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Abstract 

Bounds on the number of training examples needed to 
guarantee a certain level of generalization perfonnunee in 
the ARTMAP architecture are derived. Conditions are de- 
rived under which ARTMAP can achieve a speciJc level of 
performunee assuming any unknown, but $xed, probability 
distribution on the training data. 

1. Introduction 

A common framework for studying machine learning 
assumes a training phase in which a learning system (or 
learner) is allowed to study a set of labeled training exam- 
ples (i.e., a training sample), and is then asked to prcduce 
a hypothesis that in some sense “explains” the underlying 
process that created these examples. A subsequent perfor- 
munce phase occurs when the hypothesis produced by the 
learner is used in an application to explain unlabeled exam- 
ples. The degree to which the hypothesis succeeds diuring 
this later phase is often referred to as its generalization ca- 
pability. Since the performance phase is where a learning 
machine is actually used to solve problems, its ability to 

produce hypotheses with good generalization capability is 
by far its most important feature. In many cases, this abil- 
ity is estimated empirically by testing an output hypothe- 
sis against previously unseen labeled examples. In this pa- 
per, however, we are concerned with deriving analytical re- 
sults that give a guarantee on the generalization capability 
of ARTMAP. 

A number of previous papers have dealt with the perfor- 
mance and capabilities of ARWAP networks during the 
training phase (e.g., [3]). This paper is concerned with the 
derivation bounds on the number of training examples re- 
quired in order to guarantee a certain level of generalization 
performance in ARTMAP during the performance phase. 

Specifically, let us assume ARTMAP is given a training 

where zi is an example and yi  is the label of this example. 
During the training phase, ARTMAP modifies its weights 
according to this training data. We can think of the final 
configuration of the network, after the training phase, as a 
hypothesis. The goal during training is to produce a hy- 
pothesis h such that h(zi) w Vi for all i. In many cases, 
the yi‘s may take on only a fixed number of values. Each of 
these possible values can be thought of as a class; in which 
case, h is performing classification. When each may take 
on only one of two possible values (i.e., classes), it is nat- 

s a m P l e o f t h e f o ~ S =  {(Zl,Yl>, (22,Y2),...,(Zm,Ym>}, 
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Figure 1. A block diagram of the ARTMAP ar- 
chitecture. 

ural to talk about examples as being either positive or neg- 
ative examples of some unknown target concept c. In this 
case, h itself can be thought of as a concept, and the learner 
is said to be performing a special type of inductive learning 
called concept learning. 

Any hypothesis that correctly classifies all examples in 
a training sample S is called a consistent hypothesis for S. 
An important property of ARTMAP, not shared by most 
neural network models, is that very simple conditions ex- 
ist under which it is guaranteed to produce consistent hy- 
potheses. This property will be used to derive bounds 
on the generalization performance of ARTMAP in the fol- 
lowing sections. Specifically, in Section 2 we present the 
ARTMAP model that we will analyze. The notion of gen- 
eralization capability is then presented in a more formal 
setting when we discuss the Probably Approximately Cor- 
rect (PAC) learning model in Section 3. The generalization 
results we obtain for ARTMAP are then presented in Sec- 
tion 4. In Section 5 we consider how the results of this pa- 
per can, be applied. 

2. The ARTMAP Architecture 

The ARTMAP architecture, which is described in detail 
by Carpenter et al. [2], is a neural network that can be used 
to learn arbitrary mappings from a Boolean input space of 
any dimensionality, to a Boolean output space of any di- 
mensionality. 

The ARTMAP neural network consists of two ART1 
modules designated as ART, and ARTb, as well as an 
inter-ART module as shown in Figure 1. Inputs (examples) 
are presented at the ART, module, while outputs (labels) 
are presented at the ARTb module. The inter-ART mod- 
ule includes a MAP field, whose purpose is to determine 

whether the mapping between the presented inputs and out- 
puts is the desired one. If a = (al, . . . , a ~ , )  denotes a 
binary vector, the input to the ART, module is the binary 
vector 

where 
aF=l -a i  l < i < M a  

This type of transformation, called complementary coding, 
is necessary for the successful operation of ARTMAP (for 
more details see [2], page 584). A field of nodes designated 
as F$ receives the input vector a and produces the input I 
for the ART, architecture. Hence, F$ acts as a preproces- 
sor to the ART, module. The binary input vector I is sub- 
sequently applied at the F1 field of ART,, designated as 
F;. No such transformation (i.e., complementary coding) 
is necessary for the output 0 which is directly applied at 
the Fl field of ARTb, denoted as F/ .  Field Ff has 2Ma 
nodes, field F! has Mb nodes, the FZ field of ART, (F;) 
has N,  nodes, the F2 field of ARTb ( F i )  has Nb nodes, and 
finally the MAP field F a b  has Nb nodes. Fields F,O and F i  
are where compressed representations of the input patterns 
(the I's) and the output patterns (the 0's) are established, 
respectively. Certain other minor assumptions about the 
model are necessary in order to derive our results. These 
assumptions are all satisfied by the fast learning ARTMAP 
architecture discussed in Georgiopoulos et al. [3]. 

In this paper we consider concept learning. In particular 
we wish to use ARTMAP to learn a concept correspond- 
ing to an unknown target concept c that performs a map- 
ping from n-dimensional Boolean space to 1-dimensional 
Boolean space, i.e., c : (0, l}, + (0, l}, where the 1- 
bit output is 0 for a negative example of the concept, and 1 
for a positive example. In order for ARTMAP to function 
properly, the vector (0,l) will be supplied to the ARTb for 
the labels of a negative examples, and the the vector (1,O) 
will be supplied for the labels of positive examples. Our 
final modeling assumption is that the number of F,O nodes 
needed during training is O(m). This assumption is cer- 
tainly reasonable in light of the fact that if more than O(m) 
such nodes are needed, the network is not acting to com- 
press the training sample during training. We will use AM 
to refer to an ARTMAP architecture that satisfies all of the 
modeling assumptions discussed above, and AM, when 
we wish to indicate that Ma = n in this architecture. 

It is assumed that a sample of size m is available for 
training AM,. Each element of this sample consists of a 
randomly drawn vector in (0, l},, along with a label, (0,l) 
or (1,0), corresponding to the output that c produces on 
this vector. This paper addresses the ability of ARTMAP 
to generalize. Specifically, we will consider the question of 
what sample size m is necessary for training AM, so that 
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we have a confidence 6 that it will correctly classify (ac- 
cording to c) a fraction 1 - e of future randomly drawn un- 
labeled vectors in (0 ,  l},. 

3. The PAC Model 

One of the most popular and widely studied theoretical 
models of concept learning is the Probably Approximately 
Correct (PAC) model introduced by Valiant [4]. A reason- 
able assumption regarding this model is that the more ex- 
amples processed during the training phase, the better the 
generalization capability of the resulting hypothesis will be. 

In the PAC model we assume examples are drawn ac- 
cording to distribution 2) from the instance space X. It is 
convenient to think of the the elements of X as being pa- 
rameterized on some parameter n. In which case, we can 
write X = U,?1Xn. If C = Un21Cn is a class of con- 
cepts defined over X ,  and c E C, is an unknown itatget 
concept (i.e., the one we are trying to learn), then the er- 
ror of the hypothesis h output by our learning algoritlhm is 
defined as 

where the subscript z E D indicates that the probability is 
taken with respect to a random draw of z E Xn according 
to D. Given this definition, we are now ready to define: PAC 
learning. 

The concept class C is said to be PAC learnable if there 
exists an algorithm L such that for every c E Cn ovex any 
distribution 2, on X, and for all 0 < e,6 < 1/2, if L is 
given access to labeled examples and inputs e and S,, then 
with probability at least 1-6, L outputs a hypothesis h, E 3c 
satisfying errmv(h) 5 e .  Furthermore, if L runs in time 
polynomial in n, 1/e, 116, and the size of c, then we say C 
is eflciently PAC learnable by hypothesis class 2. 

If the concept class is defined over n-dimensional 
Boolean space, as is the case for the ARTMAP architecture 
AM,, then explicit conditions under which PAC leaning 
occurs are given in the following theorem. In this thelorem, 
IC1 S 21xl denotes the total number concepts in any finite 
concept class C. 

Theorem 1 (nlumer et al. [I]) 
Let C be any jinite concept class. Then for any 0 < ti, 6 < 
1/2, given a training sample of size 

drawn independently and at random according to 2) and 
classijied according to concept class c E C, with proba- 
bility at least 1 - 6, any hypothesis h consistent with the 
training sample satisfies errorv (h) 5 E. 

Thus, if an ARTMAP network is able to exactly learn a 
large enough training sample, then it will PAC learn the un- 
known target concept c. 

4. ARTMAP Results 

In order to derive generalization results for the 
ARTMAP architecture AM, we will make use of the 
following important theorem: 

Theorem 2 (Georgiopoulos, et al. [3]) 
Given a training sample for the ARTMAP architecture 
.AMn, A M ,  will consistently learn the training sample 
after the entire training sample has been presented at most 
(n - 1) times. 

We are now ready to state our main result, which quanti- 
fies the generalization capability of the ARTMAP architec- 
ture AM. 

Theorem 3 Any Boolean concept class C is eficiently PAC 
learnable using the ARTMAP architecture AM if lCnl = 
O( bnb ), where b and k are positive constants. 

PROOF: Assume c is any concept in Cn. Choose 0 < e, 6 < 
1, and draw a sample of size 

Next, construct the ARTMAP network AMn, and repeat- 
edly present the training sample to the network (n - 1) 
times. According to Theorem 2, after this training, d M n  
will be consistent with all m training examples. Since m 
was chosen according to Theorem 1, the hypothesis h pro- 
duced by A M ,  satisfies. 

Since we have assumed the number of F; nodes is O(m), 
and lnbnb = O(nk), the training time can be upper 
bounded by m2(n - 1) = O(nk+l). Because k: is a con- 
stant, the running time is therefore polynomial in n, l/e, 
1/6, and the size of the concept. 

In the following section we use Theorem 3 to explore the 
generalization capabilities of ARTMAF' for a number of in- 
teresting problems. 

0. 

5. Examples 

A monomial formula defined on n Boolean variables 
is any purely conjunctive collection of these variables or 
their complements. The number of different monomials 
that can be defined on n variables is 3n. Therefore, if we 
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are asked to learn some unknown monomial concept over 
20 variables to 95% accuracy ( E  = 0.05) with 99% confi- 
dence (6 = 0.01), Theorem 3 tells us that this can be done 
using AM20 and a sample of size m = 532. 

A disjunctive normal form (DNF) formula defined on n 
Boolean variables is any collection of monomial clauses de- 
fined on these variables that are joined together by disjunc- 
tion. A k-DNF Boolean formula is a DNF Boolean formula 
in which each monomial clause may contain at most k en- 
tries. The space of k-DNF formulae is much richer than 
the space of monomial formulae. Specifically, it can be 
shown that the number of different k-DNF forpulae that 
can be defined on n variables is at most 2(2n) . Thus if 
we are asked to learn some unknown 10-DNF concept over 
20 variables to 95% accuracy with 99% confidence, The- 
orem 3 tells us that this can be done using A M 2 0  and a 
sample of size m = 554,517. If, however, we assume the 
concept can be represented by some k-DNF formula using 
a small number of clauses, say p, then the number of differ- 
ent formulae that can be defined on n variables is at most 
~ ( 2 n ) ~ .  In this case, for p = 10, AM20 would require a 
sample of size m = 73,777. 

It is interesting to compare these results to those ob- 
tained by training ARTMAP on some real-world data sets. 
Carpenter et al. [2] performed an extensive series of exper- 
iments using ARTMAP on a benchmark machine learning 
database known as the mushroom database. Each train- 
ing example in this database is a 126-element binary fea- 
ture vector, along with a classification as to whether the 
mushroom under consideration is edible or poisonous. A 
total of 23 species are represented in the database. With 
pa = 0.7 and off-line training (which is the type of train- 
ing considered in this paper), they report an average accu- 
racy of 97.7% (over 10 runs) using a training sample of 
size 1000. Furthermore, Table 5 on pg. 576 of their work 
demonstrates that the hypothesis output by ARTMAP is ac- 
tually a k-DNF formula. From their table, it can be seen 
that the maximum size of any clause is 15. From our previ- 
ous example, however, we see that Theorem 3 would direct 
us to use a much larger sample size. It remains an open 
question as to what extent the bounds in Theorem 3 can be 
tightened. 
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