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Abstract 
In this paper, we consider the problem of learning to 

predict the correct pose of a 30 object, assuming ortho- 
graphic projection and 3 0  linear transformations. A neural 
network is trained to learn the desired mapping. First, we 
consider the problem of predicting all possible views that 
an object can produce. This is performed by representing 
the object with a small number of reference views and using 
algebraic functions of views to construct the space of all 
possible views that the object can produce. Fundamental to 
this procedure is a methodology based on Singular Value 
Decomposition and Interval Arithmetic for estimating of the 
ranges of values that the parameters of algebraic functions 
can assume. Then, a neural network is trained using a num- 
ber of views (training views) which are generated by sam- 
pling the space of views of the object. During learning, a 
training view is presented to the inputs of the network which 
is required to respond at its outputs with the parameters of 
the algebraic finctions used to generate the view from the 
reference views. Compared to similar approaches in the lit- 
erature, the proposed approach has the advantage that it 
does not require the 30 moakls of the objects or a large 
number of views, it is extendible to other types of projec- 
tions, and it is more practical for object recognition. 

1. htroduction 
In a recent paper [l], we studied the problem of 

learning to predict the correct pose of a planar object, 
undergoing 2D affine transformations (i.e., unconstrained 
viewpoint). The idea was to train a single-layer neural net- 
work (SL-") with a number of affine transformed views 
of the object in order for it to learn to predict the parameters 
of the affine transformation between the training views and 
a reference view of the object. To demonstrate our 
approach, we pexformed a number of experiments using 
several objects. A separate neural network was assigned to 
each object and was trained with views of this object only. 
In this way, each network became specialized in the predic- 
tion of the pose from views of a specific object only (object 
specific networks). Our experimental results showed that 
training was extremely fast and that only a small number of 
training views was sufficient for the networks to generalize 
well. By generalization we mean the ability of the networks 
to predict the correct affine transformation even for views 
that were never exposed to them during training. We also 
considered issues related to the discrimination power and 
noise tolerance of the networks. Our results showed that the 
discrimination power of the networks was excellent. Their 
noise tolerance was not very good initially, however. it was 
dramatically improved by applying a preprocessing to the 

inputs based on Principal Components Analysis @CA) [2]. 
In this paper, we are extending the above work in the 

case of 3D objects, assuming orthographic projection and 
3D linear transformations. This extension is possible using 
the theory of algebraic functions of views [31[41. Algebraic 
functions of views are simply functions which express a 
relationship among a number of views of the same object in 
terms of their image coordinates alone. For example, it has 
been shown that in the case of orthographic projection, the 
image coordinates of any three views of an object, undergo- 
ing 3D linear transformations, satisfy a linear function [31. 
This means that novel views of an object can be expressed 
as a linear combination of two known (reference) views of 
the object. Our goal here is to train a neural network to pre- 
dict the pose of 3D objects, in terms of the parameters 
(coefficients) of the algebraic functions of views. 

A separate SL-NN was associated with each object in 
[ll. This is because a single view is'enough to represent 
planar objects from any viewpoint. In the case of 3D 
objects, more than one views are needed to represent differ- 
ent aspects of the object. Two views correspond to the same 
aspect if they capture almost the same 3D features. As dis- 
cussed above, two views are enough to represent each 
aspect. A separate neural network has been associated with 
different aspects of an object (aspect specific networks). SL- 
NNs are used again since the mapping to be approximated 
is linear. To train the aspect specific networks, a number of 
training views are generated. This is performed by sampling 
the space of transformed views associated with the aspect of 
interest. This space is constructed by combining the refer- 
ence views associated with the aspect, using algebraic func- 
tions of views [31[41. The values of the parameters used in 
the combination are obtained by sampling the ranges of val- 
ues that the parameters can assume. To estimate the ranges, 
a methodology based on Singgar Value Decomposition 
(SVD) [2] and Interval Arithmetic (U) [51 is applied. Dur- 
ing recognition, an unknown view is presented to the aspect 
specific networks which predict sets of values for the 
parameters of the algebraic functions. By combining the 
reference views associated with an aspect specific network, 
using the parameter values predicted, a view is predicted 
which is then compared with the unknown view. 

Our work has similarities with [6]. In specific, the 
problem of approximating a function that maps any per- 
spective view of a 3D object to a standard object view was 
considered in [61. This function was approximated by train- 
ing a Generalized Radial Basis Functions Neural Network 
(GRBF-NN). The training views were obtained by sampling 
the viewing sphere, assuming that the 3D model of the 
object is available. Despite the fact that the two approaches 
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consider different types of projections, which we discuss 
later, there are a number of other differences between the 
two approaches. The first important difference is in the way 
that the training views are obtained. In [61, the training 
views can be obtained easily only when the 3D models of 
the objects are available. Since it is not always possible to 
assume this, an alternative way must be used to obtain the 
training views, for example, by taking pictures of the 
objects from different viewpoints. This approach, however, 
requires more effort and time: edges must be extracted, 
interest point must be detected, and point correspondences 
across the views must be established. On the other hand, 
our approach requires only a small number of views. Then, 
the training views can be generated by combining these 
views, using algebraic functions of views. 

The second difference is in the kind of outputs that 
the neural networks have been trained to produce. In [61, the 
GRBF-NN predicts the coordinates of a standard view of 
the object. In a similar approach [31, a linear operator was 
built to distinguish between views of a specific object and 
views of other objects, assuming orthographic projection. 
This was done by mapping every view of the object to a 
vector which uniquely identifies the object. In our approach, 
however, the SL-NN predicts the values of the parameters 
of the algebraic functions of views. Although the above two 
approaches are mostly biological motivated, it is the practi- 
cal value of the neural network approach which is of inter- 
est to us here. In particular, our objective is to benefit 
approaches which operate under the hypothesize and verify 
paradigm [7][81. In this context, objects are hypothesized 
and verified during recognition by back-projecting them 
onto the unknown scene. In the case of recognition using 
algebraic functions of views [41[91, back-projection simply 
implies the combination of the reference views of the candi- 
date object. Thus, a candidate set of parameter values must 
be computed for every hypothesis. We show that the accu- 
racy of the neural network approach in predicting the cor- 
rect parameters is as good as that of a traditional least- 
square scheme (SVD), however, the neural network 
approach has less computational requirements. 

To simplify training, we show that it is not necessary 
to consider both the x- and y-coordinates of the views dur- 
ing training (views are represented here as a collection of 
points given by their location in the image). In fact, training 
the networks using only one of the two is enough. This sim- 
plification has many benefits (smaller networks, faster train- 
ing) and adds only a minor cost during pose prediction 
(pose must now be predicted in two steps). The current ver- 
sion of our method deals with orthographic projection only. 
However, orthographic approximates perspective quite well 
when the camera is not very close to the object [lo]. Since 
orthographic projection is linear, linear networks (SL-NN) 
are required to learn the mapping as opposed to nonlinear 
networks (GRBF-NN) used in the case of perspective [6]. 
On the other hand, extending the current approach to other 
types of projections is possible due to the fact that algebraic 
functions of views have been shown to exist in the case of 
paraperspective [121 as well perspective projection 141. 

The organization of the paper is as follows: Section 2 
presents a brief overview of the theory of algebraic func- 
tions of views. The procedure for estimating the range of 

values that the parameten of the algebraic functions can 
assume is presented in section 3. In Section 4, we describe 
the methodology for obtaining the training views and the 
procedure for training the aspect specific neural networks. 
Our experimental results are given in Section 5. Finally, 
section 6 contains our conclusions. 

2. Background on algebraic functions of views 
Algebraic functions of views were first introduced, in 

the case of scaled orthographic projection (weak perspec- 
tive), by Ullman and Basri [3]. They showed that if we let 
an object to undergo 3D rigid transformations, namely, rota- 
tions and translations in space, and we assume that the 
images of the object are obtained by orthographic projec- 
tion followed by a uniform scaling, then any novel view of 
the object can be expressed as a linear combination of three 
other views of the object. In specific, Let us consider three 
reference views of the same object VI,  V 2 ,  and V,, which 
have been obtained by applying different rigid transforma- 
tions, and three points p'= (x:y'), p"= ( x " . ~ " ) ,  and 
p"' = (x"', y"') , one from each view, which are in correspon- 
dence. If V is a novel view of the same object, obtained by 
applying a merent rigid transformation, and p = (x, y )  is a 
point which is in correspondence with p', p", and p"', then 
the coordinates of p can be expressed in terms of the coor- 
dinates of p', p", and p"' as follows: 

x = a, x' + a&' + a3x"' + a4 (1) 
y = b, y' + b2y" + b3y"' + b, 

where the parameters ai, b,, j = 1. . . . ,4. are the same for all 
the points which are in correspondence across the four 
views. It should be mentioned that the parameters follow 
certain functional restrictions 133. The above result can be 
simplified if we generalize the orthographic projection by 
removing the orthonormality constraint associated with the 
rotation matrix. In this case, the object undergoes a 3D lin- 
ear transformation in space and only two refenxce views 
are required. The corresponding algebraic functions are 
shown below: 

x = a,x'+ a2y'+ u3x"+ a4 (3) 
y = bl x' + b,y' + b3x" + 6, (4) 

where the parameters a j ,  b j ,  j = 1, . . . ,4, are the same for all 
the points which are in correspondence across the three 
views. It should be noted that not all the information from 
the second reference view is used but only "half' of it (only 
the x-coordinates). Of course, (3) and (4) can be rewritten 
using the y-coordinates of the second reference view 
instead. 

The extension of algebraic functions of views in the 
case of perspective projection has been carried out by 
Shashua [41 and by Faugeras and Robert [lll. In particular, 
it was shown that three perspective views of an object sat- 
isfy a trilinear function. Moreover. Shashua [41 has shown 
that a simpler and more practical pair of algebraic functions 
exist when the reference views are orthographic. This is 
useful for realistic object recognition applications. Here, we 
consider the case of Orthographic projection and 3D linear 
transformations only. 
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3. Estimating the ranges of the parameters 
We start by introducing some terminology and mak- 

ing certain assumptions. We assume that each object m is 
represented by a number of aspects A,,,. In the case of 
convex 3D objects, six aspects should be enough, while in 
the case of general 3D objects, more aspects are necessary 
to represent the object from different viewing directions. 
Each aspect is represented by V different views which we 
call, reference views. The number of reference views V 
will be equal to two here, since we have assumed the case 
of linear transformations. For each aspect, we assume a 
number of "interest" points N,,,,,,, a = 1,2,. . . ,A,,, (e.g.. cor- 
ners or junctions) which are common in all the views asso- 
ciated with the aspect. We also assume that the point corre- 
spondences across the views have been established. 

Under the assumption of orthographic projection, two 
reference views V1 and V ,  must be combined in order to 
obtain a new view V ,  as Eqs. (3) and (4) illustrate. Given 
the point correspondences across the three views, the fol- 
lowing system of equations must be satisfied: 

x; y; x; 1 
x2 r 2  

1 ] 1:: ;;]-I - ... :1 ... :: 1 ..I. ... ... ... a3 

where (xi,yi), (xi, r2), ... (x&a),iNm(J and (xY7y'h (6 
j,), . . . (xkmC<).jim,,) are the coordinates of the points of the 
reference views VI and V2 respectively, and (xl,yl), (x,. 
y,), . . . (xNmC0), yNm(a)) are the coordinates of the points of the 
novel view V .  Instead of the x-coordinates of the second 
reference view V,, its Y-coordinates could have been used. 
The above system can now be split into two subsystems, 
one involving the a j  parameters and one involving the bj  
parameters. Using matrix notation, they can be written as 
follows: 

pc,= Px (6) 
pc2 = Py (7) 

where P is the matrix formed by the x-  and y-coordinates of 
the reference views (plus a column of l's), c1 and c2 are 
vectors corresponding to the a, and b, parameters of the 
algebraic functions and p x ,  p r  are vectors corresponding to 
the x-  and y-coordinates of the new view. Since both (6) and 
(7) are overdetermined, we can solve them using a least- 
squares approach such as SVD [21. Using SVD, we can fac- 
torize the matrix P as P 3: UpW,V$ where both U, and V ,  
are orthonormal matrices, while W p  is a diagonal matrix 
whose elements W E  are always non-negative and are called 
the singgar values of P.  The solution of the above two sys- 
tems is c1 = P+px and c2 = P+py  where P+ is the pseudoin- 
verse of P .  Assuming that P has been factorized, its pseu- 
doiwerse is P+=V,W;UpT where W; is also a diagonal 
matrix with elements ~ w f :  if wf: greater than zero (or a very 
small threshold in practice) and zero otherwise. In specific, 
the solutions of (6) and (7) are given by the following equa- 
tions [21: 

where UP denotes the i-th column of matrix U,, vp denotes 
the i-th column of matrix V ,  and k = 4. 

To determine the range of values for c1 and c2, we 
assume that the image of the unknown view has been scaled 
so that its x-  and y-coordinates belong to a specific interval. 
This can be done, for example, by mapping the image of the 
unknown view to the unit square. In this way, its x- and y- 
image coordinates are mapped in the interval [O, 11. To 
determine the range of values for c1 and c2. we need to con- 
sider all possible solutions of (6) and (7). assuming that the 
p x  and p y  belong to [0,11. To solve this problem, we have 
used IA 151. In IA, each variable is represented as an inter- 
val of possible values. Given two interval variables 
t = [t,, t21 and r - [ r , .  r21, then the sum and the product of 
these two interval variables is defined as follows [51: 

t + r = [t ,  + r , ,  t2 + rz] 

t * r = [min(tlrl,  t lrz,  t2r1, t2r2). m m ( t l r l ,  t1r2, t2r1, t2rdl 

Applying the interval arithmetic operators to (8) and (9) 
instead of standard arithmetic operators, we can compute 
interval solutions for c,  and c, by setting px,=[O,ll  and 
p,.=[O,lI. In interval notation, we want to solve the systems 
Pc ,  = p:  and Pc,  = p i ,  where the superscript I denotes an 
interval vector. The solutions c: and,c: should be under- 
stood to mean c: = [cl:  Pc, = p x ,  p , ~ p : I  and 
ci = [c2: Pc, = p y ,  p , ~ p ; ] .  It should be mentioned that since 
both (8) and (9) involve the same matrix P and p x , p y  
assume values in the same interval, the interval solutions e: 
and c: will be the same. 

model1 -ref2 - 
0.7 

0.5 

OA 

0.3 
03 0.4 0.5 ' 0.6 0.7 0.3 0.4 0.5 0.6 0.7 

mbdeu-ref? - 
0.7 . . . . . . 0.7 . . . . 

model%& - 

Figure 1. Some test 3D objects. 

As an example, let us consider the 3D objects shown 
in Figure 1. Two different reference views per object are 
used (we assume that the objects are transparent). Table 1 
shows the range of values computed for c1. It should be 
mentioned at this point that when interval solutions are 
computed, not every solution in e: and ci satisfies the inter- 
val system of equations. In other words, not every solution 
in c: and c!, corresponds to p x  and p y  that belong to p', and 
p i  C131. Thus, p i ~ P c :  and p i ~ P c a .  In the context of our 
approach, if we generate new views by choosing the param- 
eters from the interval solutions obtained, then we might 
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generate views that do not lie entirely in the unit square. We 
call these solutions, "invalid solutions". Clearly, predicted 
views based on invalid solutions should be rejected. By test- 
ing whether the coordinates of a predicted view lie inside 
the unit square, we can easily reject invalid solutions. 

- 
range of a1 

d e l l  [-25.32 25.321 
d e 1 2  1-27.77 27.771 

Table 1. The computed ranges using the original views. 

range of a2 range of a3 range of a4 

[-10.15 10.151 I-23.17 23.171 [-5.94 6.941 
I-10.15 10.151 I-24.32 24.321 [-8.499.491 

range of a1 range of a2 mge of e3 
mcdell [-0.45 0.451 [0.42 0.421 1-0.39 0.391 

model2 [-0.440.441 I4.41 0.411 [-0.420.421 

It can be seen from Table 1 that the width of the 
ranges varies from parameter to parameter. It can be shown 
that the width of the ranges depends on the condition of the 
matrix P (see Eqs. (6) and (7)) and that the original refer- 
ence views can be "preconditioned' to narrow the ranges of 
values [ 141. By preconditioning we imply a transformation 
that can transform the original reference views to new refer- 
ence views, yielding tighter ranges of values. Tighter 
ranges have the advantage that they yield less invalid views 
during the generation of the training views. We have 
applied the preconditioning procedure on the views shown 
in Figure 1. Table 2 shows the new, tighter, ranges of val- 
ues. 

range of a4 
I0.0 1.01 

IO.0 1.01 

Table 2. The computed ranges using the preconditioned views. 

4. Learning the mapping 
First, the training views must be generated for every 

object. This is performed by sampling the space of views 
that the object can produce. This is actually performed by 
sampling the ranges of values that the parameters of alge- 
braic functions can assume. The sampling procedure is 
straightforward: first, we pick a sampling step and then we 
sample the range of values associated with each parameter. 
Then, we pick a sampled value for each parameter and we 
form sets of sampled values. Each set of sampled values is 
then used to generate a new view by combining the refer- 
ence views using the algebraic functions. If a view is 
invalid, then we reject it as discussed in section 3. During 
learning, each training view is presented to the inputs of the 
network (i.e., the coordinates of the points representing the 
view) which is required to respond at its outputs with the 
sampled set of values used for the generation of the view. 
Figure 2(a) shows the neural network scheme. 

As discussed in section 3, both ai and b, assume val- 
ues from the same ranges. Taking also into consideration 
that the same vector is involved in the computation of the x- 
and y-coordinates of the training views (i.e., (x',y'.x'?). it 
turns out that the transformation which generates the x -  
coordinates is exactly the same to the transformation which 
generates the y-coordinates. Since it is not necessary to 
force the network to learn the same transformation twice, 
we perform training using only one of the two coordinates 
(the x-coordinates here). This is shown in Figure 2(b). This 
simplifkation has only a minor cost in the prediction of the 

~ 

3579 

pose. The parameters of the algebraic function must now be 
predicted separately: first, we predict aj's by presenting to 
the network the x-coordinates of the unknown the view and 
second, we predict bj's by presenting to the network the y -  
coordinates of the unknown view. 

(a) (b) 

Figure 2. The nemal network scheme. 

Evaluating neural networks' noise tolerance in [ll, 
we found that it was dramatically improved by preprocess- 
ing the inputs using PCA 121. We have also adopted this 
idea here. PCA is a multivariate technique which transforms 
a number of correlated variables to a smaller set of uncorre- 
lated variables. In specific, PCA works as follows: first, we 
compute the covariance matrix associated with our care- 
lated variables and we h d  the eigenvalues of this matrix. 
Then, we sort them and we form a new matrix whose 
columns consist of the eigenvectors corresponding to the 
largest eigenvalues. Deciding how many eigenvalues are 
significant depends on the problem at hand. The matrix 
formed by the eigenvectors corresponds to the transforma- 
tion which is applied on the correlated variables to yield the 
new uncorrelated variables. Here, we think of each view as 
a vector with components the x-coordinates of the points in 
the view (the y-coordinates are not used for training) and 
we apply the procedure as described above. 

Despite the fact that PCA improves noise tolerance, it 
has also two other important benefits: first, it reduces the 
dimensionality of the input vectors and as a result, smaller 
size networks are needed. Second, it can guide us in choos- 
ing a sufficient number of training views so that the net- 
works learn a good mapping. Perfoming experiments to 
evaluate the noise tolerance of the networks using merent 
number of training views, we verified the same results as in 
111. In particular, we found that in cases where the perfor- 
mance of the networks was very poor, the number of non- 
zero eigenvalues associated with the covariance matrix of 
the training views was consistently less than four. More 
training views did not improve the results, as long as the 
number of non-zero eigenvalues remained less than four. By 
including more training views which increased the number 
of non-zero eigenvalues to four, a dramatic improvement 
was observed. Adding more training views after this point 
neither improved the results nor increased the number of 
non-zero eigenvalues. It seems thus that the number of non- 
zero eigenvalues of the covariance matrix of the training 
views plays an important role in deciding how many views 
to select for training. In fact, we think that there is a simple 
reason that the number of non-zero eigenvalues never 
exceeded four, given in the form of a theorem in [91: "the 



views of a rigid object are contained in a four-dimensional ure 3 shows some examdes while Table 3 shows the actual 

U1.U2.U3.U4 

b l , b z , b 3 , b 4  

Ul,Uz,U3.U4 

bl ,b2,b3,b4 

U ,  ,U,,Uq.U, 

- 
linear space". 

ActVal parametcm (Figure 3(a)) Predicted parameters (Figure 3fn)J 

-0.08248 -0.15374 0.09463 0.55224 -0.08222-0.153230119J120.5S223 

4.05732 0.02222 0.1W3 0.48313 0.0577s 0.02241 0.13408 0.48342 

Actual parameters (Figure 3(6)) Predicted parameters (Figure 3(b)) 

-0.01866-0.14224 0.002800.46931 4.01863-0.142230.1X~2800.46R32 

0.07288 0.04675 0.19093 0.44299 0.07291 0.04679 0.19096 0.44305 
Actual parameters (Figure 3(cJ) Predicted parametns (Figure 3fc)) 

-0.05%0-0.13060 0.G9588 0.53691 4.07512 -0.133660.08039 053807 

and predicted parameters. 

bl .b2 ,b3 ,b4  -0,06665 0.02818 0.16177 0.4W26 -0.05€650.028140.161760.4W25 
~~~ 

Actual panuncters (Figure 3fd)) Prcdited parameters (Figure 3fd)) 

Ul.a2.U3.U4 0.149900.088120.14231 0.61792 -0.149900.08868 0.14231 0.61792 

bt,b?,b,.b, -0.~1708-0.127070.0120~0.55OO4 421713-0.127140.012000.54999 

Figure 3. Recognition results. 

Table 3. Actual and predicted parameters. 
I P-eters 

5. Experiments 
First we performed a number of experiments using 

the artificial objects shown in Figure 1. The interest points 
used were the points corresponding to the corners of each 
object. For each object, we generated a number of training 
views and we trained a SL-NN to learn the desired map- 
ping. Back-propagation with momentum was used for the 
training of the networks 1151. The learning rate used was 
0.2 and the momentum term was 0.4. The networks 
assumed to have converged when the sum of squared errors 
between the desired and actual outputs was less than 
O.OOO1. To evaluate the quality of the mapping found by the 
networks, we generated a number of test views per object 
by combining linearly the reference views of the object, 
choosing the parameters of the liear combination ran- 
domly. To ensure that the x- and y-coordinates of the test 
views were in [0,11, we chose a random subsquare within 
the unit square and we mapped the square enclosing the 
view of the object to the randomly chosen subsquare. We 
also added some random noise in the location of the points 
to simulate sensor noise. To find how accurate the predic- 
tions of the networks were, we compared the predicted 
parameters with the actual parameters which were com- 
puted using SVD. Also, we back-projected the candidate 
view onto the test view to evaluate the match visuaIly. Fig- 

i./ "// 

( g )  (h) 

Figure 4. The real objects. 

Next, we performed a number of experiments using 
the real objects shown in Figure 4. A single aspect was con- 
sidered and the reference views used to represent it are 
shown in Figures 4(a),(b) and 4(e),(f). To detect a number 
of interest points, we applied a corner and junction detector 
1161. Then we manually picked sets of points which were 
common in both views. Figures 4(c),(d) and 4(g),(h) show 
the interest points chosen (the lines connecting the points 
have been drawn only for visualization purposes). The ref- 
erence views were preconditioned and the ranges computed 
are shown in Table 4. Figure 5(a,c) shows some novel 
views. Note that none of them is exactly the same to any of 
the reference views. To interest points in the novel views 
were detected using the same corner detector ([161). Then, 
we picked manually the points present in the reference 
views and we fed them to the corresponding networks. 
Table 5 shows the actual and predicted parameters. Figure 
5(b,d) shows the predicted views, back-projected on novel 
views. It is important to mention at this point that the order 
in which the data are presented to the networks is impor- 
tant. This is because the networks are not invariant to shifts 
in the input sequence. This was also the case in [31 and [61. 
Depending on the context of the application, however, the 
order might be available. For example, we have incorpo- 
rated the neural network scheme in an indexing-based 
object recognition system [141. In this system, groups of 
points (for occlusion tolerance) are chosen from the 
unknown view and are used to retrieve hypotheses from a 
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table. Each hypothesis contains information about a model 
group as well as information about the order of the points in 
the group. This information can be used to place the points 
in the correct order before they are fed to the network. 

modell 
d e l 2  

Table 4. The computed ranges (preconditioned views). 

rangeofal range of a2 Imp of a3 Tange of a4 
[-0.41933 0.419333 1-0.36234 0.362341 I-0.42926 0.429261 (0.0 1.01 

1-0.441770.441771 r-0.45138 0.451381 1-0.43368 0.433681 10.0 1.01 

I Ranzes of values I 

bl.b,,b3.b4 

al ,a,,a2.aA 

-0.123580.057520.010460.53638 -0.123530.05757 0.01051 0.53644 
Actual parameters W i r e  yd)) Predicted parameters (FEgure Sfd)) 

-0.0414740.22193 0 . 0 2 3 6 ~ 0 . 5 - m  -0.04145 0.22198 0.02365 0.57802 

Figure 5. Recognition results. 

Table5 Actual and predicted parameters (real data). 
Panuneta 

AC~WI ptnunetcrs w i r e  1 ~ r ~ d i t e d  pametas wpure m)) 
al,a7.a2,aA I 0.037040.196960.044880.63449 I 0.037000.1%92 0.04485 0.63446 

I bI,b&.b4 1 0.123646 -0.05775 -0.00653 0.50611 1 0.12360 -0.05781 -0.006580.50606 I 

To compare the computational requirements of the 
SVD approach with that of the neural network approach, let 
us assume that SVD decomposition takes place off-line as is 
the case with the training of the neural networks. Then, 
assuming that the average number of points per view is N 
and that the number of parameters is 2k (k=4 here), the neu- 
ral network approach requires 2kN multiplications and 2kN 
additions while SVD requires 2k(N + 2k) multiplications, 
2kN divisions, and 2k(N +2k) additions (see a s .  (8) and 
(9)). Given that these computations must be repeated hun- 
dreds of times during recognition, the neural network 
approach has obviously lower computational requirements. 

6. Conclusions 
The problem of predicting the pose of a 3D object, 

assuming orthographic projection and 3D linear transforma- 
tions was considered in this study. The proposed approach 
has the advantage that it does not require the 3D models of 
the objects and it is more practical for object recognition. 
Extensions to perspective projection are currently being 
explored. 
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