
APHID: A Practical Architecture for High-Performance,
Privacy-Preserving Data Mining

Jimmy Secretan, Anna Koufakou, Michael Georgiopoulos

Abstract—While the emerging field of privacy preserving data
mining (PPDM) will enable many new data mining applications,
it suffers from several practical difficulties. PPDM algorithms
are difficult to develop and computationally intensive to execute.
Developers need convenient abstractions to reduce the costs
of engineering PPDM applications. The individual parties
involved in the data mining process need a way to bring high-
performance, parallel computers to bear on the computationally
intensive parts of the PPDM tasks. This paper discusses APHID
(Architecture for Private and High-performance Integrated
Data mining), a practical software architecture for developing
and executing large scale PPDM applications. At one tier, the
system supports simplified use of cluster and grid resources,
and at another tier, the system abstracts communication for
easy PPDM algorithm development. This paper offers a detailed
analysis of the challenges in developing PPDM algorithms
with existing frameworks, and motivates the design of a new
infrastructure based on these challenges.

Index Terms—Privacy-Preserving Data Mining, Distributed
Data Mining, Cluster Computing, MapReduce

I. INTRODUCTION

Modern organizations manage an unprecedented amount
of data, which can be mined to generate valuable knowl-
edge, using several available data mining techniques. While
data mining is useful within an organization, it can yield
further benefits with the combined data of multiple orga-
nizations. And, in fact, many organizations are interested
in collaboratively mining their data. This sharing of data,
however, creates many potential privacy problems. Many
organizations, such as health organizations, have restrictions
on data sharing. Businesses may be apprehensive to share
trade secrets despite the value of cooperative data mining.
At the same time, privacy concerns for individuals are
rapidly gaining attention. Instead of dispensing entirely with
cooperative data mining, research has instead focused on
Privacy Preserving Data Mining (PPDM), which uses various
techniques, statistical, cryptographic and others, to facilitate
cooperative data mining while protecting the privacy of the
organizations or individuals involved.

However, PPDM research is still in its infancy, and few
practical systems are currently in place. Even if organizations
currently have the legal infrastructure in place for sharing
data, there is a lack of developmental support for PPDM sys-
tems. Organizations attempting to implement PPDM systems
would face a lack of available toolkits, libraries, middleware

Jimmy Secretan, Anna Koufakou and Michael Georgiopoulos are
with the Department of Electrical and Computer Engineering, Univer-
sity of Central Florida, Orlando, FL 32816, USA (phone: 407-882-2016;
fax: 407-823-5835; emails: jsecreta@ucf.edu, akoufako@mail.ucf.edu and
michaelg@mail.ucf.edu).

and architectures that are ready for deployment. The costs
involved are potentially high, because of the lack of famil-
iarity with PPDM technology. In addition, because complex
computation is often required, high performance and parallel
computing technologies are necessary for efficient operation,
adding yet another level of complexity to development. The
purpose of this research is to provide an architecture and
development environment that will allow organizations to
easily develop and execute PPDM software. By borrowing
from familiar parallel paradigms, the architecture aims to
ease the introduction of PPDM technology into the existing
database infrastructure. Furthermore, the system seamlessly
integrates high performance computing technologies, to en-
sure an efficient data mining process.

Because of extensive communication over relatively slow
wide area networks, and because of the large computational
requirements of cryptographic and other privacy-oriented
technologies, resource requirements for PPDM algorithms
can be intense. One study [1] describes taking 29 hours to
build a 408-node decision tree from a 1728 item training set.
While there is much research that discusses available algo-
rithms and techniques in PPDM, few studies focus on high-
performance computational architectures that support them.
Therefore, this research presents a development environment
and runtime system specifically geared toward PPDM.

The contributions of this research are: (1) middleware for
managing the execution of PPDM algorithms across multiple
organizations, (2) the integration of high performance and
parallel computing middleware into the PPDM execution
environment, and (3) a simple development framework for
PPDM software. First in this paper, a brief background
on PPDM and high performance computing middleware is
given. Existing frameworks are analyzed in terms for their
strengths and weaknesses. Then, the model of development
used in the system is delineated and justified. Next, the
design of the PPDM runtime environment is discussed,
followed by the details of the implementation. A PPDM
example of the Naı̈ve Bayes classifier is presented, with an
associated design and sample code for the system.

II. PRIVACY PRESERVING DATA MINING

Privacy Preserving Data Mining (PPDM) concentrates on
how to coherently combine and mine databases to preserve
the privacy of the individual parties’ data. PPDM shares
a common line of research with Distributed Data Mining
(DDM). DDM analyzes the problem of coherently mining
data at multiple sites, while considering processing power,
network transfer, format compatibility and many other issues



encountered in the course of coherently mining disparate data
sets. PPDM adds a privacy dimension to these challenges.
PPDM methods may address individual privacy (i.e. the pri-
vacy of specific customers or patients), or collective privacy,
the privacy of information about an organization’s records
overall (i.e. summary statistics, etc) [2].

First, to support PPDM, there are data perturbation meth-
ods, which obfuscate the original data with random perturba-
tions, but doing it so that the original distributions of the data
can be easily recovered. Another, similar area involves using
signal processing techniques to make approximations of the
data distributions, which more effectively preserve privacy
than access to the raw data. A different approach leverages
Secure Multi-party Computation (SMC) to compute the data
mining functions in a way that is more exact and private,
albeit at the expense of computational efficiency. Because
of these potential advantages, PPDM through SMC is the
focus of the proposed architecture, although much of the
architecture could be applied to other PPDM techniques.

SMC has as one of its pillars Yao’s work to solve the
Millionaire’s Problem [3]. The Millionaire’s Problem is as
follows: two millionaires wish to find who has more money,
but neither wants to disclose his/her individual amount. Yao
proved that there was a secure way to solve this problem
by representing it as a circuit, sharing random portions of
the outputs. Later it was proved in [4], that any function
could be securely computed using this kind of arrangement.
However, using Yao circuits is typically inefficient. The
problem must be represented as a circuit, which may be
large, especially for complex algorithms. Yao circuits are
typically only practical for small sub-problems within the
PPDM process. sub problems. This gives rise to more specific
solutions based on cryptographic primitives such as secure
sums, secure set unions, and secure scalar products [5].

Many machine learning algorithms have been recast into
privacy preserving versions, including decision trees [6],
the Naı̈ve Bayes classifier [7], k-Means Clustering [8],
Support Vector Machines [9], k-NN [10], and Association
Rule Mining [11], just to name a few. It is to support the
implementation of these and future algorithms that APHID
was developed.

III. RELATED WORK

To develop a practical architecture for PPDM, we must
first observe what technologies are available to support the
process. In this section, we examine those technologies. First,
the field of high-performance data mining will provide the
necessary infrastructure and frameworks for the computation-
ally intensive portion of the PPDM process. Next an analysis
of existing DDM middleware and web-services approaches
to data mining will show what principles are worth keeping
in a framework, and which are lacking.

A. High Performance Data Mining on Clusters and Grids

Systems that provide convenient abstractions for simple
development within a parallel environment have received a
great deal of interest in recent years. One of the most popular,

MapReduce [12] is a simplified parallel program paradigm
for large scale, data intensive parallel computing jobs. By
constraining the parallel programming model to only the map
function and the reduce function, the MapReduce infrastruc-
ture can simplify parallel programming. MapReduce versions
of many machine learning algorithms have been developed
including k-means, Logistic Regression, Naı̈ve Bayes, linear
Support Vector Machines, and many others [13].

Concepts within grid computing hope to make the use
of computational resources, even those across organizational
and administrative boundaries, as easy as drawing resources
from the power grid. These systems include Networks of
Workstations (NOW) architectures, which take advantage of
idle machines to lower system costs. However, developing the
software to support these architectures can be challenging,
as they are often less reliable, less available, and have fewer
resources than their dedicated cluster counterparts. In [14]
a system for data mining in NOWs is developed, built on
a simple primitive called Distributed DOALL. Distributed
DOALL can be applied to loops that have no loop carried
dependencies or conflicts, loops which are frequently en-
countered in data mining.

Because these technologies are oriented toward trusted lo-
cal environments, they cannot support the PPDM process per
se. However, they are capable of supporting computationally
intensive sub-tasks which are found in PPDM.

B. Distributed Data Mining

Often, separate organizations or multiple sites of a single
organization want to collaboratively mine databases which
are in different geographic locations. Distributed Data Min-
ing (DDM) research develops techniques and architectures to
mine databases distributed across the Internet, while working
within the constraints of limited bandwidth and computing.

A system called the Knowledge Grid (K-Grid), is a com-
prehensive architecture and tool suite for DDM discussed in
[15] and [16]. The core layer of K-Grid is implemented on
top of Globus [17] services. K-Grid follows a collection-of-
services approach: that is, the functions of the middleware
are available as numerous services, which the application
employs. The core layer is responsible for managing the
metadata about data sources, algorithms and mining tools,
as well matching the requirements of the data mining tools
with the necessary grid resources. The high level layer of the
K-grid software is responsible for orchestrating the execution
algorithms and the production of models.

One of the most comprehensive DDM systems is the
DataMiningGrid [18] software. It provides functionality for
tasks such as data manipulation, resource brokering, and
parameter sweeps. It was developed to encourage grid trans-
parency, the adaptation of current code to be grid enabled,
through a service oriented architecture (SOA). The authors
emphasize that extensibility is important to DataMiningGrid,
and that developers should be able to add new components
without adversely affecting the existing large components
and implementations in the system.



Systems like K-Grid and DataMiningGrid provide ex-
cellent frameworks for unifying the data mining resources
of several organizations. However, they are not specifically
designed to ease the complexity of developing distributed
algorithms, but mostly for devising multi-stage distributed
data mining processes. Furthermore, they offer no additional
support for PPDM algorithms.

While DDM frameworks cannot be immediately adapted
to the needs of PPDM, they still share much in the way of
concerns and challenges. Performance, scalability, portability
and cost of development are concerns for both disciplines.
Therefore, we can emulate some of the techniques of DDM
systems to apply to a PPDM framework.

The authors of [19] advocate having the most flexible
architecture possible to support DDM. They mention that
new algorithms should be included easily, the system should
integrate relational and data mining operators, and the system
should integrate interoperability and resource management
mechanisms. They argue that DDM architectures should be
built not to support a specific kind of data mining paradigm
(classification, ARM, clustering, etc), but should instead offer
a broad base of support, much like an operating system.

The system described in [20] emphasizes scalability and
portability. The system uses Java for the language, RMI for
the intercommunication, XML for much of the storage, and
JDBC for database connections. While this is put together
into a flexible and efficient framework, the fact that a
language choice is imposed may limit a company’s ability
to adapt current infrastructure to DDM environments, and
therefore may hinder adoption.

SOAs are gaining popularity in DDM. In this paradigm,
data sets and algorithms can be viewed as independently
hosted services, called whenever they are needed. The system
in [21] uses an execution framework in conjunction with a
registry of algorithms and databases to complete a large-
scale data mining task, by matching tasks to be executed
to available services. SOAs decouple DDM systems, by
allowing various parts of the applications to be hosted in
different environments.

C. Architectures to Support PPDM

Systems to support an SMC-based PPDM process have
begun to appear in the literature. TRIMF [22] proposes
a runtime environment to support privacy preserving data
access and mining. Built on top of a service oriented architec-
ture and communicating over JXTA peer-to-peer technology
[23], TRIUMF aims to provide an ensemble of related
services for PPDM. TRIMF also supports fine-grained access
control where each party can specify which data is accessible
and to whom. While TRIUMF can enable efficient PPDM
processes, and scale to many parties, it does not suggest a
framework with which to implement PPDM algorithms.

In [24] the authors suggest a hierarchical structure com-
bining P2P and grid concepts in order to efficiently support
PPDM. Peers within virtual organizations (VO) communicate
locally, and then use super-peers to communicate among the
VOs. While an architecture resembling this has tremendous

potential for facilitating large-scale PPDM, it is not clear
exactly how a system like this would operate, and what kind
of programming model it would use.

The system described in [25] suggests that PPDM spe-
cific services be offered as services built on the K-Grid
architecture [15], [16]. While the authors do not provide
details on how this would be implemented, or communication
framework developers would use, we do adapt the approach
of providing PPDM services in our system.

Domain specific languages for SMC have the potential
to free the user from the details of the execution and
implementation. Fairplay [26] is a domain specific language
for secure computation. Fairplay generates secure circuits in
a Secure Hardware Description Language (SHDL) and then
executes those circuits.

While domain specific languages can potentially ease the
development of PPDM algorithms, they also have drawbacks.
The new domain specific systems present a problematic
learning curve to developers who are trained in the use of
standard languages. In addition, systems that automatically
generate SMC algorithms, are also implicitly parallelizing
the computation; automated parallelization can only find
mechanical ways of distributed the computation and does not
make decisions to refactor the overall computation in more
efficient ways. The use of specialized languages can inhibit
developers from leveraging existing code for PPDM projects.
Finally, the SMC languages surveyed do not offer the ability
to leverage high-performance computing resources available
to organizations. Therefore, their scaling can be limited for
large data mining applications.

IV. APHID
Reviewing the literature and available software to support

PPDM, it is clear that there is a significant barrier to develop-
ing PPDM applications. The first of these impediments is that
there are no standardized libraries to support PPDM. Sec-
ondly, organizations would need a middleware framework to
support PPDM, which is not sufficiently provided in current
systems [27], [15], [18]. Even with the availability of such
frameworks, simple development environments are lacking;
it is especially difficult to integrate the PPDM level of mining
with the use of local high-performance computing resources
(e.g. grid, clusters and specialized hardware). APHID (Ar-
chitecture for Private and High-performance Integrated Data
mining) seeks to overcome these limitations. The design is
influenced by several desiderata, which have been explicitly
identified in the literature or found lacking in other systems.
The system must have:
• Low development cost [20]
• A runtime environment for executing algorithms (as in

[27], [15], [18], [22], [25])
• The capability to leverage high-performance computing

resources whenever possible (as in [12], [14] and others)
• Flexibility to support an array of PPDM algorithms

(emphasized in [19])
• Support many popular languages (addressing the em-

phasis for portability in [20])



• Simple abstractions to mitigate the complexity of PPDM
development

To support low development cost and language indepen-
dence, DDM/PPDM functions are provided as a collection of
web services (as suggested in [15], [18], [22], [25]), which
can be called by the application program. To begin with,
web services libraries are available for almost every popular
language in use, so the services can be implemented in any
language or platform, and consumed by a different language
or platform. Provide a set of frequently used services reduces
development effort and hence cost, for implementing a new
algorithm. In charge of these services is a set of master
services, the Main Execution Layer (MEL), discussed in
section IV-C. MEL orchestrates the execution of the PPDM
algorithm, providing the necessary runtime environment.

APHID is explicitly built on a two-tier system of PPDM,
which differentiates it from other systems. On the first tier,
different organizations (also called parties in the PPDM
context) communicate with each other, typically using secure,
privacy preserving communications. The second tier includes
grids and clusters within a particular party. Treating these
tiers distinctly helps the developer to manage the complexi-
ties inherent in each level (see figure 1 for an illustration).

Party 1 Party 2

DDM/PPDM Tier

Local Grid Tier

Fig. 1. A two tier PPDM architecture.

The interface to the local high performance machines is
also provided as a set of web services for the individual
functions in the algorithm. Therefore, an algorithm can be
developed once and shared among all of the parties, with
the developers at each individual party providing only what
is necessary to interface with the party’s database and high
performance machines. These services support the require-
ment of leveraging HPC resources.

Figure 2 shows the stack of systems comprising a typical
APHID installation within a single party. Organizational data
to be mined is frequently stored in a relational database
server. Because a relational database manager is typically in-
sufficient for flexible data mining, and because these servers
are often intimately involved in core business processes, this
data is converted and transfered to a high-performance dis-
tributed file system (e.g. HDFS [28], or grid-based storage).
This synchronization should be done periodically and at off
peak times, before it is needed for a data mining process.

The PPDM process begins with a request from a client,
typically as part of a larger application, for the output of a
specific PPDM algorithm (e.g. a classified test point, a clas-
sifier model, a set of clusters, or a set of association rules).
The algorithms are available by unique services representing
the algorithm, a partitioning (vertical, horizontal, or arbitrary)
and a specific implementation.

While the MEL is responsible for initiating the PPDM
process, it will frequently need to use SMC-PPDM primi-
tives (e.g. secure sum, secure scalar products) and perform
compute and memory intensive operations on training data.
The PPDM services layer and the High-Performance Com-
puting (HPC) respectively support these needs. The PPDM
services layer acts as a gateway to external parties. The
HPC services layer is a generic interface that interacts with
a pluggable set of cluster and grid runtime systems (e.g.
MapReduce) to perform the local mining of the database
which will become part of the larger PPDM algorithm. It
will store and access training databases, and submit compute-
intensive jobs through the appropriate channels. Having these
broad collections of service-based functions available, meets
APHID’s requirements for flexibility.

Before describing the functions of each layer in detail,
a notation of analysis must first be established. Then, the
development model around which APHID is structured is
described. Finally, each of the three layers is described in
detail, aided by an example of the code that would be found
at each layer. The code is for the horizontally-partitioned
Naı̈ve Bayes classifier for categorical attributes [7].

A. Notation

To aid in our analysis, we first establish a notation. During
a PPDM operation there are K parties involved, numbered
P 1...P k...PK . In the case of horizontal partitioning, the D-
dimensional training data, X, are divided among the parties,
in some way, such that each party P k owns several D-
dimensional instances of the training data, with that set
designated as Xk and individual points labeled Xk

r .

B. Development Model

Before focusing more closely on each layer of APHID,
a development model must first be established to provide
a simple yet powerful abstraction for PPDM development.
The cornerstones of APHID development are a program style
similar to many HPC frameworks, and policy-attached shared
variables, which mitigate complexity and cost.

1) Program Structure: In order to bridge computations on
a grid or cluster with DDM/PPDM computations, a simplified
interface is needed. Programming hundreds or thousands of
machines of a cluster, typically on local networks, along with
remote DDM/PPDM sites, typically connected on the Inter-
net, has the potential to significantly confuse a developer.
To simplify development, at the cluster/grid level, parallel
development environments like MapReduce are used. At
the DDM/PPDM level, an Single Program Multiple Data
(SPDM) style is used. SPMD is the same programming style
used in implementations of the Message Passing Interface



Cluster Master 

Server 

(MapReduce, 

etc.)

Relational 

Database

Server

Cluster

Local Grid 

Resources

HPC-WS 

Server

Main Execution 

Layer (MEL) 

Server

Client 

Application

PPDM-WS 

Server

Internet 

connections to 

other parties

Relational data 

transferred to 

flat storage

Stores data 

in distributed 

filesystem, 

and submits 

jobs

Requests 

expensive 

operations on 

large data sets

Requests 

classification, 

clustering, etc, 

services

Send/receive to 

other parites

Initiate 

secure 

PPDM 

operations 

among 

parties

Requests 

HPC jobs to 

be executed

Fig. 2. A typical APHID system stack.

(MPI) [29], which is a popular development environment
for distributed programming. The SPMD style is appropriate
because all parties should be able to examine the operations
involved in a PPDM algorithm. For each PPDM algorithm,
there should exist one copy of the code that all parties can
examine, thereby ensuring security.

2) Shared Variables: One technique APHID employs to
simplify PPDM application development is the use of shared
variables. These variables work similarly to those of tradi-
tional shared memory systems, with the exception that they
have a particular policy attached. A policy determines how
and by whom the value may be accessed.

The available policies are shown in table I. The first
policy Intra-Party (IP) creates an intra-party shared variable
only, which is simply a handle that allows the data to be
passed when needed from machine to machine in the stack.
The second policy, Fully Shared (FS), creates variables for
which the unmodified value can be passed among parties.
Finally the Secret Shared (SS) policy creates variables for
which disparate shares are split among several parties. One
example of this kind of sharing is the result of a shared secure
scalar product, as in [30]. At the end of this operation, the
two participating parties each have shares of the final scalar
product value, which are each indistinguishable from random
but whose sum is the full result of the operation.

TABLE I
TYPES OF VARIABLE SHARING POLICIES.

Policy Description
Intra-Party (IP) Only shared within a party, among layers of the

PPDM stack.
Fully Shared (FS) Represents a variable with shared read and/or

write access between at least two parties.
Secret Shared (SS) Represents a variable where independent shares

are given to two or more parties, which com-
bined yield the final result.

The shared variables with policies afford several advan-

tages. First, it makes the sharing and broadcasting of values
among parties relatively transparent. An example is given in
figure 3. All examples are given in language neutral pseudo-
code to reflect that they should be implementable in any
popular language. Line 1 declares a shared variable, and line
2 attaches a policy: in this case, the Vshared is fully shared
between party P1 and party P2. In lines 3–4, executed by
party P1, a value of 1 is written to Vshared. When in lines
3–4, the value of Vshared is read by P2, P2 automatically
requests and caches that value.

float Vshared;1

setPolicy(Vshared,PolicyFS(P1, P2));2

if P == P1 then3

Vshared = 1;4

else if P == P2 then5

R = 1 + Vshared;6

else if P == P3 then7

R = 2Vshared;8

Fig. 3. Example shared variable usage

One of the primary advantages behind shared variables
with policies is that they offer automatic checking for au-
thorization. Figure 3 also gives an example of this scenario.
If code is accidentally written such that it tries to access a
variable locked onto another party (lines 7–8). Upon trying
to retrieve this value, the runtime will throw a security
exception, and the execution will typically be halted.

C. Main Execution Layer

The Main Execution Layer (MEL) is itself a collection of
services. These are the high level services that compromise
the full data mining algorithms themselves (e.g. Naı̈ve Bayes,
k-NN, SVM, etc.) which are then easily integrated into
higher-level applications. The MEL also consists of the



processes that are responsible for directing the execution of
the DDM/PPDM algorithm.

Input: Points in X = Xr∀r = 1...n
Output: Probabilities pyz of an instance with class y

and attribute value z.
Vector< float > ck;1

setPolicy(ck,PolicyIP);2

ck = categoryAttributeCounts(Xk);3

Vector< float > c;4

setPolicy(c,PolicyFS(P 1));5

c = secureSum(P ∗, ck);6

Vector< float > nk;7

setPolicy(nk,PolicyIP);8

nk = categoryCounts(Xk);9

Vector< float > n;10

setPolicy(n, PolicyFS(P1));11

n = secureSum(P ∗, nk);12

foreach (y, z) do13

pyz = cyz/ny;14

Fig. 4. Main service to implement PPDM Naı̈ve Bayes classifier [7]

The algorithm in figure 4 represents the portion of the
Naı̈ve Bayes algorithm which the MEL is responsible for
executing. In lines 1–2 of the algorithm, a variable is created,
only accessible to the local PPDM stack, which stores a
vector of categorical/attribute pairs and how frequently they
occur. The service categoricalAttributeCounts one line 3
is called from HPC services. This value is then passed to
PPDM services (line 6), where is added to the final value c
by secure sum, through a variable which can only be accessed
by P 1. In lines 7–12, similar actions are taken to obtain the
overall counts of points in each category, which are again
summed and given to P 1. Finally, the output probabilities
pyz are determined using the calculated values.

D. High-Performance Computing Services
For interfacing with the training databases, and for re-

source intensive computing conducted during the PPDM pro-
cess, the High-Performance Computing web services (HPC-
WS) provide a generic interface to this functionality. The
HPC layer can be adapted by each party to interface with
their specific HPC installation, which can include clusters,
grids and specialized hardware.

The algorithm given in figure 5 represents a portion of
the Naı̈ve Bayes algorithm which executes in the HPC layer.
This code is in the form of a MapReduce program, which
would interface with a cluster with the training database X
distributed in cluster storage. The map procedure in lines
1–4 take each training point as the value, and its index r
as the key. The map phase simply counts (y, z) pairs of
attributes and class labels for each training point. In the
reduce phase (lines 6–8), these are summed together into a
hashtable responsible for keeping the counts of (y, z) pairs. A
vector of (y, z) pairs and their associated counts are returned
to the calling application within the MEL.

Input: Points in X = Xr∀r = 1...n
Output: Vector of (y, z) pairs and associated counts
HashTable H;1

map(k1 = r, v1 = Xr) begin2

foreach z ∈ Xr do3

collect((y, z), 1);4

end5

reduce(k2 = (y, z), v2) begin6

H(y, z)+ =
∑

v2;7

end8

Fig. 5. MapReduce pseudo-code for categoryAttributeCounts

E. PPDM Services

The PPDM Services (PPDM-WS) is responsible for both
providing primitive DDM/PPDM operations (e.g. secure
sum), but also for providing the send, receive and peer finding
operations on which those operations are built. Developing
this set of services for PPDM is efficient, because most
popular SMC-based PPDM algorithms tend to utilize a
small set of SMC operations. By providing a toolkit of
frequently used operations, as suggested in [5], developers
can easily implement numerous PPDM algorithms. Table II
lists algorithms which utilize popular SMC operations.

TABLE II
EXAMPLES OF SUPPORTED OPERATIONS AT THE PPDM LEVEL.

Operation Reference
Secure Sum [31] [9], [32]

Secure Scalar Product [30] [33], [34], [35], [36], [32]
Yao Circuits [3] [33], [37], [35]

Oblivious Transfer [38] [7], [6]

Figure 6 contains the algorithm for secure sum [31],
implemented in the PPDM services layer to support the Naı̈ve
Bayes algorithm. To simplify the pseudo-code, it is assumed
that the result should end up on party P 1. P 1 starts by
creating a random number (line 2) adding it to its value v1

and sending it along (line 3). Meanwhile, parties P 2 to PK

receive what their previous neighbor is sending, add it to
their respective value, and send it along (lines 5–6). Finally,
P 1 receives the sum from PK , subtracts the random number,
and obtains the final sum v.

V. IMPLEMENTATION

The APHID prototype is implemented in Java, using
Apache Axis2 [39] to handle web services communication.
The MEL, PPDM-WS and HPC-WS layers are implemented
as Axis2 modules, contained within a Tomcat [40] applica-
tion container. The cluster-based MapReduce functionality is
provided by Hadoop [28].

VI. CONCLUSIONS

Through analyzing the shortcomings of available PPDM
runtime architectures and development systems, we designed
a system capable of overcoming those challenges. As the



Input: Parties P 1 through PK , each with values v1

through vk respectively
Output: The sum v =

∑K
k=1 vk

if P == P 1 then1

R = rand() mod F ;2

send(P 2, (v1 + R) mod F);3

v = receive(PK)−R mod F ;4

else5

send(P k mod (K+1),6

receive(P k−1)+vk mod n);

Fig. 6. PPDM service for the secure sum [31].

field of PPDM continues to evolve, yielding new algorithms,
SMC techniques, and support for high-performance comput-
ing, APHID will continue to evolve as well.

REFERENCES

[1] J. Vaidya and C. Clifton, “Privacy-preserving data mining: Why, how,
and when,” IEEE Security and Privacy, vol. 2, no. 6, pp. 19–27, 2004.

[2] S. R. M. Oliveira and O. R. Zaane, “Toward standardization in privacy-
preserving data mining,” in In Proc. of the 3nd Workshop on Data
Mining Standards (DM-SSP 2004), in conjuction with KDD 2004,
2004, pp. 7–17.

[3] A. Yao, “How to generate and exchange secrets,” in Proc. 27th Annual
Symposium on Foundations of Computer Science, 1986, pp. 162–167.

[4] O. Goldreich, S. Micali, and A. Wigderson, “How to play any mental
game,” in STOC ’87: Proceedings of the nineteenth annual ACM
conference on Theory of computing. New York, NY, USA: ACM
Press, 1987, pp. 218–229.

[5] C. Clifton, M. Kantarcioglu, J. Vaidya, X. Lin, and M. Y. Zhu, “Tools
for privacy preserving distributed data mining,” SIGKDD Explorations,
vol. 4, no. 2, pp. 28–34, 2003.

[6] B. Pinkas, “Cryptographic techniques for privacy-preserving data
mining,” SIGKDD Explor. Newsl., vol. 4, no. 2, pp. 12–19, 2002.

[7] M. Kantarcoglu and J. Vaidya, “Privacy preserving naive bayes clas-
sifier for horizontally partitioned data,” in IEEE ICDM Workshop on
Privacy Preserving Data Mining, Melbourne, FL, November 2003, pp.
3–9.

[8] J. Vaidya and C. Clifton, “Privacy-Preserving K-Means
Clustering over Vertically Partitioned Data,” in The Ninth
ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, Washington, DC, August 2003.
[Online]. Available: http://www.cs.purdue.edu/homes/jsvaidya/pub-
papers/vaidya-kmeans.pdf

[9] H. Yu, J. Vaidya, and X. Jiang, “Privacy-preserving svm classification
on vertically partitioned data,” in Pan-Asia Conference on Knowledge
Discover and Data Mining (PAKDD), Singapore, 2006, pp. 647–656.

[10] J. Zhan, L. Change, and S. Matwin, “Privacy preserving k-nearest
neighbor classification,” International Journal of Network Security,
vol. 1, no. 1, 2005.

[11] J. Vaidya and C. Clifton, “Privacy preserving association rule mining
in vertically partitioned data,” in In The Eighth ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, July
2002.

[12] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing
on large clusters,” in In Proceedings of OSDI’04: Sixth Symposium on
Operating System Design and Implementation, December 2004.

[13] C.-T. Chu, S. K. Kim, Y.-A. Lin, Y. Yu, G. Bradski, A. Y. Ng, and
K. Olukotun, “Map-reduce for machine learning on multicore,” in In
the Proceedings of NIPS 19, 2006.

[14] S. Parthasarathy and R. Subramonian, “Facilitating data mining on
a network of workstations,” in Advances in Distributed and Parallel
Knowledge Discovery. AAAI Press, 2000.

[15] M. Cannataro, A. Congiusta, A. Pugliese, D. Talia, and P. Trunfio,
“Distributed data mining on grids: services, tools, and applications,”
IEEE Transactions on Systems, Man and Cybernetics, Part B, vol. 34,
no. 6, pp. 2451–2465, 2004.

[16] M. Cannataro, A. Congiusta, D. Talia, and P. Trunfio, “A data mining
toolset for distributed high-performance platforms,” in Proceedings of
Data Mining 2002, W. I. Press, Ed., Bologna, Italy, 2002.

[17] I. Foster and C. Kesselman, “Globus: A metacomputing infrastructure
toolkit,” International Journal of Supercomputer Applications, vol. 11,
no. 2, pp. 115–128.

[18] V. Stankovski, M. Swain, V. Kravtsov, T. Niessen, D. Wegener, J. Kin-
dermann, and W. Dubitzky, “Grid-enabling data mining applications
with datamininggrid: An architectural perspective,” Future Generation
Computer Systems, 2007.

[19] J. M. P. na and E. Menasalvas, “Towards flexibility in a distributed
data mining framework,” in Proc. DMKD Workshop, 2001.

[20] M. Z. Ashrafi, D. Taniar, and K. Smith, “A data mining architecture
for distributed environments,” in Second International Workshop on
Innovative Internet Computing Systems, June 2002, pp. 27–38.

[21] A. Kumar, M. Kantardzic, P. Ramaswamy, and P. Sadeghian, “An ex-
tensible service oriented distributed data mining framework,” in Proc.
2004 International Conference on Machine Learning and Applications,
December, 2004, pp. 256–263.

[22] W. Ahmad and A. Khokhar, “Triumf: A trusted middleware for fault-
tolerant secure collaborative computing,” University of Illinois at
Chicago Tech Report, Tech. Rep. TR-MSL0786, August 2006.

[23] “Jxta technology,” http://www.sun.com/software/jxta/, 2008.
[24] J. Wang, C. Xu, H. Shen, , and Y. Pan, “Hierarchical infrastructure

for large-scale distributed privacy-preserving data mining,” in In Proc.
of the 5th International Conference on Computer Science, May 2005,
pp. 1020–1023.

[25] W. Ahmad and A. Khokhar, “Towards secure and privacy preserving
data mining over computational grids,” in In Proceedings of the
NSF International Workshop on Frontiers of Information Technology,
December 2003.

[26] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella, “Fairplay - a secure
two-party computation system,” in Proc. of the USENIX Security
Symposium, 2004, pp. 287–302.

[27] S. Bailey, R. Grossman, H. Sivakumar, and A. Turinsky, “Papyrus:
A system for data mining over local and wide area clusters and
super-clusters,” in 1999 ACM/IEEE conference on Supercomputing.
Portland, OR: ACM Press, 1999.

[28] “Welcome to hadoop!” http://lucene.apache.org/hadoop/, 2007.
[29] “Mpi forum,” http://www.mpi-forum.org/, 2008.
[30] B. Goethals, S. Laur, H. Lipmaa, and T. Mielikäinen, “On private

scalar product computation for privacy-preserving data mining.” in
Information Security and Cryptology - ICISC 2004, 7th International
Conference, Seoul, Korea, December 2-3, 2004, Revised Selected
Papers, ser. Lecture Notes in Computer Science, C. Park and S. Chee,
Eds., vol. 3506. Springer, 2004, pp. 104–120.

[31] B. Schneier, Applied Cryptography, 2nd ed. John Wiley & Sons,
1995.

[32] J. Secretan, M. Georgiopoulos, and J. Castro, “A privacy preserving
probabilistic neural network for horizontally partitioned databases,”
Aug. 2007.

[33] G. Jagannathan, K. Pillaipakkamnatt, and R. Wright, “A new privacy-
preserving distributed k-clustering algorithm,” in Proceedings of the
2006 SIAM International Conference on Data Mining (SDM), 2006.

[34] Z. Yang and R. N. Wright, “Improved privacy-preserving bayesian
network parameter learning on vertically partitioned data,” in ICDEW
’05: Proceedings of the 21st International Conference on Data Engi-
neering Workshops. Washington, DC, USA: IEEE Computer Society,
2005, p. 1196.

[35] G. Jagannathan and R. N. Wright, “Privacy-preserving distributed
k-means clustering over arbitrarily partitioned data,” in KDD ’05:
Proceeding of the eleventh ACM SIGKDD international conference
on Knowledge discovery in data mining. New York, NY, USA: ACM
Press, 2005, pp. 593–599.

[36] H. Yu, X. Jiang, and J. Vaidya, “Privacy-preserving svm using non-
linear kernels on horizontally partitioned data,” in Selected Areas in
Cryptography, Dijon, France, 2006.

[37] Y. Lindell and B. Pinkas, “Privacy preserving data mining,” Journal
of Cryptology, vol. 15, no. 3, 2002.

[38] M. Naor and B. Pinkas, “Oblivious transfer and polynomial eval-
uation,” in STOC ’99: Proceedings of the thirty-first annual ACM
symposium on Theory of computing. New York, NY, USA: ACM
Press, 1999, pp. 245–254.

[39] “Apache axis2,” http://ws.apache.org/axis2/, 2008.
[40] “Apache tomcat,” http://tomcat.apache.org/, 2009.


