
Proceedings of International Joint Conference on Neural Networks, Atlanta, Georgia, USA, June 14-19, 2009

An Efficient Active Set Method for SVM Training without
Singular Inner Problems

Christopher Sentelle, Georgios C. Anagnostopoulos and Michael Georgiopoulos

Abstract- Efficiently implemented active set methods
have been successfully applied to Support Vector Machine
(SVM) training. These active set methods offer higher
precision and incremental training at the cost of additional
memory requirements when compared to decomposition
methods such as Sequential Minimal Optimization (SMO).
However, all existing active set methods must deal with
singularities occurring within the inner problem solved
at each iteration, a problem that leads to more complex
implementation and potential inefficiencies. Here, we in
troduce a revised simplex method, originally introduced
by Rusin, adapted for SVM training and show this is an
active set method similar to most existing methods with
the advantage of maintaining nonsingularity of the inner
problem. We compare performance to an existing active
set method introduced by Scheinberg and demonstrate an
improvement in training times, in some cases. We show our
method maintains a slightly simpler implementation and
offers advantages in terms of applying iterative methods
to alleviate memory concerns. We also show performance
of the active set methods when compared to state-of-the
art decomposition implementations such as SVMLight and
SMO.

I. INTRODUCTION

EFFICIENTLY implemented active set methods have
been introduced for solving the quadratic pro

gramming problem associated with the Support Vector
Machine (SVM) [1], [2], [3], and [4]. The active set
method does not rely on decomposition strategies such
as in SMO [5] and SVMLight [6], naturally supports
incremental training, and provides solutions with in
creased numerical accuracy. As pointed out in [7],
the active set method is generally ideal for small to
medium-sized problems; nevertheless [1] also points
out that the active set method is ideal for problems with
dense Hessians, as is the case for the SVM problem.

At the core of existing active set implementations,
the following generalized system of equations, or inner
problem, must be solved at each iteration

(1)

where Qss represents a subset of the original kernel
matrix Q defined as Qij == YiyjK(Xi, Xj), K(,) is a Mercer

Christopher Sentelle gratefully acknowledges the support of the
College of Engineering & Computer Science and the 12Lab at the
University of Central Florida. I would like to thank Ruben Ramirez
Padron for his assistance and insightful suggestions.

This work was supported in part by NSF grants: 0341601, 0647018,
0717674, 0717680, 0647120, 0525429, 0806931.

978-1-4244-3553-1/09/$25.00 ©2009 IEEE

kernel, and Ys is a subset of y where y is a 1x 1 vector
of labels for 1 data points and Yi E {I, -I}. The Mer
cer kernel, and, therefore, Q is positive semidefinite.
This system can be singular and the amount of rank
deficiency depends upon the selected kernel and the
selection of entries within the sub-matrix Qss.

Existing active set implementations employ various
mechanisms to contend with rank deficiencies and have
been shown to be successful from a practical stand
point. For example, the SVM-QP algorithm introduced
in [1] detects rank deficiencies and chooses a prescribed
infinite descent direction. In practice, this does not
prevent convergence; however, it has the potential to
create inefficiencies in the form of additional iterations.

In this paper, we adapt a revised simplex method
for quadratic programming, introduced by Rusin [8], to
SVM training, which provides theoretical justification
for non-singularity of the inner problem solved at each
iteration. We will show that the algorithm differs, not
in the pricing strategy, but in how the inner problem is
formed and solved.

The rest of this paper is organized as follows: In
Section II we present the algorithm and discuss the
guarantees of non-singularity, experiments and results
are presented in Section III and, finally, Section IV
concludes the paper.

II. ALGORITHM

The following soft-margin dual formulation of the
SVM optimization problem is typically solved [9]

min ~aTQa-lTa

s.t. yT(X == 0

o< (Xi < C Vi

where C is a regularization parameter, IT is a vector
of all ones, (X is a 1x 1 vector of Lagrange multipliers
associated with 1constraints in the primal problem and
Q is the kernel matrix. If the kernel function is positive
semi-definite, and, therefore, the matrix [Qij] is positive
semi-definite, then this formulation represents a convex
optimization problem.

The problem statement for the revised simplex
method for quadratic programming, as discussed in

2875

Rusin, is of the following form

min pTX- !xTQx
2

s.t. Ax == b

x~o

(2)

Note that Is appears twice since both as and s, com
ponents are non-zero for non-bound support vectors.
Substituting (5) into (4) and noting from (3) that the
effective entries for QB corresponding to the slack
variables 5 are zero results in the following

where we have added the vector, 5, of slack variables
to handle the inequality constraint a ~ C. At each
iteration of the revised simplex method in Rusin [8],
the following problem is solved

where p is a n x 1 vector of linear costs, x is a n x 1
vector representing the variables to be solved, Q is a
n x n matrix of quadratic costs, A is a m x n matrix
consisting of m constraints applied to n variables and b
is a mxl vector representing the constant offsets for the
constraints. In this problem, Rusin assumes the prob
lem is convex and Q is negative semi-definite. We can
adapt the SVM quadratic programming problem into a
form compatible with the revised simplex method with
the use of slack variables, as follows

where QB is the sub-matrix of Q corresponding to basic
variables, ai is the column of A for the variable entering
the basis and qi is the corresponding column of Q, and
the basis matrix, B, is formed from the columns of the
constraint matrix, A, corresponding to basic variables.
Recall that the basic variables are non-zero variables.

For the SVM formulation, basic variables consist of
those components of a or 5 which are non-zero. In the
case of a non-support vector, s, == C and ai == 0, for
a non-bound support vector, s, > 0 and tx, > 0 and
for the case of a bound support vector, s, == 0 and
ai == C. We can partition the vector a into ao, as and
ae for non-support vectors, non-bound support vectors,
and bound support vectors, respectively. Similarily, we
have components for 5 which are 50, s, and s., We
define columns of the identity matrix belonging to each
type of variable as 10, Is and L, where 10, for example,
contains the columns of the identity matrix associated
with non-support vectors. The vector y is also broken
down into yo, Ys and Ye·

Therefore, the corresponding basis matrix B for the
SVM formulation, consisting of only the columns,
where a or 5 are non-zero, can be written as

(7)

(8)

(-y~r ~)(i~l)= (~i)

ge == qci - Yeg~ + Qeshsl

hi == -1

(-y~r ~)(~~1) = (~~i)

ge == -qci - Yego + Qeshsl

hi == 1.

-Qss -Qse 0 0 Ys 1s
T hs1 qsi

-Qes -Qee 0 0 Ye leT he qci
0 0 0 0 00

1
0
T ho 0

0 0 0 0 Os 1s
T hs2 0

ysT YeT OoT OsT 0 0 g~ Yi
Is r, 10 Is 0 0 g ei

Once again, the unspecified components of h, and g are
set to zero and hi == 1 implies ai is decreasing from C.

To find the pivot variable at each step, we must
compute the reduced price of the non-basic variables,
which, in our case, correspond to non support vectors
where aj == 0 or to bound support vectors where Sj == o.

(6)
where we have separated h into components hs, he and
h., and there are h, components, hs1 for the a variables
associated with a non-bound support vector and hs2
for the corresponding slack variables. The value, g~ is
used to denote the component of g corresponding to an
update in~, the Lagrange multiplier associated with the
yT a == 0 constraint. The vector ei is a unit vector with
a 1 in the location corresponding to the variable being
added to the basis. Qss refers to the square portion of
Q for the non-bound support vectors, Qee is the square
portion for bound support vectors, and Qes contains the
rows of Q corresponding to bound support vectors and
columns corresponding to non-bound support vectors.

Since slack variables are related to the original vari
ables by ai == s, + C and hs1 == -hs2, we can deal
with the slack variables, implicitly, from here on out.
At each iteration, then, we will either be increasing
a component, o; from 0 or decreasing the component
from C. For the case where a non-support vector enters
the basis (ai is increased from 0) the following system
of equations is solved.

Note that h., == 0, he == 0, gs == 0, and go == o. The fact
that hi == -1 indicates the corresponding variable a; is
increasing. For the case where a bound support vector
enters the basis (ai is decreased from C) we solve the
following

(5)

(4)

(3)

min (-tT OT)(~) - ~ (aT ST)(-~ ~)(~)
s.t. aTy == 0

a+5==Cl

a ~ 0, 5 ~ 0

2876

Per Rusin, the pricing computation is performed as
follows

5· == p' - TIT a· - xTq.]] J J.

Using the SVM formulation, we can compute pricing
for aj == 0 and Sj == 0 as follows, for aj == 0

5j == -1 - TIoYj - TIj+l - qjsas - qjcac (9)

and as follows, for S j == 0

the number of constraints. For the SVM QP problem,
we have m == n + 1 constraints, where n is the number
of training data points. We can include all of the slack
variables s in the set of basic variables and arbitrarily
select al to enter the basis. This corresponds to initializ
ing al as a non-bound support vector and all remaining
variables as non-support vectors. Having selected al as
a basic variable, we can compute the initial values for
TI and a as follows

(10)

From the following equation, in Rusin, we can compute
TI

PB - BTI - QBXB == 0,

which for the SVM formulation becomes

ai == 0 Vi

s, == C Vi

TIo == -Yl

Since the slack variables are dealt with implicitly and
TIo == ~, we have

We immediately observe that TIo == 0 and TIs == 0 and
we can simplify (9) to

50 == -1 - TIoYo - Qosas - Qocac. (12)

We observe for (10) that we are referencing the compo
nents TIc which, from (11) can be solved to give

and, upon substituting this expression for TIc into (10)
yields

5c == i, + TIoYc + Qcsas + Qccac. (13)

We can create a pricing vector of size n and compute
(12) for non-support vectors and compute (13) for
bound support vectors. The reduced cost is, of course,
zero for non-bound support vectors. Furthermore, since
TI is only non-zero for the bound support vectors, and
since we only need this for pricing, we can avoid the
computation of gc in (7) and (8), since this is only
used as an update to TI. Another observation is that the
variable TIo, which is the Lagrange multiplier associated
with the equality constraint yT a == 0, is really the bias,
~, from the primal SVM problem, and we can update
this using g~ at each iteration.

Note that the components as of a corresponding
to the non-bound support vectors will alter at every
iteration, and, therefore the computation Qcsas and
Qssas cannot be avoided at each iteration. However,
the quantities Qocac and Qscac need not be computed
at each iteration and can be updated as bound support
vectors are added and removed from the problem.

Finally, the revised simplex method must be started
from an initial basic feasible solution. The typical strat
egy is to apply a phase I/phase II approach as described
in [7]. In our case, the goal is to find a basis matrix B,
which is non-singular and of size m x m, where m is

where we have reused the notation 10 , Is, and I; to
denote index sets for the non-support, non-bound sup
port, and bound support vectors. The details of the
algorithm we call SVM-RSQP (SVM-Revised Simplex
Quadratic Programming) are found in Algorithm 1.

A. Guarantee of non-singularity

In Rusin [8], Theorems [1-3] provide a guarantee
of non-singularity of the basis matrix, (4), and extend
quite easily to the matrix in (7) and (8). It can also
easily be shown that Qss will have at most a single
zero eigenvalue, which we show, later, still has to be
detected in our algorithm. The important point is that
there will be no more than one zero eigenvalue and
both (7) and (8) will always have a finite solution.

This algorithm can be seen as an enhancement to
the algorithm reported by Scheinberg, SVM-QP, [1]. For
this reason, it makes sense to compare the two algo
rithms in order to highlight the important differences
that guarantee non-singularity. First, we note that the
pricing step is identical between the two methodolo
gies, and, in fact, the pricing step has no bearing on
the maintainenance of non-singularity and speed-up
methodologies such as partial pricing, sprint [1], and
shrinking [6] are equally applicable to both.

The first important difference is in the initial calcula
tion of the descent direction given an index to a variable
being added as a non-bound support vector. In SVM
QP, the optimal solution, given the current set of free
variables is computed as

(-y~;S ~)(~:) = (-l~;c?;:ac) (14)

and subtracted from the current solution to obtain a
descent direction,

ai == 0 Vi

~ == -Yl
10 == {2.. .N},Is == {1},Ie == 0

(
a - a*)

d = f3 - f3* .

-Qsc 0
-Qcc 0

o 0
o 0

[
YS IS] [-QSS
Yc r, (TIo) _ -Qcs
Os Is TI 0
00 10 0

2877

23

29

28

In this respect, SVM-QP and SVM-RSQP are quite
different. To highlight the differences, we can rewrite
(14) using h == as - as * and g~ == ~ - ~* as follows

(-y~r ~)(~) = (-Is + Qscac; Qssas - ~Ys).

In (14), Qss includes the newly added variable iden
tified immediately after pricing. In (7), for example,
we compute the descent direction h and g~ directly,
and as result, Qss does not contain the newly added
variable. It can be shown, quite easily, however, that
these two computations are equivalent, if we choose the
component of as * corresponding to the newly added
variable in (14) to be -1 and assume complementarity
of the remaining basic variables, i.e., 5s == o.

In both algorithms, the inner problem is repeatedly
solved to find a direction of descent, and variables are
removed from the set of non-bound support vectors
that reach 0 or C, until the optimal solution for the
newly added variable is found. In the case of SVM
QP, each time a variable is removed, (14) is re-solved
to produce a new descent direction. On the other
hand, SVM-RSQP solves the following after removing
a variable and forming a new Qss matrix.

The expression -Is + Qscac + Qssas - ~Ys represents the
pricing value for non-bound support vectors. If com
plementarity were maintained, this expression would
equal zero and only a trivial solution to g and h
would be available unless Qss were singular. In fact,
complementarity is not maintained in the case of SVM
QP until the inner iterations, represented by the inner
while loop in SVM-RSQP, have completed and the
pricing step is again reached. SVM-RSQP, on the other
hand, maintains complementarity for all of the non
bound support vectors with the exception of the newly
added variable, during the inner iterations. The main
tenance of the complementarity conditions by SVM
RSQP is an integral part of Theorem 2 in Rusin, which
provides a guarantee of non-singularity as variables are
removed from the basis.

B. Solution of the Inner Problem

When Qss is strictly positive definite, we can simply
solve (7) or (8) as follows and as introduced in [1]

which gives us a set of equations

Algorithm 1: SVM Revised Simplex Training

25

21

20

27

26

22

24

30

35

31

34

32

36

33

39

38

37

16

17

14

18

15

19

Input: Dataset X E ~nzxn, kernel matrix K, labels,
y, stopping criterion tal

Output: a, b
1 ai f- 0 Vi
2 ~ f- -Yl
3 10 f- {2... N}, I; f- 0, Is f- {I}
4 while true do
5 Calculate the reduced cost, 5j using (12), (13)
6 i == arg min. 5j
7 if 5i ~ tal then
8 L stop

9 if i E 10 then

10 solve (-y~r ~)(i~1)= (~i)

11 hi f- -1
12 Y f- -qii - Yig~ + q~hSl

13 else if i E l; then

solve (-Q;s YOs) (hs1) == (-qsi)
~ ~ -~

hi f-1
Y f- -qii + Yig~ - q~hSl

Is f- Is U {i}
while 5i < -tal do

e~ min {~ Ihj > 0, a~~c Ihj < o}
~ f- ~ - Bg~

a f- a - Bh
• {(Xj (Xj-C }r f- argmmj hj I hj > 0, hi I hj < 0

if Y ~ 0 or B < ; then
if h, < 0 then
L Ie f- Ie U {r}

else
L10 f- 10 U {r}

Is f- Is \ {r}
5i f- 5i - By

else

l~i:bbreak

if i E 10 then

lsolve (-y~r ~)(i~1)= (~)
Y f--1

else if i E I; then

lsolve (-y~r ~)(i~1)= (-;i)
Y f--1

-Qsshs1 + Ysg~ == u

Ys Ths1 == v.

2878

where

r Trl - Uo

g~ == rT r - Yz s,O

T Trz rl + v - rz rzg~
hn» == -------

, Ys,o - rzTr

Rhs1,r == rzg~ - rl - rhs1,0

where rl and rz are defined as

We can multiply the top equation by YsTQss-l and add
the bottom equation to obtain

TQ -1 TQ -1Ys ss Ysg~ == Ys ss u + v.

Solving for g~ we obtain

YsTQss-lu + V

g~ == TQ -1 .
Ys ss Ys

Given that Qss is non-singular, and, therefore, posi
tive definite, a Cholesky decomposition can be formed
Qss == RTR, leading to the following expression

rlT rz + v
g~ ==

rlT rz '

R - T
rl == Ys
rz == R-Tu

and, once we solve for g~, we can obtain hs1

Rhs1 == rlg~ - rz·

In the case where Qss is singular upon adding a new
variable to the basis, we can alter the Cholesky factor
ization, subject to permutation, as follows,

o; = (~; ~)(~ ~).
When forming the Cholesky factorization Qss, if the
last column is linearly dependent on the remaining
columns, a zero will appear in the last diagonal entry.
Note that Qss will never have more than a single zero
eigenvalue since the basis matrix is guaranteed to be
non-singular. With this new factorization, we solve the
following

[

- RTR - RTrys,r] [hS1,r] furl
-rT~ -rTr Ys,O hs1,o = Uo

Ys,r Ys,o 0 g~ v

where Ys,o is the last component of Ys and Ys,r consists of
the remaining components and similarly for Uo versus
u, and hs1,0 versus hs1,r. It is straight forward to show
the following

rl == R-Tu,

R - T
rz == Ys,r·

As the active set method progresses, a single row and
column are added to the basis matrix at a time. As a
result, rather than recalculating the Cholesky factoriza
tion, a rank-one update of an existing factorization can
be performed as described in [1] and [10].

III. EXPERIMENTS

In this research, we chose to compare the revised sim
plex method (SVM-RSQP) with the active set method
implemented by Scheinberg (SVM-QP) and two state
of-the-art SVM training algorithms, SVMLight and LIB
SVM.

The active set methods tend to provide more accu
rate solutions than the decomposition methods. During
testing, our observation was that raising the toler
ance did little to change the accuracy of the over
all solution. As a result, we set the accuracy tol
erance for all algorithms to 10-6 to enable a fair
comparison between the algorithms, although a much
smaller tolerance, typically 10-3 may be sufficient for
classification accuracy. All algorithms employ shrink
ing and 500 MBytes for kernel caching. SVM-QP
was downloaded from https://projects.coin-or.org/SVM
QP and converted from Fortran to C++ to allow a
fair comparison with SVM-RSQP, also implemented
in C++. Both SVM-QP and SVM-RSQP were con
figured to use sprinting [1]. The following datasets
were used for comparison: adult-la obtained from
http://research.microsoft.com/jplatt/smo.html, abalone,
letter-g, spam, and splice obtained from UCI [11], and
ocr-O and ocr-9 obtained from the United States Postal
Service (USPS) OCR dataset [12].

In adult-la, the sex attribute (male/female/infant) was
mapped to a set of binary attributes (I, 0, 0), (0, I, 0),
and (0, 0, I), respectively. For the abalone dataset, age
was thresholded at 10 rings (1.5 rings per year) to create
a binary classification problem, The letter dataset from
UCI was converted to a binary classification problem by
choosing to classify the letter "G" from the remaining
letters to create the letter-g data set and similarly, ocr
o and ocr-9 were modifications of the ocr dataset to
detect the digit "0" or "9" from the remaining digits.
For all of the datasets, all numerical attributes were
scaled between -1 and 1.

Each dataset was tested using both the RBF kernel
and the linear kernel with an appropriate range of
values for C and for the RBF kernel parameter, y, where
the RBF kernel is defined as the classical Gaussian
kernel, exp(-yllxi -xjll~). In practice, it is not uncommon
to perform training across a range of parameters (grid
search) to find the parameters yielding the highest test
performance. In light of this, we compare the total
training time for the set of parameters. The range of pa
rameters were not optimized for each of the individual
data sets, and, therefore, results might differ if apriori
knowledge is included in the grid search. However,
we also compare training times for the optimal set of
parameters discovered during the grid search. Table I
gives the range of parameters employed for each of the
kernel types.

We do not report on training or testing accuracy
since, unlike many other neural network technolo-

2879

gies, different training algorithms do not yield differ
ent solutions in terms of the separating hyperplane
and margin width. The convexity of the optimization
problem provides for a single, global minimum (albeit
semidefiniteness may yield multiple solutions for the
same minimum). Since various optimization algorithms
will only vary in their numerical stability, convergence
properties, and precision, we can readily compare per
formance by directly observing the final solutions along
with training times.

TABLE I: Range of testing parameters for
C and y

Kernel Range of Para me ters

linear [Og2(C) = [- 3 : 2 : 13]
rbf [Og2(C) = [-5 : 2 : 17],log2(Y) = [- 5 : - 2: - 15]

Figure 1 depicts the total training time required for
performing a grid search while Figure 2 depicts the
training time for the optimal settings yielding the best
generalization performance.

The first observation we make is that LIBSVM fails
to converge when performing the grid search on the
letter-g and spam datasets when applying the linear
kernel and fails to converge, with the optimal setting
for C and the linear kernel for the spam dataset. In the
case of letter-g, with a linear kernel and C = 8, we note
LIBSVM takes on the order of 10,000 seconds to con
verge. For spam, LIBSVM did not converge properly
for a value of C greater than 2.0 although the training
time at C = 2.0 is 1.64 seconds.

Of course, restricting the parameter search space
during the grid search may alleviate issues with con
vergence for these datasets and allowing a lower termi
nation criterion may help with the spam and letter-g
datasets for the optimal settings. However, this shows
that the active set methods do, indeed, provide in
creased accuracy, speed, and numerical stability when
compared to SMa.

SVM-RSQP performs worse than both SVMLight and
LIBSVM for the ocr-O and ocr-9 datasets, with the rbf
kernel, in terms of total training time. This poor perfor
mance occurs when the number of non-bound support
vectors begins to increase dramatically at y = 2-5• In
this situation, the time taken per iteration is dominated
by the solution of the inner problem rather than the
pricing step, which is normally the case . A similar
scenario appears to occur for the adult-la and splice
data sets when training with the optimal parameters.
Overall, it appears that SVM-RSQP is never more than
a factor of about 3 to 4 times slower than LIBSVM and
SVMLight for the chosen data sets and chosen tolerance
while it is often orders of magnitude faster in other
cases .

When comparing SVM-RSQP with SVM-QP, we ob
serve SVM-RSQP performs better or is comparable

.,
, I

...
I,

+,'>. - -+--..
\ ", ., / ,

I / ,..

':I,
I I
I,
I ,

I I
I ,
I ,

I' , /~. "
'/ ' \

J \ \," . ~ .,.... "

, --~ \
-------------- ~----------~-~-~~~~~

I I
I \ •

I \ i v.
I \ i \ /~

... Ii \ / ',
/ , \ .', \ /

~/ I " 1 \

/ ," , ! •
I J \ I

. / I \,'

/ I I
lOC J _

10'

10'

10'

10'

Q
;;
a:

10'

10'

Fig. 2: Ratio of the training time for optimal settings.
The numerator of this ratio is the time required to run
the algorithm (LIBSVM, SVM-QP, or SVMLight) with
its optimal parameter settings, while the denominator
of this ratio is the time required to run the SVM
RSQP algorithms with its optimal parameter settings.
Consequently, this ratio for the SVM-RSQP algorithm
is a straight line at the level of 1.0. The ratio scale is
logarithmic.

Fig. 1: Ratio of the total training time. The numerator
of this ratio is the total training time of the specific al
gorithm used (LIBSVM, SVM-QP, or SVM Light) while
the denominator of this ratio is the total training time
for the SVM-RSQP algorithm. Consequently, the ratio
corresponding to the SVM-RSQP algorithm is shown
as a flat curve at the level 1.0. A missing symbol
corresponding to an algorithm indicates that the cor
responding algorithm did not converge properly (e.g.,
see LIBSVM for the letter-g dataset). The ratio scale is
logarithmic.

2880

to SVM-QP in terms of training time. SVM-RSQP is
approximately 10 times faster than SVM-QP for the
spam and letter-g datasets when using the rbf kernel.
Looking closer at the spam dataset, we notice that
SVM-RSQP is typically no more than 1 to 2 times faster
than SVM-QP with the exception of two cases for high
values of C where SVM-QP failed to properly converge
and eventually terminates after failing to converge
within 27,000 iterations. A similar phenomenon occurs
for the letter-g dataset for C ~ 512 and y < 3 X 10-5

where SVM-QP fails to converge within a large number
of expended iterations. On average, however, SVM
RSQP appears to be no more than 3 times faster for the
remaining cases. For the optimal settings, SVM-RSQP
is no more than 3 times faster, on average, and has
comparable performance with SVM-QP in the worst
case.

TABLE II: Performance for Forest Covertype

Algorithm Time Iter NSVa NBSVb bias

LIBSVM 31,396 359,336,873 38021 36772 -11.167
SVMLight -c

SVM-QP 12,145 166,961 38051 36765 -11.825594
SVM-RSQP 6,839 117,331 38053 36767 -11.414945

a Number of support vectors
b Number of bound support vectors
C SVMLight failed to converge
d Since we are comparing numerical optimization techniques

training/testing accuracy is not reported

We are also interested in the performance of the new
algorithm for large datasets. Here, we chose to explore
performance using the Forest Covertype dataset. We
modified the dataset to extract types 1 and 2 for a
binary classification problem (these types are the over
whelming majority of instances within the data) and
50,000 samples were randomly drawn from each class
to create a total of 100,000 data points. A grid search
was performed to find the optimal settings for C and
the kernel (RBF kernel) and those settings were applied
here. These results are reported in Table II. We note
that SVM-RSQP is faster than the remaining algorithms
including the SVM-QP algorithm. In the case of SVM
QP, we see that SVM-RSQP is taking a considerable
fewer number of iterations to converge, suggesting
that the singularities encountered by SVM-QP may be
creating some inefficiencies in terms of convergence.

In summary, active set methods such as SVM-RSQP
provide more accurate solutions and can outperform
decomposition algorithms in certain scenarios as ob
served, here. However, the active set methods must
store a factorization which has a memory requirement
of O(n;), where n, is the number of non-bound support
vectors. This can be of concern for very large datasets
where the number of non-bound support vectors can
be large, even if the fraction is small. In addition, both
active set methods show reduced performance when

compared to the decomposition methods in scenarios
where the number of non-bound support vectors are a
large fraction of the total number of support vectors,
although this was minimal for the cases considered.
These cases often represent scenarios where reduced
generalization performance will occur.

SVM-RSQP, however, tends to exhibit slightly better
efficiency in terms of convergence when compared to
SVM-QP and appears to be more numerically stable
in some scenarios where SVM-QP fails to converge.
While in some cases SVM-RSQP does not appear to
have much advantage from a practical standpoint,
SVM-RSQP is slightly easier to implement as the ad
ditional cases where singularities occur do not have
to be handled. An additional advantage is that SVM
RSQP offers the possibility of implementing a simpler
iterative method to alleviate the memory concerns.

IV. CONCLUSIONS

In this work, we derived a new, efficient active
set algorithm for SVM training based upon the Re
vised Simplex method for quadratic programming in
troduced by Rusin [8] which provides a guarantee of
non-singularity of the basis matrix solved during each
iteration. This is unlike existing active set methods
which must contend with the singularities. These algo
rithms have successfully demonstrated they can deal
with these singularities in a practical manner and still
provide proofs of convergence; however, there may still
exist some level of inefficiency as we demonstrated
when comparing training times between SVM-RSQP
and SVM-QP. In addition, our new algorithm algorithm
is slightly easier to implement as it no longer contains
the logic for detecting singularities and producing a
prescribed infinite descent direction (we still detect the
single zero eigenvalue case, but the solution is still
finite and other methods could be employed to obviate
this as well).

We have shown that SVM-RSQP is competitive with
SVMLight and LIBSVM, at least with the settings and
datasets chosen. Of course, from a practical standpoint,
data scaling, apriori selection of the range of parame
ters for C and y, and proper selection of the stopping
criterion can be employed to improve the timing for
LIBSVM. For example, lowering the tolerance for the
Forest Covertype dataset does not sacrifice training
and testing accuracy while providing training times
commensurate with SVM-RSQP. However, SVM-RSQP
still remains more robust from a numerical optimiza
tion standpoint with less likelihood of running into
scenarios where convergence fails.

While the active set methods offer improved preci
sion and incremental training, they do not solve the
memory constraint issue for which the decomposition
methods were originally invented [13]. However, for
very large datasets, an iterative method, such as con
jugate gradient, could be employed to solve the inner

2881

problem. The inner problem associated with the active
set methods are indefinite, but in our case are non
singular. As a result, our algorithm offers the pos
sibility of applying a null-space method to create a
positive definite system suitable for the conjugate gra
dient method. Overall, SVM-RSQP should offer more
possibilities than other active set methods in terms of
implementing an iterative method to address memory
requirements, a topic of future research.

REFERENCES

[1] K. Scheinberg, "An efficient implementation of an active set
method for svms," Journal of Machine Learning Research, vol. 7,
pp. 2237-2257, December 2006.

[2] A. Shilton, M. Palaniswami, D. Ralph, and A. C. Tsoi, "Incre
mental training of support vector machines," IEEE Transactions
on Neural Networks, vol. 16, no. I, pp. 114-131, January 2005.

[3] S. V. N. Vishwanathan, A. J. Smola, and M. N. Murty, "Sim
plesvm," in ICML, 2003, pp. 760-767.

[4] O. L. Mangasarian and D. R. Musicant, "Active support vector
machine classification," in NIPS, 2000, pp. 577-583.

[5] J. Platt, "Making large-scale support vector machine learning
practical," in Advances in Kernel Methods: Support Vector Machines,
A. S. B. Scholkopf, C. Burges, Ed. MIT Press, Cambridge, MA,
1998.

[6] T. Joachims, "Making large-scale support vector machine learn
ing practical," in Advances in Kernel Methods: Support Vector
Machines, A. S. B. Scholkopf, C. Burges, Ed. MIT Press,
Cambridge, MA, 1998.

[7] J. Nocedal and S. J. Wright, Numerical Optimization, 1st ed., ser.
Operations Research. Springer, 1999.

[8] M. H. Rusin, "A revised simplex method for quadratic program
ming," SIAM Journal on Applied Mathematics, vol. 20, no. 2, pp.
143-160, March 1971.

[9] N. Cristianini and J. Shawe-Taylor, An Introduction to Support
Vector Machines and Other Kernel-Based Learning Methods. Cam
bridge University Press, 2000.

[10] G. H. Golub and C. F. V. Loan, Matrix Computations, 3rd ed.
Baltimore and London: The John Hopkins University Press,
1996.

[11] A. Asuncion and D. Newman, "UCI ma-
chine learning repository," 2007. [Online]. Available:
http://www.ics.uci.edu/'''mlearnfMLRepository.html

[12] J. J. Hull, "A database for handwritten text recognition re
search," IEEE Transactions on Pattern Analysis and Machine In
telligence, vol. 16, no. 5, pp. 550-554, May 1994.

[13] E. Osuna, R. Freund, and F. Girosi, "Training support vector
machines: An application to face detection," in CVPR. San
Juan, Puerto Rico: 1997 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR'97), June 1997,
pp. 130-136.

2882

