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ABSTRACT 1. INTRODUCTION 

In the present paper we generalize the idea of Optimal 
Linear Combiners that are used to aggregate 
information from different sources providing estimates 
about a specific quantity. Two linear models are 
introduced, along with their analysis, which combine 
related components of information when more than one 
variable is to be predicted. The models' purpose is to 
produce point estimates of better accuracy in terms of 
mean squared error. Experimental results dealing with a 
functional approximation problem demonstrate that the 
generalized Optimal Linear Combiners suggested yield 
higher accuracy when compared to other combiners 
such as the Simple Average, or the conventional 
Optimal Linear Combiners. 

53-1/97/$10.00 @ 1997 IEEE 

Estimation of variables of interest (VI) whether 
involving point estimation or the estimation of an entire 
distribution, is a fundamental problem with vast 
numbers of applications such as time series forecasting, 
pattern recognition and functional approximation, to 
name a few. Quite often, a decision maker (DM) has 
access to a collection of experts (an ensemble) and is 
faced with the task of obtaining an optimal decision 
based on the estimates about a particular VI, that these 
experts supply. Being presented with a plethora of 
expert opinions, that do not necessarily coincide in all  
occasions, complicates the process of decision making. 
Some questions that arise are which experts should be 
ignored, which should be taken into account, and finally 
how to end up with a single opinion. For many years the 
classical approach (the so called naive approach) to all 
these problems was first to choose an estimation 
performance criterion like the Mean Square Error 
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(MSE), which we will consider henceforth, and then 
make the data available to the collective of experts. The 
DM's choice would be the expert featuring the best 
estimate in terms of smallest MSE. 

Over the past 20 years researchers from the 
field of economic forecasting have addressed the 
aforementioned issues and demonstrated that 
aggregating the experts' opinions can lead in many 
cases to a substantial enhancement in the estimation 
process (see for example [l], [2]). The idea exploits the 
fact that experts in the ensemble express independent, or 
partially independent opinions. This is usually a result 
of the possibly different data sets processed by them, or 
due to the different assumptions made by them about the 
underlying process generating the data relevant to the 
VI. A particular straightforward approach is to linearly 
combine the opinions. Models based on this idea are 
called MSE optimal linear combiners (MSE-OLC). An 
example of such a model is given in Figure 1, where the 
estimates of 3 experts are linearly combined. These 
models were first introduced by [3], where it was shown 
that they outperform the best experts within the 
ensemble. Although there is much debate on the exact 
choice of the weights for an OLC model, two versions of 
this family of combiners are more popular: the 
constrained OLC (MSEcOLC), where specific linear 
constraints are imposed on the weights of the linear 
combination (see [3], [4]), and the unconstrained OLC 
(MSE-uOLC), where there are no constraints on the 
weights (see [5], [6]).  It has been pointed out that even 
though inter-dependence of the individual members of 
an ensemble is the cause of multicollinearities among 
them, it is useful in general to include as many of them 
as possible in the aggregation procedure by means of an 
OLC model. In the context of artificial neural networks 
(ANN) the concept of cOLC combiners was introduced 
by [7] and the uOLC by [8]. In both references it was 
concluded that ensemble methods like the OLC family 
minimize up to a certain extent the effect of a potential 
model overfitting to the training data by performing a 
smoothing operation in the functional space of 
estimators. 

An extension to the idea of OLC models can be 
investigated when a DM has to cope with point 
estimation of a vector rather than a scalar. To derive a 
vector point estimate employing as many separate OLC 
models as the number of components in the VI, the DM 
makes the implicit assumption that the estimation of one 
component is independent from the estimation of the 
others. But this assumption does not account for the 
potential dependence among these components, which is 
the case in many practical applications. We propose the 
generalized MSErOLC (MSEgOLC) models that 
exploit the aforementioned inter-dependence between 
vector components in order to enhance individual point 
estimation. 
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2. NOTATION 

Before we start presenting the analytical details 
of the linear combiner models, let us first introduce 
some useful notation. Let R be the set of real numbers. 
Then RM denotes the set of all column vectors with M 
real components and WMfl is the set of all real matrices 
with M rows and N columns. Lower case letters stand 
for positive integers, unless otherwise specified. A 
symbol that we will use frequently, when it comes to 
defining various quantities, is 4 , which stands for "is 
defined as". 

Lower case underscored letters represent column 
vectors and upper case letters are used for matrices, 
unless, again, specified otherwise. The transpose of a 
vector g is denoted by g =, and the same notation is 
used for transposes of matrices as well. Some special 
vectors are: 2 ~ is the mth member of the standard 
orthonormal basis vector for W', so it's components are 
all zero except the one in the mth row which is equal to 
one; 1 ,, is a column vector with N rows filled with 
ones; 0 ,, is the "zero" column vector with N zeros as 
components. Also, some special matrices that will be 
used are the following: IL is the L by L identity matrix 
and OM, is the "zero" matrix with M rows and L 
columns containing zeros. Continuing with the vector- 
matrix notation, we denote the inverse for a square non- 
singular matrix C by C-l. If S E RLxL is a symmetric 
positive definite matrix, we will denote this as S > 0. 
Assuming that S is non-negative definite we will define 
the vector norm llg d x ,  which coincides 
with the standard Euclidian vector norm if S is equal to 
the proper identity matrix. 

To conclude our introduction of notation we 
will define some of the operators related to random 
variables (RV). If the vectors g and are RVs, by 
E{g }, Cov(g , y ) and Var(g ) Cot@ ,I: ) we 
mean the expectation, the covariance and the variance, 
respectively, of the quantities involved. Finally, 
E{g 1.1 denotes the conditional expected value of v 
conditioned on the vector g . 

- 

- 

3. ANALYSIS 

We assume that the DM consults a module 
ensemble (ME), which is defined as being a collection of 
N 1 2 processing units called experts or modules. It has 
to be stressed here that the nature of the experts is of no 
importance; a mathematical model, an expert system or 
even a human could serve as a module. The nth member 
of the ME is of the form illustrated in Fig. 2. It receives 
as input a vector RV p E Wp, for some integer P, 
which is common for all modules participating in the 



ME. It delivers as output another vector RV 
- y "(E ) E W M  with Ad components, viz. 

It is assumed that this vector is a point estimator of the 
vector RV y (z ) E W M  which represents the DM's VI. 
The quantity Gnm(z ) stands for the point estimator for 
the mth component of y supplied by the nth ME 
member. Without sacrificing generality we hypothesize 
that every module belonging to the ME responds with a 
vector of common dimensionallity M. We underline the 
fact that the exact nature of the mechanisms that lie 
behind the point estimation of each module will not be 
of our concern. 

Next, by stacking N module responses into a 
single column vector we can define a new vector 
f (z E WL as 

A 

(2) 

with L = NM. Finally, the model produces a point 
estimator 5 by multiplying y with a weight matrix W 
and adding a bias correction term b will be called a 
generalized Linear Combiner (gLC) with parameters 
W E WLKM and & E WM. Expressing it as an equation 
we have 

CI 

5 - (z ; W , b  ) = W T 2  (z ) +b 

= ( Z ) h g ( d - g ( z ; W , b )  

(3) 

Fig. 2 illustrates a block diagram of this combiner. If we 
define the gLC estimation error vector 2 E W M  as 

(4) 
N 

then the MSE expression for the mth gLC output is 
given by 

N T  MSEm(W,b ) = e  T,E{Z (Z )= (Z )}e m (5) 

A gLC model that minimizes the MSE above will be 
called generalized MSE Optimal Linear Combiner 
(MSE-gOLC). Generalized OLC models can be divided 
into two major categories as is demonstrated below. 

1) Unconstrained MSE-gOLC models (MSE-ugOLC). 
For this type of gOLC combiner the DM imposes no 
restrictions on the values the model parameters may 
acquire. The optimization procedure for the mth 
component is stated below 

(2 R, b;} A argmin MSEm(g ,, b,) 
IPm,kn 

(6) 

where g and bm are the mth column of matrix W and 
the mth component of the bias correction term, 
respectively. We defiie now the matrices C E WLdand 
D E WL"M as 

C 9 Cov@ ) = E{Y Y } - E@ }E@ T} (7) 
- A T  

D Cov(2 ,g  ) = E{? I/ T} - E{F}E{  I/ T} (8) 

By taking appropriate gradients and equating them to 
zero we can demonstrate that the optimal parameters are 
given by 

W O  A c-1D (9) 

- b E{g  } - D T C 1 E { 2  } (10) 

Here we made the reasonable assumption that C>O, so 
that the inverse exists. The minimum MSE value 
attained for each component of the ugOLC estimator is 

MSEm(g R, b g )  = Var(ym) - lld mIl$-i (11) 

where d and ym is the mth column of matrix D and 
the mth component of the VI, respectively. The resulting 
ugOLC estimator - turns out to be unbiased, meaning 
that 

E E } = O  (12) 

This has been achieved through the utilization of the 
bias correction term in Eq. (10). 

2)  Constrained MSE-gOLC models (MSE-cgOLC). 
Let us assume that the experts participating in a ME 
provide the DM with unbiased estimates of the VI 
having the form 

(13) 
- 
lf,=Wg I Z } + Z n  

E G  n} =o M (14) 

where 2 is the estimation error of the nth module 
output. Also, an unbiased gOLC estimate (see Eq. (15) 
and (16) ) would be another desirable feature for the 
DM, i.e., 

- Y @)=E{gIz)+Z (15) 
N 

This uprwri knowledgehypothesis can be incorporated 
into a gOLC model in the form of constraints imposed 
on the parameters. It can be shown after manipulating 
Eq. (3) and Eq. (13)-(16) that the following constraint 
has to be met by the weight matrix 
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AW = IM (17) 

For the above equation we define the constraint matrix 
A E ItMd as the following Kronecker tensor product 

Eq. (17) implies that the constraint matrix should be a 
right inverse of the weight matrix. Taking into account 
these constraints the DM is faced with the following M 
decoupled constrained minimization problems 

If we first define the symmetric matrix r E ItMxM as 

r A AC-IAT (20) 

then by using Lagrangian multipliers we obtain that in 
this case, the optimal parameters are 

w" c- 'D + C-'ATr-l(1M-AC-'D) (21) 

Because of the special structure of the constraint matrix 
given by Eq. (18), it can be proven that matrix I' will be 
invertible if C>O. The fact that all the bias correction 
terms are identically zero (Eq. 22) should not be a 
surprise, since we hypothesized the unbiasedness of all 
the involved estimators. The resulting minimum MSE's 
are displayed below 

We observe that for the constrained combiner the lowest 
MSE value is greater than the one attained when 
employing an unconstrained model instead. They differ 
by a factor, whose magnitude depends on how close the 
weight matrix W" complies to the condition described 
by Es. (17). 

When attempting a comparison of OLC and 
gOLC models, it is quite straightforward to demonstrate 
that the former family of models is just a special case of 
the latter ones. This can be derived with the help of Fig. 
3, where a DM consults with 2 experts receiving 
common input to obtain a point estimator of a two 
dimensional VI. If the DM chooses to assume that these 
two components are statistically independent, he/she 
would apply an OLC model (either unconstrained or 
constrained depending if there are any further 
assumptions about unbiasedness of the available 
estimators). For this particular case the weights used by 
the OLC model correspond to the solid lines that 

connect the module outputs with the outputs of the 
combiner. However, if there is indeed inter-dependence 
among the two VI components and the DM applies a 
gOLC model then additional weights would be available 
to further minimize the MSE. So, OLC models would 
be a suboptimal special case of gOLC combiners. It also 
becomes obvious that an OLC model (either constrained 
or unconstrained) could be derived from its gOLC 
counterpart by setting the weights that correspond to the 
dashed lines equal to zero. 

4. EXPERIMENTS 

In order to demonstrate the superiority of gOLC 
models over other existing combiners a series of 
experiments was performed on a function approximation 
task. More specifically, the comparison was made 
between the "Naive" model (the output of the combiner 
coincides with the one belonging to the expert with the 
lowest MSE), the "Simple Average" model (all the 
outputs estimating the same component of the VI are 
simply averaged), the OLC and the gOLC family 
models. The problem consisted of approximating the 
noisy contour of a circle with radius R residing on a 
plane. Three feedforward ANN'S dedicated to the 
estimation of the X and Y coordinates of the circle were 
separately trained on a common training set of patterns; 
then, their responses were fused using the 
aforementioned combiners. After obtaining the optimal 
weights for these combiners, their responses were 
compared to a testing set that consisted of patterns not 
used during the training procedure of the individual 
ANN's. This was done in order to draw conclusions 
about the generalization properties of each class of 
linear combiners. 

The experiments were divided in 4 major sets 
reflecting 4 different noise levels by varying the 
standard deviation CJ of the random radial component. 
For each set the procedure of training the three A N N ' s ,  
combining them and then evaluating the resulting MSE 
for the various combiners was repeated for 1000 times. 
During the derivation of the combiners' optimal 
parameters (training phase of the combiners) gOLC 
models were exhibiting the lowest MSE, which was 
something to be expected, since they are optimal among 
all other possible linear combiners. The results 
illustrated in Fig. 4 through Fig. 7 were generated for 
R = 10 and for CJ taking the values 0.0, 0.5, 1.0, 2.0 . 
The figures show the percentage out of the 1000 cases 
related to each set (noise level) for which each model or 
family of models yielded the minimum MSE score on 
the testing set. Note that in the these figures "avg" 
stands for the Simple Average models. For this specific 
approximation task it is evident that gOLC combiners 
maintain their superiority even when they are presented 
with data not used in the derivation of their parameters, 
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that is, they exhibit good generalization. Another 
observation is that their performance degrades gradually 
with increasing noise levels. 

5. CONCLUSIONS 

Although slightly more complex than 
conventional OLC models, gOLC combiners are able to 
relent more accurate point estimates when components 
of a vector VI share information about each other. 
Assuming that the training sets used for training gOLC 
models are representative enough of the entire pattern 
domain (including the patterns in all possible testing 
sets), their superiority becomes more dominant when 
there is little noise or uncertainty involved in the data. 
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Model comparisons according to lowest MSE (sigmaa.0) 
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Figure 5 

Model comparisons amrdlng to lowestMSE (slgma-2.0) 
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