
Integer-Encoded Massively Parallel Processing of
Fast-Learning Fuzzy ARTMAP Neural Networks

Hubert A. Bahra, Ronald F. DeMarab , Michael N. Georgiopoulosb 

aHQ STRICOM, AMSTI-ET, 2350 Research Boulevard, Orlando, FL 32826
bDept. of Electrical and Computer Engineering, University of Central Florida, Orlando, FL 32816

ABSTRACT

In this paper we develop techniques that are suitable for the parallel implementation of Fuzzy ARTMAP networks. Speedup
and learning performance results are provided for execution on a DECmpp/Sx-1208 parallel processor consisting of a DEC
RISC Workstation Front-End (FE) and MasPar MP-1 Back-End (BE) with 8,192 processors. Experiments of the parallel
implementation were conducted on the Letters benchmark database developed by Frey and Slate. The results indicate a
speedup on the order of 1000-fold which allows combined training and testing time of under four minutes.
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1. INTRODUCTION

Adaptive resonance theory was introduced by Grossberg in 1976 as a means of describing how recognition categories are
self-organized in neural networks1.  Since this time, a number of specific neural network architectures based on ART have
been proposed. Many of these architectures originated from Carpenter, Grossberg, and their colleagues at Boston University.
A major separation amongst the ART architectures developed so far is in the categories of unsupervised versus supervised
ART architectures. A prominent member of the class of unsupervised architectures is Fuzzy ART2, while a prominent
member of the class of supervised architectures is Fuzzy ARTMAP3. Fuzzy ART can cluster arbitrary collections of binary
or analog input patterns, while Fuzzy ARTMAP can implement any mapping from an input space of arbitrary dimensionality
to an output space of arbitrary dimensionality. There is a high degree of correlation between the Fuzzy ART and the Fuzzy
ARTMAP architectures, because a number of components of Fuzzy ARTMAP are Fuzzy ART modules.

Our primary focus in this paper is the parallel implementation of Fuzzy ARTMAP. Analog and digital VLSI implementations
of simpler than the Fuzzy ARTMAP architectures (e.g., ART1) have appeared in the literature4-7. To the best of our
knowledge though, no effort has been made so far to implement Fuzzy ARTMAP on general purpose massively parallel
hardware.

The parallel implementation of Fuzzy ARTMAP is applied on a DECmpp/Sx-1208 parallel processor consisting of a DEC
RISC Workstation Front-End (FE) and a MasPar MP-1 Back-End (BE) with 8,192 processors. Processing is divided into FE
routines that perform input/output (I/O), integer scaling, and data set randomization, and BE routines that train and test the
network. Experiments performed on the Letters benchmark database8, developed by Frey and Slate, indicated a speed-up of
1000-fold which resulted in a combined training and testing time of under 4 minutes.

The organization of the paper is as follows. In Section 2 we describe the Fuzzy ART neural network since it constitutes the
building block in the design of a Fuzzy ARTMAP neural network. In Section 3, we continue with the description of the
Fuzzy ARTMAP neural network. In Section 4, we present the implementation environment where Fuzzy ARTMAP will be
implemented. In Section 5, we emphasize issues pertaining to the parallel implementation of Fuzzy ARTMAP. Finally, in
Section 6 we discuss the experimental results, while in Section 7 we provide some concluding remarks.
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2. Fuzzy ART

A brief overview of the Fuzzy ART architecture is provided in the following sections. For a more detailed discussion of this
architecture, the reader should consult G. A. Carpenter2.

2.1 Fuzzy ART Architecture

The Fuzzy ART neural network architecture is shown in Figure 1. It consists of two subsystems, the attentional subsystem,
and the orienting subsystem. The attentional subsystem consists of two fields of nodes denoted F1

a and F2
a . The F1

a field is
called the input field because input patterns are applied to it. The F2

a field is called the category or class representation field
because it is the field where category representations are formed. These categories represent the clusters to which the input
patterns belong. The orienting subsystem consists of a single node (called the reset node), which accepts inputs from the F1

a

field, the F2
a field (this input is not shown in Figure 1), and the input pattern applied across the F1

a field. The output of the
reset node affects the nodes in the F2

a field.

Some preprocessing of the input patterns of the pattern clustering task takes place before they are presented to Fuzzy ART.
The first preprocessing stage takes as an input an Ma-dimensional input pattern from the pattern clustering task and
transforms it into an output vector a = (a1,…, aMa ), whose every component lies in the interval [0, 1] (i.e., 0 ≤ ai ≤ 1 for 1 ≤ i
≤ Ma). The second preprocessing stage accepts as an input the output a of the first preprocessing stage and produces an
output vector I, such that

I = (a, ac) = (a1,…, aMa, ac
1,…, ac

Ma ), (1)

where

Figure 1

a

Field

Field

Field

F

F

F2
a

a
1

0
a

Attentional
Subsystem

Orienting
Subsystem

Reset
node

I=(a,a  )c

Ww a
j

a
j

a

aART  Module (ART1 or Fuzzy ART)

ρ



ai
c
 = 1 −  ai   ; 1 ≤ i ≤  Ma (2)

The above transformation is called complement coding. The complement coding operation is performed in Fuzzy ART at a
preprocessor field designated by F0

a (see Figure 1). We will be refer to the vector I formed in this fashion as the input
pattern.

We denote a node in the F1
a field by the index i (i∈{1, 2,…, 2Ma}), and a node in the F2

a field by the index j (j∈{1, 2,…,
Na}). Every node i in the F1

a field is connected via a bottom-up weight to every node j in the F2
a field; this weight is denoted

Wij
a . Also, every node j in the F2

a field is connected via a top-down weight to every node i in the F1
a field; this weight is

denoted wij
a . The vector whose components are equal to the top-down weights emanating from node j in the F2

a field is

designated wj
a, and is referred to as a template. Note that wj

a = ( )w w wj
a

j
a

j M
a

a1 2 2, ,..., ,  for j = 1,…, Na. The vector of bottom-

up weights converging to a node j in the F2
a field is designated Wj

a. Note that in Fuzzy ART the bottom-up and top-down
weights corresponding to a node j in F2

a are equal. Hence, in the forthcoming discussion, we will primarily refer to the top-
down weights of the Fuzzy ART architecture. Initially, the top-down weights of Fuzzy ART are chosen to be equal to the
"all-ones" vector. The initial top-down weight choices in Fuzzy ART correspond to the values of these weights prior to
presentation of any input pattern to the Fuzzy ART architecture.

Before proceeding, it is important to introduce the notations wj
a,old and wj

a,new. Quite often, templates in Fuzzy ART are
discussed with respect to an input pattern I presented at the F1

a field. The notation wj
a,old denotes the template of node j in the

F2
a field of Fuzzy ART prior to the presentation of I. The notation wj

a,new denotes the template of node j in the F2
a after the

presentation of I. Similarly, any other quantities defined with superscripts {a, old} or {a, new} will indicate values of these
quantities prior to or after a pattern presentation to Fuzzy ART, respectively.

2.2 Operation of Fuzzy ART

 As mentioned previously, we will use I to indicate an input pattern applied at F1
a , and wj

a to indicate the template of node j
in F2

a . In addition, we will use |I| and |wj
a| to denote the size of I and wj

a , respectively. The size of a vector in Fuzzy ART is
defined to be the sum of its components. Furthermore we define I Λwj

a to be the vector whose i-th component is the
minimum of the i-th I component and the i-th wj

a component. The operation Λ is called the fuzzy-min operation.

Let us assume that an input pattern I is presented at the F1
a field of Fuzzy ART. The appearance of pattern I across the F1

a

field produces bottom-up inputs that affect the nodes in the F2
a field. These bottom-up inputs are given by the equation:

 ( ) ( )Tj
a j

a old

a j
a old

I
I w

w
=

+

Λ ,

,α
(3)

where αa, which takes values in the interval (0, ∞), is called the choice parameter. It is worth mentioning that if in the above
equation wj

a,old is equal to the "all-ones" vector, then this node is referred to as an uncommitted node; otherwise, it is referred
to as a committed node.

The bottom-up inputs activate a competition process among the F2
a nodes, which eventually leads to the activation of a single

node in F2
a , namely the node which receives the maximum bottom-up input from F1

a . Let us assume that node jmax in F2
a has

been activated through this process. The activation of node jmax in F2
a indicates that this node is considered as a potential

candidate by Fuzzy ART to represent the input pattern I. The appropriateness of this node is checked by examining the ratio

I w

I

Λ j
a old

max

,

(4)

If this ratio is smaller than ρa, then node jmax is deemed inappropriate to represent the input pattern I, and as a result it is reset
(deactivated). The parameter ρa, called the vigilance parameter, takes values in the interval [0, 1]. The deactivation process is



carried out by the orienting subsystem, and in particular by the reset node. If a reset happens, another node in F2
a (different

than node jmax) is chosen to represent the input pattern I; resets last for the entire input pattern presentation. The above
process continues until an appropriate node in F2

a is found, or until all the nodes in F2
a have been considered. If a node in F2

a

is found appropriate to represent the input pattern I, then learning ensues according to the following rules:

Assuming that node jmax has been chosen to represent I, the corresponding top-down weight vector w j
a old

max

, becomes equal to

w j
a new

max

, , where

( )w I wj
a new

j
a old

max max

, ,= Λ (5)

It is worth mentioning that in equation (5) we might have w wj
a new

j
a old

max max

, ,=  ; in this case we say that no learning occurs for

the weights of node jmax. Also note that equation (5) is actually a special case of the learning equations of Fuzzy ART that is
referred to as fast learning2. In this paper we only consider the fast learning case. We say that node jmax has coded input
pattern I if during I's presentation at F1

a , node jmax in F2
a is chosen to represent I, and jmax's top-down weights are modified

as equation (5) prescribes. Note that the weights converging to or emanating from an F2
a node other than jmax (i.e., the chosen

node) remain unchanged during I's presentation.

3. Fuzzy ARTMAP

 A brief overview of the Fuzzy ARTMAP architecture is provided in the following sections. For a more detailed discussion
of this architecture, the reader should consult G. A. Carpenter et. al.3

3.1 Fuzzy ARTMAP Architecture

 A block diagram of the Fuzzy ARTMAP architecture is provided in Figure 2. Note that two of the three modules in Fuzzy
ARTMAP are Fuzzy ART architectures. These modules are designated ARTa and ARTb in Figure 2. The ARTa module
accepts as inputs the input patterns, while the ARTb module accepts as inputs the output patterns of the pattern classification
task. All of the details in Section 2 are valid for the ARTa module without change. The same for the ARTb module by if the
superscript a of Section 2 is replaced with the superscript b to emphasize the fact that we are referring to weights and
parameter values of the FuzzyARTb module. One of the differences between the ARTa and the ARTb modules in Fuzzy
ARTMAP is that for pattern classification tasks (many-to-one maps) it is not necessary to apply complement coding to the
output patterns presented to the ARTb module.

As illustrated in Figure 2, Fuzzy ARTMAP contains a module that is designated the inter-ART module. The purpose of this
module is to make sure the appropriate mapping is established between the input patterns presented to ARTa, and the output
patterns presented to ARTb. There are connections (weights) between every node in the F2

a field of ARTa, and all nodes in the
Fab field of the inter-ART module. The weight vector with components emanating from node j in F2

a , and converging to the

nodes of Fab the field is denoted ( )w j
ab

j
ab

jk
ab

jN
abw w w

b
= 1 ,..., ,..., ,  where Nb are the number of nodes in Fab (the number of

nodes in Fab is equal to the number of nodes in F2
b ). There are also fixed bidirectional connections between a node k in Fab,

and its corresponding node k in F2
b .

3.2 Operation of Fuzzy ARTMAP

The operation of the Fuzzy ART modules in Fuzzy ARTMAP is a slightly different from the operation of Fuzzy ART
described in Section 2. For instance, resets in the ARTa module of Fuzzy ARTMAP occur either because the category chosen
in F2

a does not match the input pattern presented at F1
a , or because the appropriate map has not been established between an

input pattern presented at ARTa, and its corresponding output pattern presented at ARTb. This latter type of reset is enforced
by the inter-ART module via its connections with the orienting subsytem in ARTa (see Figure 2). This reset is accomplished
by forcing the ARTa architecture to increase its vigilance parameter value above the level that is necessary to cause a reset of



the activated node in the F2
a field. Hence, in the ARTa module of Fuzzy ARTMAP, we identify two vigilance parameter

values, a baseline vigilance parameter value ρa  which is the vigilance parameter of ARTa prior to the presentation of an
input/output pair to Fuzzy ARTMAP, and a vigilance parameter ρa that corresponds to the vigilance parameter that is
established in ARTa via appropriate resets enforced by the inter-ART module. Also, the node activated in F2

b due to a
presentation of an output pattern at F1

b can either be the node receiving the maximum bottom-up input from F1
b , or the node

that is designated by the Fab field in the inter-ART module. The latter type of activation is enforced by the connections
between the Fab field and the F2

b field.

All of the equations in Section 2 for the Fuzzy ART module are valid for the ARTa and ARTb modules in Fuzzy ARTMAP. In
particular, the bottom-up inputs to the F2

a field and the F2
b field are given by:

( ) ( )Tj
a j

a old

a j
a old

I
I w

w
=

+

Λ ,

,α
(6)

and

( ) ( )Tk
b k

b old

b k
b old

O
O w

w
=

+

Λ ,

,α
(7)

where in equation (7), O stands for the output pattern associated with the input pattern I, while the rest of the ARTb quantities
are defined as they were defined for the ARTa module in Section 2. Similarly, the vigilance ratios for ARTa and ARTb are
computed as follows:
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I w
I

Λ J
a old,

(8)

and

I w
I

Λ K
b old,

(9)

The equations that describe the modifications of the weight vectors wj
ab can be explained as follows: A weight vector

emanating from a node in F2
a to all the nodes in Fab is initially the "all-ones" vector and, after training that involves this F2

a

node, all of its connections to Fab, except one, are reduced to the value of zero.

3.3 Operating Phases of Fuzzy ARTMAP

 Fuzzy ARTMAP may operate in two different phases: training and performance (testing). The training phase of Fuzzy
ARTMAP works as follows: Given the training list {I1; O1}, {I2; O2}, : : :, {IP ; OP }, we want Fuzzy ARTMAP to map
every input pattern of the training list to its corresponding output pattern. In order to achieve the aforementioned goal,
present the training list repeatedly to the Fuzzy ARTMAP architecture. That is, present I1 to ARTa and O1 to ARTb, then I2 to
ARTa and O2 to ARTb, and eventually IP to ARTa and OP to ARTb; this corresponds to one list presentation. Present the
training list as many times as is necessary for Fuzzy ARTMAP to classify the input patterns. The classification (mapping)
task is considered accomplished (i.e., the learning is complete) when the weights do not change during a list presentation.
The aforementioned training scenario is called off-line training.

In the performance phase of Fuzzy ARTMAP the learning process is disengaged, and input/output patterns from a test list
are presented in order to evaluate the classification performance of Fuzzy ARTMAP. In particular, during the performance
evaluation of Fuzzy ARTMAP, only the input patterns of the test list are presented to the ARTa module of Fuzzy ARTMAP.
Every input pattern from the test list will choose a node in the F2

a field. If the output pattern to which the activated node in
F2

a is mapped matches the output pattern to which the presented pattern should be mapped, then Fuzzy ARTMAP classified
the test input pattern correctly; otherwise Fuzzy ARTMAP committed a misclassification error.

4. IMPLEMENTATION ENVIRONMENT

These routines are implemented for DECmpp/Sx model 1208 computer which consists of a DEC RISC Workstation as a
Front end and the MasPar MP-1 model 1208 Back end.   Communication between the Front end and Back end computers is
through DMA channels over a VME bus.

The Back end machine as described by MasPar9 is a SIMD massively parallel machine consisting of 512 4x4 clusters of
processor elements (PE) arranged in an 16 x 32 cluster array.  This gives us 8192 PEs in a 128 x 64 PE array.  To control and
transfer data to and from the PE array the MP-1 has a RISC 32-bit processor with 32 32-bit registers, 128 K bytes of data
memory and 1 megabyte of ram.  Each PE consists of  a  4- bit processor with 40 32-bit registers and 16 kilobytes of RAM.
A key component of any implementation is the movement of data to and from the processor.  In a single processor system
this movement is implied.  In a parallel processing environment it can be the driving contribution to the execution time.  For
the MP-1 there a two types of communications, a. communication between the ACU and the PEs, and b. communication
between the PE's.

Communication between the ACU and the PEs are all broadcast, i.e., each PE receives the identical information at the same
time.  Incoming data is transferred from all active PEs simultaneously and its values are "logically reduced (global ORed)".
Communication between PEs can either be transferred X-Net (a mesh type connection) or through the Global Router.  X-Net
communications are made in a straight line to any one of the 8 major compass directions with toroidal wrap around.  Global
Router communications are direct point to point simultaneous transfers between units.  They are simultaneous from the
viewpoint that all transfers will occur before the processors will execute the next instruction, however they take place over a



switched network that allows many transfers to occur in parallel but in reality the worst case condition can cause serial
transfers.  Although a very powerful mechanism, global routing may not be the best available choice11.  One of the
restrictions of the router mechanism is that only one input and one output communication can occur from any given 16
processor cluster at one time, thus the identification of the cluster element in the architecture.  For more details on the MP-1
see references9.

The programming environment for this implementation is MPL10.  MPL is an extended version of ANSI C that has added the
data type modifier plural that refers to any variable operated on or stored in the PEs.  It has also added keywords to control
the active set of processors and implement inter-processor communications.  In MPL, control statements take on the
additional implication of determining which processors are executing instructions at a given time.  If the variables that form
part of the control expression are all singular the active set is not modified.  If any of them are plural the active set is
dependent on value of the plural variable that is contained in the individual PE.  A processor element either executes the
sequence of instructions inside the block governed by the control statement or does nothing.  As long as any processor is
executing code within the control structure that code is executed.  I.e., if a plural variable is used in a control structure such
as if (plural var) {...} else {....} both sets of code will probably be executed.

To allow the implementations to be used for any size problem the routines were virtualized by treating the processor array as
if it were 3 dimensional.  It is made up of additional layers of the total processor array.  The communication between layers
was through the shared memory and a limited set of registers.  Only the processors were layered not the PE memory.

In order for an algorithm to benefit from parallel processing it must exhibit a high degree of calculation independence.  A
neural network exhibits this characteristic in that product of each weight with the input can be calculated simultaneously and
the sum can be calculated in any order.  In addition when the inputs are vectors each element of the vector can be calculated
simultaneously.   The key purpose of using a parallel computer is to reduce the total amount of time required to perform the
computation.  The primary hardware independent measure of this gain is speedup which is defined as Total number of
calculations divided by the total number of steps.  A massively parallel computer (normally defined as a SIMD machine with
1024 processors or more or a MIMD machine with 64 processors or more) can conveniently be considered as having an
infinite number of processors which allows a program design that takes advantage of maximum calculation independence,
where number of physical processors is exceeded, their number can be extended by virtualization.   While an infinite number
processors allows a large number of calculations to be performed simultaneously, it does not address the data flow or
communication of the results.  In this area the design of the program becomes architecture dependent.  A Single Instruction
Multiple Data (SIMD) architecture machine executes that the same operation on all active data streams at the same time.
While this reduces the number instruction decode units and provides a highly synchronized environment, it limits the
processor independence.  The primary advantage of a SIMD architecture is the simplicity of design.  The Multiple Input
Multiple Data (MIMD) architecture allows each processor to perform an independent instruction sequence on the data
stream, however inter-process synchronization and communication become a bigger challenge.   The DECmpp/Sx is MIMD
from the viewpoint of Front end, Back end relationship, but SIMD for the massively parallel array.  In most applications you
use at least two program files, one with the main program written in ANSI-C which also call functions written in MPL from
the second file.  The ANSI-C routines execute on the Front end and the MPL routines execute on Back end.   There is
nothing that dictates where the main program runs as it can be either a “C” or “MPL” routine as it is simply the first entered
and last exited, all the routines are linked together into one executable.  Generally, the Front end is used for the main routine
as it is the device that communicates with user and other general I/O and is more efficient at executing strict sequential
actions such as reading character streams.  This MIMD configuration can execute in either synchronous or asynchronous
mode as primitives supporting both operations are provided.

5. PARALLEL IMPLEMENTATION

This implementation attempts to take full advantage of the parallel machine while also reducing the complexity of the
operations (Integer vs. Floating Point) as a demonstration of the feasibility of special purpose highly parallel architectures for
Fuzzy ARTMAP neural networks.  The program is broken into two files fuzzmapfe.c and fuzzmapp.m which contain the
Front end (FE) and Back end (BE) routines respectively.  The FE routines perform all the I/O and pre and post scaling
operations.  They also perform the randomization of the data set between trials.  The BE routines perform the training and
testing of the neural networks.  The BE is configured as two sets of vector processors.  The first set handles all of the ARTa
calculations simultaneously with the second set handling all of the ARTb calculations.  Each set is further broken down into



N template vector processors where N is the number of committed templates + 1.  Each template vector processor takes
ceiling(M/2) physical processors where M is the dimension of input patterns.  Thus each physical processor handles two
elements of the input plus their complements times the number of virtual layers.  The justification for this organization is that
the communication between adjacent processors was faster than from the memory to a processor.  However, operations from
registers were the fastest.  There are more total operations on a per template basis than on a per element basis so some
compromise was desired to promote processor efficiency.  Each additional virtual processor layer generates an additional set
of execution steps.  The division of the physical processors into ARTa and ARTb sets was made arbitrarily due to the
configuration of the PE array.  The last row was set aside for the ARTb processing.  Although this reduces the number of
processors available for ARTa processing since it is only 1.56% maximum loss,  this was considered better than leaving 99%
idle during separate ARTb processing and the simplification of the program gained by dedicating a total row was
advantageous.  If this ratio of ARTa to ARTb processors is inadequate the program will generate an error message to that
extent and the program will have to be modified.  Since, the program computes the maximum number of required ARTa

patterns as being 1+ the number of training patterns (the result if ρa = 1) and expects the maximum number of ARTb

templates to be an input parameter this error should not occur.

To demonstrate the potential to use simplified hardware (integer arithmetic) as well as the processing speed to be gained on
the PE all of the values are pre and post scaled prior to submission to the PE array.  All operations were performed using 32
bit integer arithmetic except solving for the ratio.  In this case the numerator is scaled to 64 bits so the resulting division will
yield a 32 bit quotient.

The FE processor initiates the program by reading in the parameters and the data set, that it scales and places into arrays for
passing to the BE processor.  The FE also calculates the dimensions for the PE array configuration.  After all input and
output values,  both training and testing are in place the FE calls the BE main routine.  The BE copies all the parameters and
data to the PE array and ACU.  If an additional randomly ordered run is required it initiates an asynchronous call to
randomize routine on the FE which will execute concurrently with Training.   It then calls the training routine which finishes
configuring the PE array and then calculates the templates.

The templates are calculated on an iterative basis on a pattern by pattern basis until all patterns are presented with no further
change to the template set.  Each pattern is generated by reading the input element by element from the data array, each value
is broadcast to each template processor where the element and its compliment are stored in the appropriate vector register.
The vector element location is determined by a modulo operation which activates only the processors that act on the
specified vector element.  Note the compliment is recalculated for each pattern presentation since it faster than the reading
and broadcast of an additional element.  After the input pattern is generated the corresponding output pattern is likewise
generated.

If it takes more than one layer of processors to handle all the templates this section is repeated for each layer.
Simultaneously the fuzzy min operation is performed between the pattern and committed and first uncommitted template for
both input and output patterns.  Since each PE element provides processing for 2 elements and their compliments, this
operation is repeated 4 times.  The magnitude of the intersection is calculated first by summing the four elements in each
processor then by pair wise summing the partial sums from each processor of the template vector.  The pair wise summation
takes log2(M/2) steps to complete.   This magnitude TW is saved for each template until the best template is selected.  TW is
then divided by the sum of beta and the old template magnitude TWO and saved as TR (template ratio) (this s a scaled value
as discussed in the previous section).  If TW is greater than ρ⋅M and TR is greater than Tmax of the previous layer then TR
and the virtual processor number are saved in Tmax and num.  After all template layers are processed, the Tmax register holds
the largest value across the layer.  The template identified by the virtual processor number also meets the vigilance criteria
but we still need to select Tmax across the set of processors.

Selecting Tmax across all processors is accomplished by a pair wise binary reduction process first between all processors of
each row which leaves the Tmax and num at processor 0 in each row and then the column reduction that leaves the answer at
processor 0.  Note the last row is not included in the final step since it is used to process ARTb only and its solution was
complete after the row reduction.  The temporary variable num in processor 0 for ARTa and processor Sb for ARTb contain
pointers to the respective input and output templates.  This pointer is used to fetch the mapping index for ARTa which is
compared to the template number of ARTb.  If the ARTa result pointed to the uncommitted  template its mapping index is set
to the ARTb template number and the template magnitude TW is saved as the old template magnitude TWO and the
intersection elements are saved as the template elements.



If the mapping index does not agree with the ARTb template number then the Tmax selection process must be repeated with a
revised ρ.  This is implemented by setting the ρ⋅M=TW+ε  where TW was the intersection weight of the template that
yielded Tmax and ε is the smallest possible value.  Using the previously calculated values of TW and TR the selection process
of Tmax is continued resetting ρ⋅M as required until a suitable mapping index is obtained.  Note that if two patterns are
identical but map to different outputs this result would never converge.  A test for this condition is included and if it occurs
an error message is generated and the program is aborted.  Once the correct template is found the intersection is recalculated
since that was faster than saving all the intersections.  This intersection replaces the previous elements of the template and
the old template magnitude is replaced by the current template magnitude.  This completes the operations for one pattern
presentation.

After all patterns have been processed in the current iteration the value of the each template’s old magnitude is compared to
the saved magnitude.  If all do not match, then the saved magnitude is updated to the old magnitude and another iteration is
initiated.  This approach is much faster than setting a flag each time a change occurs as it at most only takes L (the number of
layers) steps per iteration.  Otherwise, there  could be up to N (the number of patterns) changes per iteration.   Once all saved
magnitudes match the old magnitudes the training is complete and the program returns to the parallel main routine.

After learning, the BE synchronizes its actions with the FE and passes the learning results to the FE.  If output of the learned
templates has requested the BE initiates an asynchronous process on the FE to scale, format, and output those templates.
Concurrently the BE proceeds into test phase.  The test phase is very similar to the learning phase except no templates are
modified.  The test patterns are presented the same as in the learning phase.  However, after Tmax is determined and a
template is selected if the uncommitted template is the best match the unmatched counter is incremented.  If the mapping
index of ARTa does not agree with ARTb template number then mismatched counter is incremented.  If the mapping index of
ARTa does agree with ARTb template number then matched counter is incremented.  After each testing pattern is presented
one time the results are returned to the BE main routine.

The BE main routine synchronizes with the FE and transfers the results to the FE and initiates an asynchronous test report
routine on the FE.  If additional passes were requested based on a reordering of the data set the BE now transfers the updated
data set from the FE then synchronizes with the FE and initiates another random shuffling of the data set concurrently with
proceeding with another learn, report, test and report cycle.  This continues until all requested passes are completed or the
program times out.  Since, it is common for larger jobs to be presented than can be accomplished during the preset time
limits the program is designed to generate multiple output files and close them incrementally during the process.  It also will
accept an input parameter to tell it where to restart.  The program can be restarted before the initiation of any arbitrary
random pass.  It does this by repeatedly executing the random shuffling routine until ready for the prescribed pass.  It is
assumed that since these passes are performed on the FE prior to activating BE they will not deleted from the maximum time
limit.

6. EXPERIMENTAL RESULTS

The experiments presented in this paper were performed on the Letters benchmark developed by Frey and Slate8.  This
benchmark consisted of a database of 20,000 patterns derived from 20,000 unique black-white pixel image.  Sixteen
numerical feature attributes were obtained from each character image, and each attribute value was scaled to range of 0 to 15.
Each of patterns consists of the desired output character and the sixteen attribute values.  The output characters were changed
to an integer value of 1 through 26 to represent the alphabet from A to Z.  The output was represented as one element with
values from 1 to 26.  A special FE process was created to deal with database allowing the input of the integer values rather
than normalized values.  This allowed a smaller database size than using a 6 digit decimal fraction representation.  This FE
process first normalized the input data prior to scaling data.  The output used the reverse operation to allow the direct
comparison to the input data.  This experiment consisted of twenty separate runs of using the same order of the data set
varying only the ρa  value of the ARTa section.  Values of ρa were selected to minimize the number of classification errors
during the test run.  The test was initially ran for ρa  values of 0, .5, and 1 with further values selected at mid points of
previous intervals until a local minimum was found.  This data is presented in table 1.  The data set was presented by using
the first 16000 patterns to train the network and the last 4000 patterns to test the network..



7. CONCLUSIONS AND PLANS FOR FURTHER INVESTIGATION

The initial results generated more questions than answers.  However, they provided some insight to guide further
investigation.  The data suggests the presence of multiple minimums suggesting that a more exhaustive study with multiple
orderings is necessary before any conclusions are reached.  It also demonstrates, that its sensitivity to ρa , is stepwise rather
than continuous.  This is related to the fact that each element has only 16 possible values over the range 0-15.  This allows an

exhaustive study of ρa  as it can be set to 
M n

M
where n M

⋅ −
⋅

= ⋅
15

15
0 15, .. .   n an integer.  As the number of templates

only changes by 3 between 0 and .5 and number of iterations required to train remains constant, it suggests that the majority
of the study concentrate on the range of .5 to 1.0.  For that reason we studied 130 values of ρa  with 121 of them from .5 to
1.0 selected each possible template weight in that range, and the rest chosen to illuminate the range between 0 and .5.  For
each of twenty different data sets I evaluated each of the 130 values of these values for a total of 2600 computer runs.  We
were  also interested in observing the characteristics of the temporary values of ρ used during the resets, so we collected the
template # and the value of ρa  used for each of these occurrences over all of these runs.  After this data is collected and
analyzed, results and conclusions will be updated.  Each run took between 3 to six minutes to complete with approximately
10 hours total per data set.  Each data set was generated by splitting the data into half and exchanging each element of the
first half with a randomly selected element of the second half.  Successive data sets were generated by repeating this
shuffling process.  This exhaustive study with results presented in figures 3 and 4  showed that adjusting ρa  can provide a
template set with a higher probability of correctly identifying the input.  This appears to occur between ρa  values of  .70 to
.85 but it would take an exhaustive search within this range to select an optimum but is also dependent on the ordering of the
data set as is indicated by the variations noted between runs.  Figure 3 shows the mean and two sigma confidence region on
the percentage of correct mappings versus ρa  for the twenty different shuffles.  Figure 4 shows the mean and two sigma
confidence region of number of templates versus ρa .

TABLE 1  LETTERS DATABASE RESULTS
TEMPLATES ITERATIONS ρa βa

CORRECT INCORRECT UNKNOWN

786 6 0.00 0.01 3509 491 0
786 6 0.50 0.01 3509 491 0
791 5 0.571 0.01 3535 465 0
788 6 0.629 0.01 3538 462 0
865 5 0.692 0.01 3543 457 0
940 6 0.75 0.01 3559 441 0
913 5 0.754 0.01 3587 413 0
950 5 0.758 0.01 3572 428 0
959 5 0.763 0.01 3561 439 0
945 5 0.767 0.01 3575 425 0
987 5 0.771 0.01 3608 392 0
998 4 0.775 0.01 3575 425 0

1021 6 0.779 0.01 3581 419 0
1004 5 0.783 0.01 3578 422 0
1069 5 0.792 0.01 3581 419 0
1129 5 0.808 0.01 3561 439 0
1258 5 0.821 0.01 3540 460 0
1479 5 0.842 0.01 3530 469 1
1874 4 0.871 0.01 3476 524 0
4539 3 0.941 0.01 3124 529 347

15093 2 1.00 0.01 390 0 3610



7.1 Computer architecture insight:

 This implementation demonstrates that this type of neural network can take advantage of parallel processing.  Furthermore
since it is primarily based on comparison as its primary operation it can take advantage of simple processors.  As the majority
of its processing is the same it is also highly adaptable to the SIMD architecture.  This also implies that a node or template
has low computational, or hardware cost.  From this viewpoint it appears that in reality that a one to one comparison between
a Fuzzy ARTMAP node and a Back Propagation node is not totally correct.  From a computational cost viewpoint one Back
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Propagation node costs the same as N  Fuzzy ARTMAP nodes, with N > 1.  This combined with the fast learning
characteristics, combined with the simple parallel architecture could make it a feasible component for adaptive control
mechanisms or other intelligent applications where fast learning is required.  As identified in table 2 for a ρa  = .771 the
number of templates required was 987.  This set of templates generated correct answers within .05% of the peak found in the
study yet used almost 200 templates less.  This set would probably be chosen as optimum for the presented computer
architecture since it used 987/1008 sets of processors or 98% of the available processors for each presentation of each
pattern, yet it gave better performance than most larger sets of templates.  No operations would be saved for a smaller set of
templates unless they were less than 512.

Further investigation is planned in more precisely determining the amount of speedup that can be expected from the parallel
processing approach.  In addition more analysis will be performed to determine whether the range of exhaustive ρa  study
can be predicted by the size of templates generated by a run of ρa =0.
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