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ABSTRACT

The problem of Direction Of Arrival (DOA) estimation of users in mobile communication systems using linear
antenna arrays is addressed. Superresolution algorithms , such as Multiple Signal Classification (MUSIC), are used to
locate desired as well as cochannel mobile users. However these algorithms require extensive computation and are difficult
to implement in real-time. In this paper, the DOA problem is approached as a mapping problem which can be modeled
using a suitable artificial neural network trained with input output pairs. A study of a three-layer Radial Basis Function
Neural Network (RBFNN) which can learn multiple source direction finding with a six-element array is conducted.
RBFNNs were used due to their ability for data interpolation in higher dimensions. The network weights are modified
using the normalized cumulative delta rule. The performance of this network is compared to that of the MUSIC algorithm
for both uncorrelated and correlated signals. It was found that networks implementing these functions were indeed
successful in performing the required task and their performance approached that of the MUSIC algorithm. It is also shown
that the RBFNN substantially reduced the CPU time for the DOA estimation computations.
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I. INTRODUCTION

Superresolution algorithms have been successfully applied to the problem of Direction Of Arrival ( DOA) estimation to
locate radiating sources with additive noise for uncorrelated and correlated signals. One of the widely used algorithms is the
MUSIC (MUltiple Signal Classification)' ,which has the advantage of high resolution for signals with small angular
separation (few degrees to few tenths of a degree). The MUSIC algorithm has been useful to mobile satellite communication
systems using Frequency Division Multiple Access (FDMA) which are faced with an increasing number of potential users to
be served in the same allocated bandwidth * . Multiple reuse of each channel, accomplished by the spatial separation of
channels assigned the same narrow frequency band, is used to avoid cochannel interference * . Further interference
reduction can be accomplished by the combined use of DOA estimation algorithms and adaptive arrays * . One of the main
disadvantages of the superresolution algorithms is that they require extensive computation and as a result they are difficult
to implement in real-time. Recently, neural networks have been proposed as successful candidates to carry on the
computational tasks required in several array processing applications > ¢ . Also, in the DOA estimation problem, "® neural
networks have been used in the estimation of the noise subspace necessary for the computation of the MUSIC spectrum by
mapping the problem to the quadratic energy function of the network. In this paper , the application of neural networks to
handle the computational problem of the DOA estimation step is approached as a mapping problem and solved by using a
Radial Basis Function Neural Network or (RBFNN) that can be trained with input output pairs . The trained network is then
capable of estimating or predicting outputs not included in the learning phase through generalization. Moreover. one of the
main advantages of neural networks is that they can be implemented in analog circuits with time constants in the order of
nanoseconds and consequently they have fast convergence rates. In section II, the architecture of a radial basis function
neural network (RBFNN) is presented as well as the input preprocessing and output post -processing. The MUSIC
algorithm is briefly described in section III. In Section IV the training algorithm used in this paper is discussed. Section V
presents results obtained from the application of the RBFNN to the DOA estimation for multiple sources. Also in section
V,comparisons of the RBFNN and MUSIC algorithm performances are conducted for uncorrelated and correlated signals.
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II. RADIAL BASIS FUNCTION NEURAL NETWORK

Radial Basis Function Neural Networks (RBFNN) ' are members of a class of a general purpose method for
approximating nonlinear mappings . Unlike the back-propagation networks which can be viewed as an application of an
optimization problem, RBFNN can be considered as designing neural networks to solve curve fitting ( or interpolation)
problem in a high-dimensional space. The mapping from the input space to the output space may be thought of as a
hypersurface I" representing a multidimensional function of the input . During the training phase, the input-output patterns
presented to the network are used to perform a fitting for I'. The generalization phase represents an interpolation of the
input data points along the surface built as an approximation for I'. The architecture considered in this paper involves
three layers , the input layer ( sensory nodes), a hidden layer of high dimension and an output layer as shown in Figure 1.
The transformation from the input layer to the hidden-unit layer is nonlinear, whereas the transformation from the hidden
layer to the output layer is linear. The array performs the mapping G: R* — C" from the space of DOA ,

{O®@= [91,92,"-,91(] } to the space of sensor output { § = [s,,sz,---sM] }. The m™ component of s is equal to

K j(mm—c"d sin® +ay, )
Sm = Z ake

k=1
where K is the number of signals , M is the number of elements of a linear array , a, represents the complex amplitude of
the k" signal, o the initial phase and o, is the center frequency. A neural network is used to perform the inverse mapping

(b

F:CY¥ >R K The network is to be trained by patterns generated from equation(l) so that it can associate the output
vectors s(1), $(2), ..., sN) with the corresponding DOA vectors ©(1), ©(2), ..., ©(N) . Input vectors are transformed
through the hidden layer outputs. Then, each output node computes a weighted sum of the hidden layer outputs ''. The
estimation phase consists of transforming the sensor output vector into an input vector and producing the DOA estimate.
The training data is obtained by forming the spatial correlation matrix R

K J(m—m')oodsinby
Rmm' = Z pke ¢ + 8:Rmm' 2)
k=1

where py is power of the K™ signal. The last term of the right hand side of this equation contains all the cross-correlated
K

terms between signals. Since for m=m’, Ry, does not carry any information on the DOA ( Rmm = Z P, ) . we can
k=1

rearrange the rest of the elements into a new input vector , b , given as

T
b= [Rzla'"aRmz,Rlza'"aRmz»”‘»RM(M—l)]

3

It follows that the number of input units is given by M(M-1). Note that we need twice as many input nodes for the neural
network since it does not deal with complex numbers. Hence the total number of input nodes needed is 2M(M-1). The
dimension of the hidden layer is equal to the number of the Gaussian functions L which can be chosen to be equal to or less
than N (number of training examples) . Obviously , the number of output nodes is equal to the number of signals K. In the
simulations performed later, the relative signal power is taken as unity. The input vector is then normalized by its norm in
the training, testing and estimation phases , i.e.

_b
ol @
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IL1. NETWORK TRAINING

Generate array output vectors { s(n), n=1,2,..., N }.

Evaluate the correlation matrix of the n array output vector { R(n), n=1,2,..., N }.

Form the vectors { b(n) ,n=1,2,..., N }.

Normalize the input vectors using equation 4 .

Generate the training set { b(n),®(n), n=1.2,..., N }.

Employ an appropriate RBFNN training procedure '° to learn the training set generated in step 5.

A

IL2. DOA ESTIMATION OR GENERALIZATION PHASE

Evaluate the sample correlation matrix v-:ng the collected array output measurements.

Form the vectors b .
Produce the normalized input vectors Z

Present input vectors Z to the RBFNN and obtain the estimate of DOA (:) .

bl

II1. MUSIC ALGORITHM

Assuming that the signals received at the different sensors are contaminated with statistically independent white noise
of variance o7, it follows that the received spatial correlation matrix R of the noisy signals can be rewritten as

M
R=APA" +6%I=) Aee] (5)

i=1
with P = E{SSH} is the signal covariance matrix, the superscript "H" denotes the conjugate transpose and 1 is the

unit matrix. Note that P has dimension NxN while R has dimension MxM , A, 2 A, = A > A,y =... A= o° are the
eigenvalues of R , and e; are its orthonormal eigenvectors. The eigenvectors corresponding to the first K largest eigenvalues
are referred to as the signal eigenvectors , and those corresponding to the minimum eigenvalues are referred to as the noise
eigenvectors. The subspace spanned by the signal eigenvectors is called the signal subspace , and its orthogonal
complement spanned by the noise eigenvectors is called the noise subspace. The matrix R-c*> I = APA" has the same

eigenvectors as R, with eigenvalues A;- 6° fori = 1,2,...,K and A;= 0 for i > K. It follows that :
K

APA" =" (A,-c%)eel 6)
i=1
Therefore the signal direction vectors and the signal eigenvectors span the same subspace. This implies that all signal
direction vectors are orthogonal to the noise subspace. The MUSIC algorithm estimates the DOA of the K signals by
finding the values of 6 corresponding to the K maxima of the function
1

S = )]
MUSIE T AMNNHA
where N is the M x M-K matrix whose columns are the M-K eigenvectors spanning the noise subspace of R ,.i..
N= [eK+l Cxez eM] ®)

IV. SIMULATION RESULTS

IV.1. UNCORRELATED SIGNALS

In the simulations performed an array of M=6 elements is used , therefore the dimension of the input layer was set
to 60 nodes. A hidden layer of 50 nodes was chosen . In Figure 2 the array receives two uncorrelated signals with different
angular separations (A =2° and 5° ). 200 input vectors were used for training . For the testing phase 50 input veclors were
used for the network simulated in Figure 2 and 100 input vectors for all the rest of the networks. The results show that the
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network successfully produced actual outputs ( solid ) very close to the desired DOA ( dotted). In Figure 3 DOA obtained
from the MUSIC algorithm are compared to those obtained from the RBFNN method for A6 = 5°. It can be concluded that
the performance of the RBFNN method approaches that of the MUSIC algorithm. Figure 4 shows a network trained with
input vectors generated from 2 signals with angular separation of 3° and tested with a set of data generated from signals

with A6 = 1.5° . The network was able to generalize and give satisfactory results.

IV.2. CORRELATED SOURCES

In many applications, the signals received by the array are correlated or coherent ( perfectly correlated ). To study
the effect of such cases on the performance of the neural network, the training data was generated assuming the array
receives two signals with angular separation of 10° . A correlation coefficient y was assumed with a signal covariance
matrix ( or the power matrix) in the case of two sources given by :

P ¥p

P-: 2
p Irl'p

&)

Moreover, the training was performed with data derived from ideal signals ( assuming the absence of noise) whereas the
testing was performed with data contaminated with additive gaussian noise to simulate real measurements. For comparison.
DOA obtained from MUSIC and RBFNN for correlated signals are plotted in Figure 5 . The RBFNN outperformed the
conventional MUSIC yielding smaller error as shown in Figure 6. In this case, the correlation matrix approaches a singular
matrix. Although the performance of the MUSIC algorithm under correlated signal environment can be improved using a
preprocessing scheme such as spatial smoothing, this technique involves additional computational complexity to the
algorithm,whereas the RBFNN approach dealt with this situation simply by taking into consideration the correlation
between incoming signals when the correlation matrix R was generated for training. In practice the network can be trained
with real data collected from actual measurements without any additional computational requirements. In Figure 7 , the
CPU time taken by the MUSIC algorithm to perform the eigendecomposition and obtain the spectrum is plotted as a
function of N, the number of different pairs of sources. For N=50 and 100 , the RBFNN needed less than a second to
estimate the DOA.

V. CONCLUSION

The problem of DOA estimation is dealt with as a nonlinear mapping from the space of sensor output to that of the
angles 6 . In this paper the neural network approach was chosen to solve this problem. In particular, RBFNN were used due
to their ability for data interpolation in higher dimensions. It was found that RBFNNs implementing these functions were
indeed successful in performing the required task and yielded good performance in the sense that the network produced
actual output very close to the desired DOA . Also, it was demonstrated that these networks were able to generalize. since
testing was performed with data sets derived from different signal conditions than the ones used for training . In review.

one of the main advantages of the RBFNN is the substantial reduction in the CPU time needed to estimate the DOA .
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MUSIC and RBFNN for M=6,sources with 5 degrees angular separation
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Figure (3) Comparison between MUSIC and RBFNN
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L=2, angular separation 1.5 degrees
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Figure (4) RBFNN trained with A8 = 3° , tested with A9 =1.5’.
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M=86,2 correlated sources with 10 degrees angular separation, gamma=0.8exp(j*pi/3)
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Figure (5) Correlated signals A8 =10°.
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