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ABSTRACT 
We demonstrate how neural networks can be used 
in conjunction with simulation modeling for system 
design. This approach is used to achieve the 
opposite of what a simulation model can achieve: 
given a set of desired performance measures, the 
neural network outputs a suitable design to meet 
management goals. The methodology is presented 
using a real world application involving the Test 
Operation of a major semiconductor manufacturing 
facility . 
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INTRODUCTION 
Manufacturing system design is a complex process 
involving the gathering of data from many sources 
and the modeling of the interrelationships among 
the proposed system's entities and between the 
system's entities and its environment. Typical 
decisions that must be made during the design 
process include the types of parts/end items to be 
produced, the production rates desired, the amounts 
of resources (e.g., machine tools, pallets, fixtures: 
and material handling devices) of various types to 
include in the system, the system layout, and routing 
and scheduling decisions (Mollaghasemi and Evans, 
1994). 

The goal of the design process is to choose the 
design that yields the "best" set of values for the 
performance measures. This is difficult for several 
reasons, including the uncertainties associated with 
the input data to the process (e.g., product 
demands), the complex relationships between the 
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design variables and the performance measures, and 
the multiple, conflicting performance measures that 
must be considered when choosing the "best" 
design. For example, system utilization may be 
increased at the expense of increased work in- 
process inventory (Evans, Stuckman, and 
Mollaghasemi, 1991). 

Quantitative approaches have been proposed to 
solve the manufacturing design problem (see for 
example, Buzacott and Yao, 1986, or Kusiak, 
1 986). Unfortunately, mathematical programming 
formulations can not account for factors that 
contribute significantly to the performance of 
manufacturing systems such as machine 
breakdowns and resource loading conflicts. 

Simulation models, on the other hand, have been 
used to accurately evaluate the performance of 
complex manufacturing systems. The popularity of 
simulation modeling is due to its flexibility, its 
ability to model systems more precisely, its 
capability to perform what-if analysis, and its ability 
to model the time dynamic behavior of systems. 
Simulation, however, in and of itself, is not a design 
tool. Simulation models can only give an 
evaluation (in terms of the performance measures) 
of a design that is input to the system. System 
design by simulation is therefore an ad hoc process 
which is highly iterative and as a result very time 
consuming. 

The objective of this research is to demonstrate how 
artificial neural networks can be used in conjunction 
with simulation models to provide a decision 
support system that eliminates the trial and error 
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process from the manufacturing system design. The 
role of this decision support system is 1.he 0ppc)site 
of what the simulation model can achieve: given a 
set of desired performance measures (e.g., 
throughput, machine utilization, cost), the decision 
support system outputs a suitable design (e.g., 
scheduling rules, the number of resources of imch 
type) to achieve those objectives. In other words, 
the system suggests a well-suited alternative which 
accomplishes management objectives under the 
given set of operating conditions. Lil tle research 
has been cited in the literature about the use of 
neural networks in conjunction with simulation 
models (see for example, Pierreval and Huntsinger, 
1992, Kilmer and Smith, 1993 and 1994 (and 
Chryssolouris, Lee, Pierce, and Domroese, 1WO). 
Our research was motivated by Chryssollouris et al. 
(1990) who propose the use of neural networks and 
simulation modeling for the design of 
manufacturing systems. 

METHODOLOGY 
In this section, the proposed methodo1og:y is 
illustrated in the context of the application problem. 
The application involves the Test Floor Operation 
of a major semiconductor manufacturing facility. 

Simulating the Test Floor Operation 
The first step in the development of the decision 
support system involved the modeling of the Test 
Floor Operation. The model of the system was 
developed using SIMAN (Pegden, Shannon, arid 
Sadowski, 1990) general purpose simulation 
language. Prior to the development of the 
simulation model, interviews were conducted with 
the test floor supervisors, process analysts, and test 
floor operators. In addition, significant time was 
spent on the test floor to gain additional insighl. into 
how the test floor operated. Upon completion, the 
simulation model was validated to insure the 
accurate representation of the actual system. 

Generation of Training Data 
The next step involved generating the input-output 
patterns from the simulation model to be us~r:d in 
training the neural network. The inputs to the 
simulation were identified as the number of tcsters 
of each type (three types of testers were selected) 
and the queuing strategies used to process the lots 
on each tester. The possible values for the number 

of testlers were 1, 2, or 3 testers and the queuing 
sirategies were considered to be first in first out, 
shortest processing time, highest demand, or lowest 
slack The performance measures of the simulation 
were identified to be the cycle time, and work-in- 
proces:s (WIP). 

There are 108 ( 4 x 3 ~ 3 ~ 3 )  possible combinations of 
the input parameters. From the 108 combinations, 
40 Combinations were randomly selected for 
training the neural network. Several replications 
were run at each of the 40 experimental point. A set 
of performance measures consisting of the cycle 
time, and work-in-process were collected at the end 
of each simulation. Note that the number of 
training pairs were arbitrarily selected as 40 with the 
idea thiat if the results were unsatisfactory, we could 
always add more training pairs to the training set. 

'I'rainiing of the Neural Network 
The data used for training the neural network 
iincluded inputs, consisting of the two performance 
measures mentioned above (Le., the output of the 
simulaition model), and outputs, consisting of the 
number of each type of tester and the queuing 
strategies used to process the lot (i.e., the input to 
the simulation model). Note that the output of the 
simulation model is used as the input to the neural 
network (and vice versa) because the objective here 
is to clo the reverse of the simulation model. That 
is, given a set of desired performance measures 
(e.g., cycle time, WIP), we want the decision 
support system to output a suitable design, (e.g., 
scheduling rules, the number of resources of each 
type) to achieve those objectives. 

A neural network package known as XERION was 
used in training the data. This package was 
developed by Drew van Camp, Tony Plate, and 
Geoffrey Hinton at the University of Toronto. 
XERPON allows the user to design, train, test, and 
use a host of different types of neural networks. 
These networks differ in architecture, learning 
algorithms, and types of training paradigms. In this 
project, a multi-layer feedforward neural network 
with a back-propagation learning algorithm was 
selectled for use. This approach was selected 
because of its excellent track record in successfully 
solving a variety of application problems. 
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A network consisting of an input layer, a hidden 
layer, and an output layer was set up. A 2-10-4 
architecture was selected for the neural network. 
These numbers signify the number of nodes in the 
input layer, the hidden layer, and the output layer, 
respectively. The number of nodes in the input and 
the output layers were selected to match the number 
of inputs and outputs respectively. The number of 
nodes in the hidden layer, however, was not dictated 
by the problem at hand and was arbitrarily selected. 
Note that if the number of nodes in the hidden layer 
are too large, the network will not generalize well 
while if the number of nodes in that layer is too 
small, the algorithm will not converge (Lippmann, 
1987). 

Typeof 
output 

Prior to training the neural network, the input/output 
pairs of the training set were transformed into 
appropriate binary input/output pairs. In order to 
represent the network input values, several ranges 
were defined for each input. Five ranges were 
defined for each performance measure and each 
input value was defined as belonging LO a ceriaiii 
range. In this manner, if an input value fell into one 
of several defined ranges, the node in the network 
which represented that particular range for that 
particular input value received a value of 1 .  All 
other nodes which represented that input variable 
would have a value of 0. For example, if the cycle 
time ranges from 1550 time units to 2050, and five 
ranges are defined for the cycle time with each 
range including 100 time units, then a value of 1800 
can be represented as 00100. Similarly, the values 
of training output can be converted. For example, if 
the number of units of a resource can take on a 
value of 1 ,2 ,  or 3, a value of 2 can be represented as 
010. Examples of the binary representation of the 
input and output is shown in Tables 1 and 2. 

Value Binary 
Representation 

Using the above process, the input and output 
values of the 40 training pairs were converted into 
the binary format. In addition, network parameters 
such as training tolerance, learning rate, momentum, 
and initial interconnection weights were selected. 
For this study, a network tolerance of 10% was 
selected. That means the network is trained until 

Desired Output - Actual Output 
Desired Output 

1 < 0.1 . I 

Cycle Time 
WIP 

The neural network was then trained successfully 
with the 40 training pairs and achieved a training 
tolerance of 10%. 

1,800 0 0 1 0 0  
550 1 0 0 0 0  

Type of Input Value 

Queuing Strategy SPT 
No. of Type A-1 1 

No. of Type A-2 3 
Testers 

Binary 
Representation 

0 1 0 0  
1 0 0  

0 0 1  

System Output 

WIP 

Testers I I I 

Desired Binary 
Output Representation 

750 0 1 0 0 0  

Testing of the Neural Network 
In order to begin the testing process, an initial 
vector of desired system outputs( in terms of cycle 
time and work-in-process) was formed. This test 
case was suggested by the Manager of Test 
Operation. Note that this vector was not used in 
training the network. The values of these 
performance measures were first converted into the 
binary format as shown in Table 3. 

1 Cycle Time 

Table 3. Desired system outputs used for testing 
the neural network 

1,700 0 1 0 0 0  

These desired outputs were then fed as input to the 
trained network and suggested levels of simulation 
input were obtained. The decision support system 
predicted the following values to achieve the 
desired output: 
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Table 4. Simulation inputs suggestled by the 
neural network 

Simulation Input 

Queuing Strategy 
No. of A-1 Testers 

Suggested 
Value 

Lowest Slack -4 2 
I No. of A-2 Testers I 1 I 
1 No. of A-3 Testers I 3 1  

The next step was to test the accuracy of the 
proposed approach. In order to achieve this. the 
"suggested" vector of input values shown in Table 
4, was fed back into the simulation model and the 
simulation was run. The resulting avcrage 
performance measures from running the s imuh  ion 
model are displayed in Table 5 .  

Table 5. Comparison of the actual and desiir~edl 
system outputs 

Performance 1 wIp Measure I :i; 1 1 
The output from the simulation was then compared 
against the desired output and an error 'was 
calculated in order to assess the performance olf the 
network. The error was computed as: 

Desired Output - Actual Output 
Range 

Error = 

where 
n = number of outputs, and 
Range = the span of values covered by a single node 
for a given output. 

The following example illustrates the ca1culatic.111 of 
the error associated with the test case shown in 
Table 5 :  

Error = (749-7001 /lo0 + /1632-1'7001 / l oo ,  

Error = 1.17. 
Currently, in order to meet production goals, 
supervisors make recommendations as to how to run 
the system. To assess the usability of the neural 
network as a decision making tool, the perforniance 
of the neural network was compared with best 
guesses by shop floor supervisors who do this type 

of anallysis on a day to day basis. The problem was 
posed to two supervisors. Each person suggested a 
configuration to achieve the manager's objectives. 
The supervisor's recommended configuration was 
simulated and mean performance measures were 
obtained. An error was then computed for each 
suggested solution to assess the proximity of each 
saluticlns to the desired output. The comparison of 
these solutions are shown in Table 6. 

Table 6. Comparison of Neural Networks 
and other Methods 

Targ,et 

Neuiral 
Network 
Best Guess 1 1.790 2.30 

I Best Guess 2 I 778 1 1,823 I 2.01 

As it i,s shown in the above table, the neural network 
solution resulted in the lowest error. In addition to 
the test case shown above, 20 other cases were 
tested. The neural network performed best in 11 of 
the 201 test cases. Additionally, the times that the 
network did not perform the best, it was a close 
second to the best solution. 

CONCLUSIONS 
We have presented preliminary results from the 
integration of neural networks and simulation 
modeling for the design of manufacturing systems. 
This approach is demonstrated using a real world 
problem. Given the results of this research, the use 
of neural networks with simulation modeling shows 
a great deal of potential as a tool for system design. 
We have shown that the methodology can be used 
with problems where multiple inputs and objectives 
are present. 
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