networks such as
[10]. It follows immediately that the solution that optimizes

fit(x) is a Pareto optimal point, since if not, then there
must exist a feasible x which improves on at least one of
the objectives without compromising the others and hence
produces a smaller value of the weighted sum. It is necessary
to scale or normalize the objectives to avoid having one
objective dominate the others. This requires knowledge of
the range of each objective which might not be available for
many real world applications.

The weighted sum of the objectives fitness function app-
roach has a number of drawbacks. The first drawback is that
this scheme is not able to generate the non-convex regions
of the Pareto front for any combination of the weights. This
has been pointed out by a number of researchers, such as
[11]. The second drawback is that the solutions, selected by
evenly varying the weights, are not guaranteed to be evenly
distributed on the Pareto front. This becomes more important
when the fitness function is used to determine the selection
probability, in which case the probability of selection will
vary across the Pareto front solutions based on the shape
of the Pareto front. This results in a poor diversity of the
Pareto solutions found. As these drawbacks were identified
in GART [7], in this paper we look for a multiobjective
approaches that overcome these drawbacks.

The more recent research in multiobjective optimization
avoids combining the objectives into a single objective.
Rather, they treat objectives separately, and solutions are
evaluated with respect to each one of the objectives at every
generation. Therefore, these approaches are more suited for
finding multiple Pareto solutions. These approaches do not
normally require a mechanism that determines the relative
importance of objectives. The aggregation methods of se-
lection, mentioned above, are often referred to as a-priori
methods because they normally incorporate preference before
hand. Alternatively, the methods that attempt to produce the
whole Pareto front and give the option to the user to decide
from a set of optimal solutions are referred to as a-posteriori
methods.

One early example of the a-posteriori method is the
pioneering work of Schaffer [12] where Vector Evaluated
Genetic Algorithm (VEGA) was introduced. In VEGA, the
selection step generates a number of sub-populations by
performing proportional selection according to each objective
in turn. Then these sub-populations are combined to obtain
a new population, on which the genetic operators, crossover
and mutation, are applied. VEGA has a major drawback
which is that its selection scheme is biased towards some
Pareto optimal solutions. To overcome problems identified
in VEGA, [6] suggested ranking of solutions based on their
Pareto optimality. In this scheme, Pareto optimal solutions
are equally assigned the highest fitness, and therefore, they
have increased chance of survival and breeding. The rest
of the population is assigned fitness values that depend on
their closeness to the Pareto front. A number of authors
proposed algorithms based on this ranking scheme, such as
[13] who introduced the Non-dominated Sorting Genetic Al-
gorithm (NSGA) and [14] who introduced the Multiobjective
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Genetic Algorithm (MOGA). In [15] the authors use a
tournament selection scheme based on Pareto dominance in
their implementation of Niched-Pareto Genetic Algorithm
(NPGA). In a similar fashion, as a successor to NPGA, [16]
introduced a revised version referred to as Niched Pareto
Genetic Algorithm 2 (NPGA 2).

Elitism is a selection mechanism that aims at preserving
good performance through successive generations. In multi-
objective optimization, elitism refers to preserving nondomi-
nated solutions found along the evolutionary process. Elitism
has been adopted in the more recent MOEA research. For
example, in [17], the authors use a random weighted sum
approach, with elitism, to produce the Pareto front. The
weights are generated randomly each time an individual
is selected. The nondominated set of solutions is stored
externally and updated every generation. The Non-dominated
Sorting Genetic Algorithm II (NSGA-II) [18], [19] was
introduced as a revised successor to the original NSGA [13].
In NSGA-II elitism is ensured by combining the best parents
with the best offspring obtained in every generation.

SPEA (Strength Pareto Evolutionary Algorithm) intro-
duced by Zitzler and Thiele in [20], use the Pareto-elitism
by storing nondominated solutions in an externally main-
tained archive. The fitness of an individual depends on
the number of solutions that dominates it. For each indi-
vidual in the external set, a strength value is computed.
This strength is proportional to the number of solutions a
certain individual dominates. The fitness of each member
of the current population is then computed as the sum of
the strengths of all external non-dominated solutions that
dominate it. The mechanism of such a fitness assignment
mechanism automatically penalizes crowded solution regions
and serves as a mechanism of encouraging diversity in the
Pareto set without the need to specifying other parameters
(such as those related to the fitness sharing mechanism). In
[21] a revised version of SPEA is introduced, referred to
as SPEA2. The revised version incorporates a fine-grained
fitness assignment strategy which takes into account for
each individual the number of individuals that dominate it
and the number of individuals by which it is dominated. It
uses a nearest neighbor density estimation technique which
guides the search more efficiently, and it has an enhanced
archive truncation method that guarantees the preservation
of boundary solutions.

In [22] the authors points out to the problem of using an
elite archive of fixed size. It is shown that limiting the size
of the elite archive can produce ”retreating” or ”oscillating”
estimates of the Pareto front. This happens as the archive
is truncated when its size exceeds the limit and then new
solutions are added that might be dominated by solutions
that were eliminated during the truncation process. Therefore,
the authors recommend keeping all nondominated solutions
found during the evolutionary search. To speedup processing
of large number of nondominated individuals, a tree data
structure is introduced and used for fast searches, additions
and deletion to the archive.

In this paper we adopt a fitness assignment that is similar
to the one introduced in SPEA II [21]. Also, as is the case for
a number of previously proposed multiobjective evolutionary
approaches, we maintain an external elitist archive of con-
tinuously updated Pareto solutions. The size of the external
archive is not fixed and the truncation procedure suggested
in SPEA II is not used. The evolution of ART networks
does not produce a large number of Pareto solutions, and
therefore, the performance of the MOEA is not expected to
be affected by a large archive size. In our implementation, we
use a mechanism that ensures that boundary solutions (best
solutions in each objective) are always selected as parents
for the next generation. This technique was suggested in [22]
and was found to be effective in improving the efficiency of
MO-GART. The next section describes in more details the
operation of the resulting neural network architecture.

III. MULTIOBJECTIVE EVOLUTIONARY ART
ARCHITECTURES

MO-GART uses a multiobjective evolutionary approach
to find networks that achieve Pareto-optimal performance in
terms of two objectives: maximizing classification accuracy
and minimizing complexity (size) of ARTMAP classifier.
MO-GART operates by applying, repeatedly, genetic oper-
ators on an initial population of trained ART networks. The
following pseudo-code shows the basic steps of MO-GART:

P (0)← Generate-Initial-Population();
A(0)← Initialize-Empty-Archive();
for t← 1 to Genmax do

Evaluation();
Update-Archive(P (t), A(t));
if stopping criteria met then exit for;
P ′(t)← Selection(P (t), A(t));
P (t)← Reproduction(P ′(t));

end
return A(t);

Algorithm 1: Pseudo Code of MO-GART Algorithm

The main difference between GART [7] and MO-GART is
the selection operator. In GART the selection operator bases
the selection of parents using a fitness function that combines
the two objectives, using a weighted sum. In MO-GART
selection is based on Pareto optimality and therefore MO-
GART is capable of finding multiple solutions on the Pareto
front, in one run. Also, MO-GART uses a continuously
updated Pareto archive where the Pareto solutions found so
far are stored.

The algorithm starts by generating an initial population,
P (0), of ARTMAP networks (FAM, EAM or GAM), each
one of them trained with a different value of the baseline
vigilance parameter ρ̄a, and order of training pattern presen-
tation. In our implementation we fixed the population size,
Popsize = 20. The networks are encoded into chromosomes,
where each component (gene) represents a category (hidden
node) of an ART network. Each component contains the
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the ellipsoid corresponding to this category, as well as the label lj of the
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weight information for the category. The chromosomes in
MO-GART (and GART) are variable length, where the
length is equal to the number of categories in the network
represented by the chromosome (see Figures 1, 2, 3).

Also, MO-GART initializes an empty secondary popula-
tion, A(0), that will be used to store nondominated solutions
found during the evolution. In each generation, each solution
in the population is evaluated according to each objective
function. That is, the error rate of each ARTMAP network
is evaluated by running it against a validation set. The
second objective, complexity, is represented by the number
of categories present in each network. Once networks in
population P are evaluated, the archive A is updated by
adding to it the solutions in P that are nondominated by
solutions in A. Also, solutions in A that are now dominated
by solutions just added from P , are removed from the archive
A. This mechanism ensures elitism.

The algorithm runs for a maximum number of genera-
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Fig. 3. MO-GGAM chromosome structure. At level 2, the category’s weight
wa

j
contains the information of the center of the Gaussian curve, ma

j
, the

standard deviation vector of the Gaussian curve, σa
j , and the number of

points represented by the Gaussian curve, na
j , as well as the label lj of the

category.

tions defined by Genmax. In our implementation we set
Genmax = 500. However, to avoid running MO-GART
for unnecessarily large number of generations, the evolution
is also stopped when the archive A is not updated for 10
consecutive generations.

The selection process creates a temporary population P ′,
where the parent chromosomes used to create the next
generation are selected. The chromosomes in the archive
A and population P are assigned fitness values based on
dominance relationship as suggested in SPEA II [21]. In this
scheme each individual is assigned a strength value that is
equal to the number of solutions it dominates. After that,
a raw fitness, R(x), is assigned for each individual to be
the sum of the strengths of all its dominators in both A

and P . The raw fitness is then adjusted as follows. For each
individual, x, the distance, in objective space, to the k-th
nearest neighbor is found and denoted as σk(x). The value
of k is chosen to be the square root of the sum of the size
of the archive and population. The fitness of each individual
is then calculated using the following equation:

Fit(x) = R(x) +
1

σk + 2
(1)

More details about this fitness assignment can be found
in [21]. The parents are then chosen using a deterministic
binary tournament selection with replacement, as follows:
For each parent, randomly select two chromosomes from
the combined set of A and P , and choose, the chromosome
with the smallest fitness value. Boundary solutions, which
are networks with smallest error rate and smallest size, are
ensured to be copied in the set of parents.

Once the selection step determines the parents, reproduc-
tion operators are used to create individuals for the next
generation. The two well-known operators for reproduction
in GAs are crossover and mutation. In this work, in addition
to crossover, two mutation-based operators are proposed. The
first is referred to as the Mutation operator, and it performs
Gaussian mutations on the weights of the categories of the
ARTMAP network. The second operator, referred to as the
Prune operator, prunes a network by deleting a number of
categories from that network (structural mutation).

To avoid the need for finding proper values for the
mutation and pruning probabilities, or setting default values
that might result in suboptimal operation, an adaptation
mechanism was employed to automatically adjust, based on
performance, the invocation of reproduction operators. This
performance based adaptation is implemented at the gene
(category) level. More specifically, adaptive, performance
based, parameters are computed for each component in the
individual. The performance feedback relies on a metric
defined for each category, referred to as the confidence
factor, CF (see [23]). The confidence factor is a metric
that measures the performance at the category level. The
performance of a category is defined in terms of its accuracy
and relative frequency of selection.

CF k
j (p) = 0.5Ak

j (p) + 0.5Sk
j (p) (2)
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where Ak
j (p) is the accuracy of classification achieved by

category j, in the p− th network, that is mapped to label k,
relative to the best accuracy achieved by any category in the
same network that is mapped to the same label. Furthermore,
Sk

j (p) is the probability of selection of category j in the p−th

network, that is mapped to label k, relative to the maximally
selected category in the same network that is mapped to the
same label.

Once CF is calculated for each category, with probability
of 1−CF k

j (p), we delete categories from every chromosome
in the temporary generation P ′(t). Also, the weights of every
category are mutated using a Gaussian distribution that has
a mean of 0 and standard deviation of 0.05(1 − CF k

j (p)).
Therefore, categories with low CF are more likely to be
eliminated or more severely mutated.

The chromosomes in P (t) are then replaced by chromo-
somes created by crossing over pairs of parents in P ′(t).
For each parent, p, p′, a random crossover point is chosen,
designated as n, n′, respectively. Then, all the categories
with index greater than n′ in the chromosome p′ and all
the categories with index less than or equal to index n in
the chromosome with index p are moved into an empty
chromosome within the new generation.

As mentioned above, the evolutionary process continues
until one (of the two) stopping criterion is triggered. MO-
GART does not return a single trained ART classifier, but
rather, a number of ART classifiers that were present in the
archive A at the last generation of the evolutionary process.
These classifiers have achieved varying levels of accuracy
and complexity. These alternatives are then presented to the
user to make and final decision of choosing one (or more) of
these classifiers. For example, if the user is mostly interested
in accuracy, then the network that produced the best accuracy
is chosen.

IV. RESULTS

In this section we compare MO-GART’s performance to
that of other popular ART architectures. The objective of
this comparison is not to compare different multiobjective
evolutionary approaches; rather, the objective here is to
compare the accuracy and size of several neural network
architectures against the one proposed. In particular, we com-
pare MO-GART’s performance to that of other popular ART
architectures, which have been proposed in the literature with
the intent of addressing the category proliferation problem,
such as ssFAM, ssEAM, and ssGAM. These approaches
are based on the principle of semi-supervision [8]. Semi-
supervision is a term attributed to learning in an ART
architecture (FAM, EAM or GAM), where categories in
ART are allowed to encode patterns of different labels
provided that the percentage of patterns that belong to the
plurality label exceed a certain threshold. We also compare
the performance of MO-GART to the previously introduced
[7] genetic ART architectures (GART) that did not use a
multiobjective evolutionary approach. In the GART case, the
Pareto front is produced by varying the weight in the fitness
function.

We have experimented with 11 databases, of which 4
are simulated databases and 7 are real databases. Each
database was randomly divided into three subsets; training,
validation and testing. The simulated databases include 2
Gaussian databases: G4C-25 and G6C-15. These are , 2-
dimensional databases with 4-classes and 6-classes, and
15% and 25% overlap, between the classes. The database
denoted by 1Ci/Sq is the benchmark one circle in a square
problem, 2-dimensional, two class classification problem.
The probability of finding a data point within a circle or
inside the square and outside the circle is equal to 1/2.
The rest of the databases were obtained from the UCI
repository (see [24]) and they include: Modified Iris, Page
Blocks (PAGE), Pendigits, Satellite Image (SAT), Image
Segmentation (SEG), Waveform (WAV), Glass Identification
(GLASS), and Pima-Indian Diabetes (PIMA). More details
about these databases can be found there.

Since in this work we are not only focusing on general-
ization performance, but also on the size (complexity) of the
network produced, it becomes more complicated to compare
and rank networks. To provide a fair comparison, we resort
to a comparison approach that considers the two objectives
simultaneously. Since the existence of the two, sometimes
competing, objectives result in multiple good solutions rather
than one ”best” solution, in our comparison, we assess mul-
tiple solutions (sets of solutions) produced by the different
algorithms, under consideration. In other words, for each
classification algorithm, we produce a number of classifiers
that have attained the two objectives (good generalization and
small size) at different levels of success. Then we choose
the non-dominated solutions. A non-dominated solution is
defined to be a network, where no other network achieves
better generalization utilizing equal or smaller number of
categories. Our comparison between algorithms is then based
on the quality of the non-dominated set that was produced
by each algorithm. We also compare the time it takes each
algorithm to produce the non-dominated set of solution
networks.

Experiments were conducted for the three MO-GART
architectures: MO-GFAM, MO-GEAM, and MO-GGAM for
each of the 11 databases. The average computation time
in seconds (over 10 replications) needed to produce the
solutions, is referred to as the Total Run Time, and reported
in Tables II and IV.

A. Comparison with ssART

For each of the ssFAM, ssEAM, and ssGAM, and for each
of the 11 databases, we performed a number of experiments
with different settings of their network parameter values. In
particular, we experimented with 1,800 different parameter
settings for ssFAM, 6,480 different parameter settings for
ssEAM and 6,000 different parameter settings for ssGAM.
It should be emphasized that the parameter ranges used were
determined by the authors of this paper and they reflect their
experience of what are good parameter settings for these ART
networks. The parameter settings were chosen to provide
varying levels of accuracy and complexity in these networks.
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Solutions that are Pareto-optimal with respect to those two
objective were finally chosen. The total computation time
required to obtain these network solutions for each database
and each method, which is the sum of training and validation
CPU times in seconds for all the tried settings, is reported
in Table II, and referred to as the Total Run Time.

A one-to-one comparison of the results reported in Table
II reveals that the Total Run Time of the MO-GART networks
is smaller, in most instances an order of magnitude smaller
than the Total Run Time of their corresponding counterparts,
ssART networks. To compare the generalization performance
of MO-GFAM and ssFAM, MO-GEAM and ssEAM, and
finally MO-GGAM and ssGAM we use a metric that com-
pares the network solutions obtained by the ss-network (for
all different parameter settings) and the network solutions
obtained by the MO-GART. This metric has been used before
in similar situations (see [20]). This metric is defined as
follows:

C(A, B) =
|b ∈ B : ∃a ∈ A, b ≺ a|

|B|
(3)

This metric measures the fraction of members in set B that
are dominated by at least one member in set A. Therefore,
C(A, B) = 1 means all members in B are dominated by
members in A. In this case the approach that produced set
A is a clear winner. It is obvious that we need to consider
also C(B, A) in order to properly compare the two sets.

Since the calculated values of C(A, B) and C(B, A) are
dependent on the seed used to evolve the population of
FAMs, EAMs and GAMs in the MO-GART approach, we
produced network solutions by changing the seed 10 times.
Consequently, 10 different values of the C metric were
produced for each comparison pair. In Table I we compare
the average values (over the 10 replications) of C(MO-GFAM,
ssFAM) versus C(ssFAM, MO-GFAM), and C(MO-GEAM,
ssEAM), versus C(ssEAM, MO-GEAM), and C(MO-GGAM,
ssGAM) versus C(ssGAM, MO-GGAM). It is obvious from
the table that the average values of C(MO-GFAM, ssFAM) are
larger than C(ssFAM, MO-GFAM) values, which indicates
that networks produced by MO-GFAM are more likely to
dominate networks produced by ssFAM, and therefore, the
networks produced by MO-GFAM are expected to be of
higher quality. Similar conclusions can be drawn for MO-
GEAM versus ssEAM and MO-GGAM versus ssGAM. This
result is expected since MO-GART uses a multiobjective
approach that is designed to produce a high quality Pareto
front. To provide a fair comparison, the performance of the
most accurate networks is shown in Tables V, VI and VII.
As it can be easily seen, the MO-GART networks were able
to consistently find more accurate networks using, in most
instances, much smaller network sizes.

B. Comparison with GART

For GART (introduced in [7]) it is not possible to produce
the nondominated solutions in one run. Rather, it is necessary
to run the algorithm multiple times to produce the different

TABLE V

MOST ACCURATE NETWORKS AND THEIR SIZES: FAM

MO-GFAM GFAM ssFAM
PCC Size PCC Size PCC Size

1Ci/Sq 97.97 31 98.07 41 98.10 78
G4C-25 76.00 4 74.94 4 74.22 4
G6C-15 84.59 6 84.57 6 82.49 9

glass 76.56 6 76.56 6 73.44 7
Iris 95.19 2 94.96 2 94.56 2

page 96.45 5 95.59 6 94.77 6
pendigits 98.27 271 97.20 282 97.14 66

pima 82.67 2 79.31 4 73.28 4
sat 89.12 175 87.90 310 84.20 51
seg 95.43 25 94.86 22 94.14 32

wav 86.30 3 84.35 5 75.65 16

TABLE VI

MOST ACCURATE NETWORKS AND THEIR SIZES: EAM

MO-GEAM GEAM ssEAM
PCC Size PCC Size PCC Size

1Ci/Sq 99.76 2 99.70 2 97.40 99
G4C-25 75.54 4 75.14 4 73.90 4
G6C-15 84.69 6 84.87 6 83.23 24

glass 75.31 6 75.00 6 73.44 17
Iris 95.24 2 95.04 2 94.65 2

page 96.40 5 95.09 5 94.44 24
pendigits 98.90 331 98.31 354 96.60 179

pima 83.33 4 78.88 3 75.00 6
sat 88.34 198 87.85 203 85.50 141
seg 93.86 52 92.14 85 91.57 83

wav 86.35 5 85.95 9 79.80 12

nondominated solutions. We chose to run GART using five
different settings for the fitness weight. We repeated this
process 10 times to account for the stochasticity of the
genetic algorithm. The average time it took to produce 1
set of nondominated solutions is reported in Table IV, and
referred to as the Total Run Time. The result in Table III
shows an advantage of MO-GART over GART in terms
of solution quality. Also, a one-to-one comparison of the
results reported in Table IV reveals that the Total Run Time
of the MO-GART networks is smaller than the Total Run
Time of their corresponding counterparts, GART networks.
Tables V, VI and VII compares the most accurate network
obtained from MO-GART and GART. As it can be seen, MO-
GART in most cases was able to find a better solution than
GART. Therefore, achieving better solution quality at a lower
computational cost, in addition to producing multiple optimal
solutions at once; justifying the proposed approach of using
a multiobjective approach to evolve ART architectures.

V. CONCLUSION

In this paper we introduce, for the first time, a multi-
objective evolutionary approach to optimize ARTMAP neural
networks in terms of two objectives: classification accuracy
(higher is better) and classifier complexity (smaller is better).
In particular, we apply a MOEA to optimize the performance
of three well known ART architectures: Fuzzy ARTMAP,
Ellipsoidal ARTMAP, and Gaussian ARTMAP. The resulting
architectures are referred to as MO-GFAM, MO-GEAM and
MO-GGAM, and collectively as MO-GART.
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TABLE I

C-METRIC VALUES FOR MO-GART VS. SSART

Database C(MO-GFAM, C(ssFAM, C(MO-GEAM, C(ssEAM, C(MO-GGAM, C(ssGAM,
Name ssFAM) MO-GFAM) ssEAM) MO-GEAM) ssGAM) MO-GGAM)

1Ci/Sq 0.550 0.380 0.954 0.158 0.941 0.053
g4c-25 1.000 0.050 1.000 0.000 0.950 0.000
g6c-15 1.000 0.000 1.000 0.000 0.900 0.000

glass 0.533 0.342 0.956 0.058 0.871 0.000
Iris 0.500 0.233 0.900 0.183 0.871 0.245

page 1.000 0.033 1.000 0.000 1.000 0.025
pendigits 0.542 0.191 0.826 0.143 0.639 0.236

pima 1.000 0.000 0.780 0.050 0.983 0.150
sat 1.000 0.000 0.922 0.066 0.950 0.030
seg 0.700 0.180 0.772 0.265 0.879 0.000

wav 1.000 0.000 1.000 0.000 1.000 0.000

TABLE II

TOTAL RUN TIME FOR MO-GFAM, MO-GEAM AND MO-GGAM COMPARED TO TOTAL RUN TIME FOR SSFAM, SSEAM, SSGAM

Database MO-GFAM ssFAM Gain MO-GEAM ssEAM Gain MO-GGAM ssGAM Gain
Name

1Ci/Sq 22.6406 216.42 9.56 63.6581 1167.67 18.34 39.4752 1431.35 36.26
G4C-25 4.4593 130.92 29.36 11.4466 916.78 80.09 9.1047 314.49 34.54
G6C-15 5.6252 145.16 25.80 12.4733 508.22 40.74 9.8514 266.77 27.08

glass 0.1281 2.82 21.98 0.2092 5.72 27.34 0.2812 3.52 12.50
Iris 1.4202 21.30 15.00 4.7829 123.56 25.83 7.4811 109.25 14.60

page 4.2141 69.52 16.50 8.497 484.15 56.98 8.7017 125.68 14.44
pendigits 462.578 7864.27 17.00 997.23 58865.05 59.03 129.90 20050.39 154.35

pima 0.1173 3.68 31.41 0.4063 75.88 186.76 0.2265 32.75 144.57
sat 170.1563 2034.29 11.96 382.3469 17162.45 44.89 84.8639 4302.16 50.69
seg 10.2047 85.55 8.38 41.0937 1331.47 32.40 7.4577 509.99 68.38

wav 23.103 763.99 33.07 68.2825 8612.65 126.13 8.3548 1199.58 143.58

TABLE III

C-METRIC VALUES FOR MO-GART VS. GART [7]

Database C(MO-GFAM, C(GFAM, C(MO-GEAM, C(GEAM, C(MO-GGAM, C(GGAM,
Name GFAM) MO-GFAM) GEAM) MO-GEAM) GGAM) MO-GGAM)

1Ci/Sq 0.482 0.429 0.417 0.382 0.467 0.362
G4C-25 0.600 0.333 0.550 0.400 0.600 0.542
G6C-15 0.500 0.300 0.700 0.408 0.750 0.408

glass 0.700 0.333 0.675 0.350 0.733 0.358
Iris 0.700 0.150 0.700 0.267 0.600 0.148

page 0.550 0.533 0.717 0.242 0.550 0.408
pendigits 0.350 0.270 0.235 0.218 0.300 0.196

pima 1.000 0.200 0.550 0.400 0.783 0.450
sat 0.592 0.134 0.417 0.199 0.433 0.176
seg 0.348 0.325 0.443 0.341 0.525 0.384

wav 0.767 0.150 0.700 0.183 0.600 0.500

TABLE IV

TOTAL RUN TIME FOR MO-GFAM, MO-GEAM AND MO-GGAM COMPARED TO TOTAL RUN TIME FOR GFAM, GEAM, GGAM

Database MO-GFAM GFAM Gain MO-GEAM GEAM Gain MO-GGAM GGAM Gain
1Ci/Sq 22.6406 68.51 3.03 63.6581 152.13 2.39 39.4752 142.29 3.60

G4C-25 4.4593 52.59 11.79 11.4466 82.99 7.25 9.1047 89.32 9.81
G6C-15 5.6252 92.01 16.36 12.4733 127.15 10.19 9.8514 137.82 13.99

glass 0.1281 1.71 13.32 0.2092 2.26 10.81 0.2812 2.64 9.38
Iris 1.4202 13.48 9.49 4.7829 21.56 4.51 7.4811 22.02 2.94

page 4.2141 52.97 12.57 8.497 60.91 7.17 8.7017 75.03 8.62
pendigits 462.578 1142.43 2.47 997.23 4304.84 4.32 129.90 537.62 4.14

pima 0.1173 0.95 8.10 0.4063 2.41 5.94 0.2265 1.91 8.45
sat 170.1563 508.21 2.99 382.3469 1234.62 3.23 84.8639 329.07 3.88
seg 10.2047 41.93 4.11 41.0937 88.45 2.15 7.4577 64.13 8.60

wav 23.103 147.23 6.37 68.2825 369.38 5.41 8.3548 83.94 10.05
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TABLE VII

MOST ACCURATE NETWORKS AND THEIR SIZES: GAM

MO-GGAM GGAM ssGAM
PCC Size PCC Size PCC Size

1Ci/Sq 99.80 2 99.83 2 94.63 26
G4C-25 75.92 4 75.24 4 74.84 23
G6C-15 85.17 6 84.97 6 85.07 20

glass 76.00 8 73.44 9 68.75 14
Iris 94.90 2 94.85 2 95.21 7

page 96.38 5 96.34 6 94.52 7
pendigits 98.1 88 97.83 108 97.43 87

pima 82.67 2 76.72 2 72.41 3
sat 88.75 106 87.35 118 87.00 81
seg 92.59 13 92.71 17 91.29 31

wav 87.15 4 86.80 4 85.35 11

The MO-GART approach presents a solution to the ca-
tegory proliferation problem in ART. Other approaches to
solve the category proliferation problem in ART have been
proposed before, such as the semi-supervised ART (ss-ART)
approach (ssFAM, ssEAM, and ssGAM). An extensive com-
parison of MO-GART and the ss-ART approach concluded
that the MO-GART approach is more elegant (does not
require tweaking of the ART network parameters), more
effective (produces higher accuracy and smaller size network
solutions), and more efficient (faster) than the ss-ART app-
roach. The results, presented in Tables I and II, indicate that
MO-GART offers clear advantages compared to ss-ART; it is
worth noting that ss-ART is a class of well performing ART
classifiers that compares very favorably with other ART and
non-ART classifiers. The advantage of MO-GART compared
to GART (a related approach to evolve ART networks) is that
MO-GART focuses on two objectives at once. Consequently,
MO-GART does not require multiple GA runs to produce
multiple good solutions to the classification problem, under
consideration, and hence it is more efficient than the GART
approach (as Table IV reveals). Finally, MO-GART is more
elegant than GART because it does not require a user
intervention to specify a-priori the preference towards one
objective (accuracy) versus the other (size).
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