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In this paper, we propose the use of algebraic functions of views
for indexing-based object recognition. During indexing, we consider
groups of model points and we represent all the views (i.e., images)
that they can produce in a hash table. The images that a group
of model points can produce are computed by combining a small
number of reference views which contain the group using algebraic
functions of views. Fundamental to this procedure is a methodology,
based on Singular Value Decomposition and Interval Arithmetic,
for estimating the allowable ranges of values that the parameters of
algebraic functions can assume. During recognition, scene groups
are used to retrieve from the hash table the most feasible model
groups that might have produced the scene groups. The use of al-
gebraic functions of views for indexing-based recognition offers a
number of advantages. First of all, the hash table can be built using a
small number of reference views per object. Thisis in contrast to cur-
rentapproaches which build the hash table using either a large num-
ber of reference views or 3D models. Most importantly, recognition
does not rely on the similarity between reference views and novel
views; all that is required for the novel views is to contain common
groups of points with a small number of reference views. Second,
verification becomes simpler. This is because candidate models can
now be back-projected onto the scene by applying a linear transfor-
mation on asmall number of reference views of the candidate model.
Finally, the proposed approach is more general and extendible. This
is because algebraic functions of views have been shown to exist over
a wide range of transformations and projections. The recognition
performance of the proposed approach is demonstrated using both
artificial and real data. @ 1998 Academic Press

1. INTRODUCTION

where the environment is rather constrained and recognition |
lies upon the existence of a set of predefined model objec
Given an unknown scene, recognition implies: (i) the identifica
tion of a set of features from the unknown scene which appro
imately match a set of features from a known view of a mode
object, (ii) the recovery of the geometric transformation that th
model object has undergone (pose recovering), and (iii) verific
tion that other features coincide with predictions. Since usual
there is na priori knowledge of which model points correspond
to which scene points, recognition can be computationally tc
expensive, even for a moderate number of models. Various &
proaches have been proposed in the literature for dealing wi
this issue.

One approachtolimitthe possible number of matchesis by u
ing geometric constraints [2]. Another approach is to establis
hypothetical matches using the minimum possible number |
model-scene feature correspondences [3]. Indexing is an alter|
tive approach which has been given considerable attention lat
[4-14]. Itis based on the idea of usiag@riori stored information
about the models in order to quickly eliminate noncompatibl
model-scene feature matches during recognition. Hence, or
the most feasible matches are considered, that is, the matc
where the model features could have projected to the scene f
tures. Indexing-based methods usually employ a hash sche
to efficiently store and retrieve information about the model
into a hash table. There are two different phases of operatic
preprocessingndrecognition During preprocessing, groups of
model features are considered and a description for each one
themis computed. These descriptions are then used to access
hash table. Appropriate information about the group of modt
features is stored in the indexed location. During recognitiol

Recognizing objects from images has been a challenging tagkups of scene points are considered and their descriptions
in computer vision. This is because objects may look very difised to access the hash table.
ferent from different viewing positions. The most successful ap- In the noiseless case, each indexed location will contain e
proach is in the context ahodel-base@bject recognition [1], actly the set of model groups compatible with the group of scer
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features usedtoaccessthetable. Ideally, one would like the indlesee views of an object satisfy a linear function [16]. The key
computed from a group of model features to remain the sanmga in using algebraic functions of views for indexing is that
regardless of changes in the appearance of the model when ihisy allow us to compute all possible views (i.e., images) tha
observed from different viewpoints. Such an index is said to laegroup of model points can produce using a small humber ¢
invariant The main advantage of invariantindices is that a singleaews which contain the group. Thus, 3D models are not re
entry for each group of model features needs to be stored, regayaired. We will be referring to the space of views that a groug
less of changes in the viewpoint. Geometric hashing [4] is & points can produce as tispace of transformed vieves the
example of a method which uses affine invariants for the recagroup. During indexing, the space of transformed views is sam
nition of planar objects. Projective invariants of some specipled and the sampled views are represented in a hash tab
case, two-dimensional, algebraic curves have been also utiliZ&aring recognition, image groups are used to retrieve from th
in another study [8]. hash table the model groups that might have produced ther
Building indexing schemes to recognize general 3D objects construct the space of transformed views of a group, we af
using invariantsis not possible in general, since it has been shquiyi the algebraic functions of views on the reference views o
that no general-case invariants exist for single views of genetiaé group. To estimate the allowable ranges of values that tt
three-dimensional point sets [12]. As a result, model-based parameters of algebraic functions can assume, we use a meth
variants have been proposed for indexing [10]. These invariantegy based on Singular Value Decomposition (SVD) [24] anc
can be learned from several images of the object. The basic idierval Arithmetic (1A) [25].
is that a function can be constructed for each group of modelOur approach is different from [5] which requires a large
features that, given a group of image features, evaluates to zenmnber of reference views to ensure that new views are simile
if and only if the model group could project to the image groupo at least one of the reference views. In our case, new view
Another approach is to take advantage of the fact that the angias be constructed by combining a small number of referenc
and distances of image features change little (i.e., remain invasiews. Furthermore, our approach for generating the images th
ant) over a substantial range of viewing directions (probabilistcmodel group can produce during preprocessing is more prac
peaking effect [15]). Probabilistic indexing [11] is based on thigal since it does not require 3D models. In [13,14] for example
idea. Quite common are also approaches which consider a gbp-lines which represent the images of a model group can t
arate model for each view of a 3D object [5], obtained by takinfgund easily only if the 3D structure of the object is known.
pictures of the object from different viewing directions. Then, aBince this information is not always available, a set of differen
indexing scheme based on invariants is employed for each mo#&Blimages, containing the group, is used instead [13,14]. Eac
view. Alternatively, other methods assume that the 3D structumeage defines a point in each of the two representational spac
of the model objects is available (i.e., CAD models). The viewand a line must be fitted to these points, in each space, to a
ing sphere is then sampled and a description about the imagesximate the actual lines. This procedure requires more effo
that groups of model features produce, from each point on taed time since edges must be extracted, interest points must
viewing sphere, is stored in a hash table. During recognitiothetected, and point correspondences across the images mus
groups of features are chosen from the scene and the hash tabtablished. On the other hand, our approach is based on a sn
is accessed to find the most feasible three-dimensional modember of images per model and makes on approximations |
groups that might have produced them. A system based on ttisnputing the images that a group of model points can produc:
idea has been implemented in [12], assuming orthographic pAmother advantage of using algebraic functions of views is tha
jection. This system has been improved in the case of 3D linearification becomes simpler. This is because candidate mo
transformations so that the hash table is built using analytias can be back-projected onto the scene by combining a sm:
formulas, without having to sample the viewing sphere [13,14jumber of their reference views only. Finally, the availability
In particular, it was shown in [14] that the images of groups aff algebraic functions of views over a wide range of transfor-
3D points can be represented as a pair of 1D lines in two higmations and projections [16—22] makes the proposed approa
dimensional spaces. During preprocessing, each group of maaelre general and extendible.
points is represented by a line in each of the two spaces. Duringrhe paper is organized as follows: In Section 2 we present a
recognition, groups of scene points are used to retrieve setowérview of the algebraic functions of views. A general frame-
model features indexed in both spaces. The intersection of therk for employing algebraic functions of views for indexing-
two sets corresponds to the possibly matching groups of mobelsed object recognition is presented in Section 3. In Section
points. we present a method for estimating the allowable ranges of va
In this paper, a new indexing-based object recognition apes that the parameters of algebraic functions can assume, a
proach is proposed based on algebraic functions of viewsSection 5we introduce a procedure, called “preconditioning,
[16—22]. Algebraic functions of views are functions which exfor obtaining tighter ranges of values. Sections 6 through 9 de:
press arelationship among a number of views of the same obj&ith a number of practical issues and in Section 10 we con
in terms of their image coordinates alone. For example, in te@er various issues related to the performance of the metho
case of orthographic projection, the image coordinates of aBgction 11 presents recognition results using both artificial an
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real 3D objects, assuming orthographic projection and 3D lineatrence viewsV; and V, of the same object which have been
transformations. Finally, Section 12 includes our conclusionsobtained by applying different linear transformations, and tw
points p'= (X', ¥), p” = (X", y"), one from each view, which
2. BACKGROUND ON ALGEBRAIC are in correspondence. Then, given a novel Wéwf the same
FUNCTIONS OF VIEWS object which has been obtained by applying another linear trar
formation and a poinp = (X, y) whichisin correspondence with
In this section, we summarize a number of theoretical resufsintsp’ andp”, the coordinates gf can be expressed as a lineat
regarding algebraic functions of views. First, we introduce sorg@mbination of the coordinates pf andp” as
terminology that will be useful throughout this paper. We assume

that the database contaikbmodels and that each model is rep- X = ayX + apy + agX’ + au (3)
resented by a number of aspeétg, m = 1,2, ..., M. In the

case of planar objects, one aspect per object is enough, while y = biX’ + by’ + bsx” + by, (4)
in the case of general 3D objects, more aspects are necessary to

represent the object from different viewing directions. We a¥there the parameteeg, bj, j =1, ..., 4, are the same for all

sume that each aspect is represented lojfferent views which the points which are in correspondence across the three views
we call reference views. The number of reference Vimr is worth mentioning that not all the information from the secon
aspect depends on the transformations and projection under déference view is used but only “half” of it (i.e., only the
sideration and will be specified in the next paragraph. For eagpordinates). Of course, (3) and (4) can be rewritten using the
aspect, we assume a number of “interest” pdhh’(eg' corners, coordinates of the second reference view instead.
junctions, etc.), which are common in all the views associated The extension of algebraic functions of views in the case ¢
with the aspect. We also assume that the point corresponderR@&s§pective projection was carried out in [20-23]. In particula
across the views have been established. it was shown that three perspective views of an object satis
Algebraic functions of views were first introduced, in theé trilinear function. Moreover, it was shown that a simpler an
case of scaled Orthographic projection (Weak perspective), wre praCtical pair of algebraic functions exist when the refe
Ullman and Basri [16]. In particular, it was shown in [16] thagnce views are orthographic [20, 21]. This is useful for realisti
if we let an object undergo 3D rigid transformations (i.e., rotgbject recognition applications. In this paper, we consider tt
tions and translations in space) and we assume that the imagrsge of orthographic projection assuming 3D linear transform
of an object are obtained by orthographic projection followeléPns only.
by a uniform scaling, then any novel view of an object can be
expressed as a linear combination of three other views of the
same object. Specifically, let us consider three reference views
of the same objecY;, V,, and Vs, which have been obtained
by applying different rigid transformations, and three points

P=,Y) p"=("y"), andp” =(x",y"), one from each . " . . o ¢ points in a novel view by appropriately combin

view, Wh'.Ch are m_correspondeljce.\lfl_s a nove_l VIew of the ing the image coordinates of the same points across a numbe|
same object, obtained by applying a different rigid transforma- : o -
tion, andp = (x, y) is a point which is in correspondence Withreference views. This idea can be used for recognizing unknou

P p—w Y P . P .~ views of an object [17, 23]. There are two main problems witl
p’, p’, and p”, then the coordinates gf can be expressed in

terms of the coordinates gf, p’, andp” as this approach: first, we need to find which points from the refe
P P ence views correspond to which points from the unknown vie\
and, second, we need to find the correct values for the para

3. AFRAMEWORK FOR INDEXING USING
ALGEBRAIC FUNCTIONS OF VIEWS

Algebraic functions of views can be used to predict the imag

X = @X 48X + 8gX " + 2 @) eters of the algebraic functions (i.a;’s, b;’s). Both problems
y = by + by’ + bzy” + by, (2) aredifficultto deal with. First of all, the number of possible poin
correspondences between reference and novel views increa
where the parametegs, bj, j =1, ..., 4, are the same for all exponentially with the number of points. Second, searching fc

the points which are in correspondence across the four viewshe appropriate parameter values might be prohibitive since t

The above result can be simplified if we generalize the orthdemain of parameters might be very large [16]. Here, we pre
graphic projection by removing the orthonormality constraingose theouplingthe algebraic functions of views with indexing.
associated with the rotation matrix. In this case, the object ufiRe idea is to use algebraic functions of views to predict all th
dergoes a 3D linear transformation in space. Linear combinaews (i.e., images) that a group of model points can produc
tions correspond to scaled orthographic projection followed land represent the predictions in a hash table. During recogl
a 2D affine transformation and they characterize also the iten, groups of points are chosen from the scene and the he
ages that can be produced by a photograph of an object [28ple is accessed to find all the model groups that might ha
In this case, the algebraic functions of views are simpler apdoduced them along with information related to the point cot
they involve only two reference views. Let us consider two refespondences and the parameters of the algebraic functions.
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FIG.1. A framework for indexing using algebraic functions of views.

Given a model, a set of aspects, a set of reference views pased on SVD [24] and IA [25]. Another important issue has
aspect, and the point correspondences across the views of éaato with the space requirements of the method. We are dee
aspect, the first step is to compute the allowable ranges of vialg with this issue (i) bypreconditioningthe reference views
ues that the parameters of algebraic functions can assume. Theorder to compute narrow ranges of values for the paramete
the views that a model group can produce (space of transfornaédalgebraic functions, (ii) by generating and storing informa-
views) can be computed by combining the reference views of ttien about only thex or y coordinates of the transformed model
model group using algebraic functions of views. From a practicgifoups, and (iii) by considering onlyell-conditionedgroups,
point of view, it is impossible to consider all possible combinahat is, groups which are tolerant to noise. Finally, we conside
tions, that is, to assume all possible values for the parameterstwf issue of predicting the parameters of the algebraic functior
the algebraic functions, since this will generate an infinite nuraccurately during recognition. A scheme based on neural ne
ber of transformed model views. As a result, each parametansrks is employed for this.
range is actually sampled into a finite number of points and a
finite number of transformed model groups is generated only.
The coordinates of the transformed model groups are then used
to generate an index to a hash table where information about

the model, the aspect, the group, and the set of parameter Valuq?nder the assumption of orthographic projection, two refer:
used to generate the transformed model group are stored. Dyr= views/, andV, must be combined in order to obtain a new

ing recognition, we consider groups of scene points and we EWV, as Egs. (3) and (4) illustrate. Given the point correspon

their 'mage coordinates t‘.) generate an mdlex to. the hash taG nces across the three views, the following system of equatiol
The entries stored at the indexed location identify a model, st be satisfied

aspect, a model group, and a set of parameter values that might
have produced the scene group. A verification step follows to ,

4. ESTIMATING THE RANGES OF VALUES
FOR THE PARAMETERS

: . . ; X Tox{ 1 a b

reject or accept candidate matches. Figure 1 illustrates these 1 A o XN

steps. A A A N G
There are some important issues that must be considered dur- A as bs

ing the implementation of the proposed scheme. One of them XN v Xy 1 a1 by XN YN

is how to compute the range of values that the parameters of
the algebraic functions can assume. Here, we propose a methb@re &g, ¥1), (Xz. ¥2), ... (X Yn) and &7, y1). (X3, ¥3), - ..
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(X3, yy) are the coordinates of the points of the reference viewgplying the interval arithmetic operators to (8) and (9), instea
V; and V5, respectively, andxg, y1), (X2, ¥2), ... (Xn, Yn) are  of standard arithmetic operators, we can compute interval sol
the coordinates of the points of the novel vistv Splitting the tions forc; andc, by settingpy =[0,1] and py =[0,1]. In in-
above system of equations into two subsystems, one involvitegval notation, we want to solve the systeis; = p} and
thea; parameters and one involving theparameters, we have P¢; = p{,, where the superscrigt denotes an interval vector.
The solutionsc! and ¢} should be understood to meah=

Pc, = px (6) [ci: Pa=py, px € pJandc, =[c: Pe = py, py € pyl-
Significant research has been performed in the area of int
Pc = py, (7)  val linear systems [27]. In general, the matrix of a system c

) _ ) interval equations is also an interval matrix, that is, a matri
whereP is the matrix formed by the andy coordinates of the \ynose components are interval variables. In our case, things
reference views (plus a column of 1'sy andc, are Vectors gimpjer since the elements 8fare thex andy coordinates of
corresponding ta;'s andb;’s (the parameters of the algebraigne reference view of the object which are always fixed. Whe
functions), andpy, py are vectors corresponding to tk@ndy interval solutions are computed, not every solutionlimndc)
coordinates of the novel view. Both (6) and (7) are OVerdethOrresponds tqo, and p, that belong top}. and p!, [27, 28].
mined which means that they can be solved using a least-squakesiher words,p! € Pc! andp! € Pcl. In the cor);text of our
approach such as SVD [24]. Since SVD is very important for t'?fpproach, if new views are ger%erated by choosing the values:
estimation of the parameters’ ranges, we briefly present its Mgia parameters of the algebraic functions from the interval sol
steps here. Using SVIR, can be factorized a8 =UpWp V5 fions obtained, then some of the generated views might not |
where botiUp andVp are orthonormal matrices, whi®e is @ - completely within the unit square. We will be referring to thes:
diagonal matrix whose elementg’ are always nonnegative (theyjeys as “invalid views” and to the solutions which generate th
singular values of). The solutions of the above two systems,yajid views as “invalid solutions.” Clearly, invalid views can

arec; = P*pc andc; = P py whereP™ is the pseudoinverse pe rgjected easily by testing whether the coordinates of a vie
of P. Assuming thaP has been factorized, its pseudoinverse igs within the unit square.

_ T T i S wi . > L .

p* —VPWFg Up \;vhereWP is also a diagonal matrix with ele-  Ap interval solution is called “sharp” if it does not contain
ments Ywy; if wii greater than zero (or a very small thresholghany invalid solutions. Within our context, it is important to
in practice) and zero otherwise. In specific, the solutions of (Bympute sharp interval solutions since this will save time ar

and (7) are given by the equations [24] space. However, if we merely apply the interval arithmetic of
) erators on (8) and (9), then it is very likely that we will obtain

o = Z (uiP |Ox>v_p ®) solutions that will not be very sharp. There are various factol

— wl ) that affect the sharpness of an interval solution. One of them

the participation of a given interval quantity to the computation

K u"py\ p 9 of a solution more than once [28]. As a matter of fact, this is th

C2 Z PV ) case with (8) and (9). To make it clear, let us rewrite the solutio
for theith component o€;, 1 <i < k, more analytically:

i=1 \ Wi
whereu! denotes théth column of matrixUp, v’ denotes the
ith column of matrixVp, andk = 4. Cy = Yi

=

P P P
(UrpXe + UzpXe + -+ - + U Xn)

o

To determine the range of values forandc,, we assume wiq
first that the novel views has been scaled such that thwedy P
coordinates belong within a specific interval. This can be done, + —Z (ufpXa 4 UbpXo + -+ - + URXN)
for example, by mapping the novel view to the unit square. In this W22
way, itsx andy image coordinates will be mapped to the interval wh o e o b
[0, 1]. To determine the range of values tarandc,, we need to +ee w_P(ulkxl + UpXe 4 -+ UGN

=
=

consider all possible solutions of (6) and (7), assuming fhat
and py belong to [0,1]. We have used IA [25] in order to S°|V?:Iearly, eachy; (1 <
this problem. In IA, each variable is represented as an interygh e than once. To avoid this, we can factor outxhis and
of possible values. Given two interval variabtes [ty, t;] and rewrite the above equation as
r =[rq,r2], then the sum and the product of these two interval
variables is defined as [25] N K yPuP

G1=Y_ X (Z ';)PJF ) .

j=1 r=1 rr

j < N) enters in the computation ©f;

t+r=[t+r,t+r] (10)

a1 = [mintary, arz, tory, tora). maxtary, trz. or L)l 0 iarval solutiort!, can now be obtained by applying the

(11) interval arithmetic operations on the equation above. Similarl
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FIG.2. Some artificial 3D objects.

we can obtain interval solutions for the rest eIementg;'lof a transformation that transforms the original reference views t
as well as forch. It should be noted that since both (8) andiew reference views, yielding very narrow ranges. Before we
(9) involve the same matrif and p/, p;/ assume values form describe the steps involved in this transformation, let us firs
the same interval, the interval solutioos andc}, will be the investigate how the width of the ranges is affected.
same. In the previous section, we considered the interval solution
As an example, let us consider the 3D objects shown in Figof Pc; = px and Pc; = py. Alternatively, we could have con-
(two different reference views are shown per object). The intetidered the solutions dP(c1 + 8¢1) = (px + 8px) and P(cz +
est points used in this experiment correspond to corner poirt€z) = (Py + 8py), assuming all possiblp, andspy with (px +
Table 1 shows the range of values computedciofwhich are 8px) and (py +8py) in [0,1] (px and py can be assumed fixed,
the same with those computed fx). for example,px = py =0.5). Obviously, the width of the com-
puted interval solutions] andc} will depend on the magnitude
5. PRECONDITIONING THE REFERENCE VIEWS of §c; and§c,. It is well known that the relative error in the
solution of a system of equations depends on the conditio
As Table 1 illustrates, the width of the range of values varié$imber of P [29]. In other words, if we consider the system
from parameter to parameter. Wide ranges are not desirable Béc1 + 3¢1) = (Px + 8px), the following inequality is known to
cause more sets of values must be considered. Itis thus imporfhtrue,
to consider ways to compute narrower ranges. In this section,

we present a methodology callpaeconditioningor optimizing l[6Cqll < condP) lI5Px I ’
the parameters’ ranges of values. By preconditioning we imply l[Cal| Il pxll
TABLE 1

The Computed Ranges Using the Original Views

Ranges of values

range of al range of a2 range of a3 range of a4

modell ~ [-25.321 25.321]  §£10.154 10.154]  §£23.173 23.173]  £5.943 6.943]
model2  [27.771 27.771]  §10.154 10.154]  {24.328 24.328]  {8.496 9.496]
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160 . T T T T or
140 } > A

120 i PC=P", (13)

100 |- .
where C is a transformation matrixP is the matrix corre-

80 |- 1 sponding to the old reference views, aRf is the matrix cor-
oL | responding to the new reference views. The idea is to find

matrix C which yields new reference views having better condi
40 - -4 tion. Let us consider the singular value decompositioR of,

andP"™: P =UpWp V], C =UcWcVJ, andP" = UpnWpn V..
Substituting these expressions in (13) we have

20 -

0 1 1 L 1 1
0 50 100 150 200 250 300

(UpWp Vg ) (UcWe VY ) = (Ups Wen Vin). (14)

FIG. 3. The width ofa;’s range versus the condition of the reference views.

In order for the new matriP" to have good condition, its
singular values, that is, the elementsWgn, must have sim-
ilar magnitudes. Observing (14) we find it rather difficult to
draw any conclusions about the condition of the new vigly
However, this would be much easier if we could relate the sir

ular values ofP" to the singular values d? andC. Without
(ﬁ]aking any assumptions about the transformation magrix

the maximum singular value over the minimum singular Valu?‘tsis difficult to establish such as relationship. However, sinc

of g Thf}'s{"?‘“o ctan betlregardel? aﬁ'} the fonldltlor;.?umbe? %fwe have freedom in choosing the elementsCof(14) can be
andwhie 1t 1S not exactly equal to the actual condition NUMbE, {mplified if we choose&Jc = Vp. Then, (14) can be written as

they usually have about the same order of magnitude numeric Wo V) (Vo We VT U Wen VT T
: =(UpnWpnVp,) or UpWpWe Ve ) =
[24, 29]. We have performed a number of experiments to dem%ﬁ'znvcpnsl,)l(n)fsincce(\:/)g VF(> =P| . chgréing t(o tPhePabgveC ()aqua—

strate the dependence of the width of the parameters’ rangesti8ﬂ, the singular values ¢" are now equal to the product of the

the condition of the reference views. First, we generated a nugﬂigular values oP andC, that is W = WeWe. The key idea
ber of random views per object and we computed each paran ’ P pC

. MEhen to choose the singular valueg®in a way such all that
ter's range. Then, for each parameter, we plotted the condit

. . ! ; singular values dP" have the same magnitude. Obviously
of the view (horizontal axis) versus the width of the comput 9 g y

. . ) e must choos¥\c as
ranges (vertical axis). Figure 3 shows one of the plots, assum- ¢

ing 20 random viewsmodeB, anda;. Clearly, large condition
numbers imply wide ranges. We = AW;l, (15)

It is thus reasonable to ask whether it is possible to choose
reference views having the best possible condition. Here, we ) i .
propose a procedur@feconditioning to transform the original Where is a positive constant. As a resupn =11, which
reference views to new reference views having better conditigR€ans that all the singular values Bf' will be equal to’
A transformation to obtain new reference views from the of@nd the condition of the new view will be the best possibl

wherecond P) is the condition number oP defined ag|P||
| P~L|l. If the condition number oP is large, then the relative
error will also be large which implies that the widthaafs range
will also be large. The same holds true for

We define the “condition” of a reference view as the ratio

reference views can be obtained using (5) (one). The details involved in the calculationjofs well as in
the calculation of the elements of matix can be found in
Appendix A.

, , ;o a b a 0 We have p_erfqrmed a number (_)f experiments to dem_ons_tre
1 X R the preconditioning procedure, using the objects shown in Fig.
X5 Y, X5 o1 @ b a 0 Figure 4 shows the preconditioned views (only the first precor

. ag bs a7 O ditioned reference view is shown per object since onlyxhe
XN Yn XN 1 as by ag 1 coordinates of the second reference view are used). One co
ment we can make by observing Fig. 4 is that preconditionin
XMy X1 seems to spread the views around origin. Table 2 shows t
' n n ranges of the parameters in the case of the preconditioned ref
(X Y2 X' 1 (12) ence views. Comparing them with the ranges obtained using t
e original views (Table 1) we can conclude that preconditionin

XN Yim@ XN 1 yields very tight ranges.
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FIG. 4. The “preconditioned” reference views.

6. DECOUPLING THE IMAGE COORDINATES scheme where only thecoordinates of the transformed model
groups are utilized.
In this section, we consider again the preprocessing step of the

proposed approach and we show that there is significant redun-
dancy in the information stored in the hash table. According to 7. PREDICTING THE PARAMETERS OF
our discussion in Section 3, for each model group, we compute THE ALGEBRAIC FUNCTIONS
first the images that the model group can produce (i.e., trans- DURING RECOGNITION
formed model groups). Then, the coordinates of the points in
the transformed model group are used to store appropriate inGiven a scene group, the goal of recognition is to predict th
formation in the hash table. The computation of the coordinateg®del group and the parameters of the algebraic functions th
of the points in a transformed model group is performed usifgve produced the scene group. However, it is important to ur
Egs. (3) and (4). There are two observations to be made at tigstand thatthere will be errors in the recovery of the paramete
point. First, let us recall that botly’s andb;’s assume values mainly because the hash table is built by sampling the space
from the same ranges (see our discussion in Section 4). Secq@@iameters into a finite number of points. As a result, if an actue
the same basis vector (i.ex/(y’, x")) is involved in the com- image group is not very similar to one of the transformed mode
putation of both thex andy coordinates of the groups. Based ogroups computed during preprocessing, then the predicted p
these two observations it can be easily concluded that the trar@neters might not be very close to the actual ones. Of cours
formation which generates tixecoordinates is exactly the samethe error depends on the sampling step used to sample the sp:
as the transformation which generates yheoordinates. As a of parameters. This error can be made small by choosing a smi:
result, it is not necessary to represent the same transformati@ampling step but this is not desirable since it will increase spac
twice over the hash table and only one of the two coordinategnuirements. Since errors in the prediction of the paramete
(thex coordinates here) can be used for indexing. This simplifivill have a great impact on the performance of the verificatior
cation offers significant time and space savings; however, recstgp (i.e., the predicted model might not be back-projected ont
nition becomes slightly more complicated. Specifically, the hasiie scene accurately), it is important to consider approache
table must be accessed twice per scene group during recogvtiich will allow us to predict the parameters accurately.
tion: first, thex coordinates of the scene group are used to giveln a recent paper [31], we studied the problem of learning
rise to hypotheses which predict thgparameters and, secondfo predict the correct pose of a planar object, undergoing 2I
they coordinates of the scene group which will give rise to hyaffine transformations. The idea was to train a neural networ
potheses which predict tibg parameters. Then, the intersectiowith a number of affine transformed views of the object in orde
of the hypotheses needs to be found. Figure 5 shows the revif@dt to learn to predict the parameters of the affine transfor:
mation between the training views and a reference view of th
object. To demonstrate our approach, we performed experimer
using several objects. A separate neural network was assign
to each object which was trained with views of this object only
(object-specific networksOur experimental results showed that
Ranges of values training was extremely fast and that only a small number of train
ing views was sufficient for the networks to generalize well. By
range of a1 range of a2 rangeofa3  range of a4 generalization we mean the ability of the networks to predict the
modell [0.454 0.454] [0.417 0.417] [0.392 0.392] [0.000 1.000] correct affine trangformqtipn even for views_that were never ex
model2 [-0.439 0.439] {-0.413 0.413] £0.423 0.423] [0.000 1.000] POSed tothem during training. We also considered issues relat
to the discrimination power and noise tolerance of the network:

TABLE 2
The Computed Ranges Using the Preconditioned Views
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FIG. 5. Arevised framework for indexing using algebraic functions of views.

Our results showed that the discrimination power of the nedelving two systems of equations (Egs. (6) and (7)). Since tt
works was excellent. Their noise tolerance was not very gosgstems are overdetermined, a least-squares approach, suc
initially; however, it was dramatically improved by applying eé5VD [24], can be used. However, the neural network schen
preprocessing to the inputs based on PCA [24]. has the advantage that it is faster and has less space requ
Motivated by this work, we have decided to use the same apents. To see this, let us assume that the decompositiBrisof
proach for model groups. The idea is assign a different neucaimputed offline, as the training of the neural networks is als
network for each model grougioup-specific neural networks performed offline. Assuming that each model group cont&ins
To train the networks, we generate a number of training vieysints and that the number of parameter&«i@= 4 in our case),
which contain the groups. In fact, the training views can be chttie neural network approach requirde2multiplications and
sen from the views we generate during the hash table constrlk& additions to predict the parameters of the transformatic
tion step. Then, when an entry is stored into the hash table, (inear networks). On the other hand, SVD requirk@2+ 2k)
stead of storing the parameters of the algebraic function we stamaltiplications, XG divisions, and R(G + 2k) additions (see
a pointer to the neural network associated with the model grodgxs. (8) and (9)). Given that these computations must be repea
Figure 5 shows the hash entries. During recognition, the coordiany times during recognition, the neural network approach
nates of the scene group are used to retrieve from the hash talfiieiously less time consuming. In terms of space requiremen
appropriate hash entries. Then, the parameters of the algebthéneural network approach requires the storagek@ 2al-
functions are estimated by presenting the coordinates of thes per network (i.e., weights), while SVD requires the storac
scene group to the neural network whose pointer is part of t2leG + 2k + (2k)? values (U, W, and V matrices). Given again
hash entries retrieved. Figure 6a illustrates the neural netwdhlat this information must be stored for many groups, the neur
approach. Figure 6b illustrates the simplified neural networletwork approach has less space requirements.
scheme (only the& coordinates are used).
It should be noted that the neural network approach is notg, GROUP SIZE, WELL-CONDITIONED GROUPS,
the only alternative approach to recover the parameters of the AND ORDERING
algebraic functions. For example, we could have stored the coor-
dinates of the transformed model groups in the hash table duringAn important issue when we consider groups of points i
preprocessing. Then, when a scene group is matched to a mduasV to chose the group siZ8, that is, the number of points
group during recognition, the parameters can be recoveredibya group. Obviously, in order for the groups to be useful fo
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FIG. 6. (&) The neural network scheme; (b) The simplified neural network scheme.

matching, they must provide enough discriminating power. In To choose groups with good condition, we simply compute
fact, it is desirable to choogg in a way such that every groupthe condition of each model group and then we reject group
of image points may have been produced only by one grobpving a condition greater than a thresholdt is important,
of model points. For 3D linear transformations, the algebraimwever, to ensure that most model points are represented in t
functions of views involve eight parameters. This means that \yeoups chosen and that the same model point does not appe
need to match at least four image points to four model pointsevery model group chosen. This is to ensure that recognitio
in order to determine the parameters. As a result, the minimwoes not depend on a few model points which might not b
group size which provides some discrimination is five. always available anyway due to occlusions. To find the number ¢
It has been shown that the likelihood a particular group ¢ifnes a model point appears in the groups chosen we construc
image points matches a particular group of model points shrinkistogram. If there are many model points that are not sufficientl
exponentially with the size of the group [12]. However, it is natepresented in the groups chosen, we choose new model grou
possible to consider large size groups because they are mwyéncreasing the threshotd If a model point appears in many
vulnerable to occlusions. Also, the discriminatory improvemegtroups (e.g., in half or more), we start removing groups whicl
offered by large groups diminishes rapidly beyond some poicbntain this point, updating the histogram at the same time, unt
[7]. In this paper, we have chosen to demonstrate our appro@ctertain criterion is met (e.g., at most half of the groups contai
using groups of size fived =5). It should be noted, however,the point). If this procedure eliminates many groups, then we
that this choice is somewhat subjective, and other approacheseasd and we repeat the same steps.
might be more appropriate, for example, using multiple group Another important issue is the order of the points in a group
sizes, an adaptive group size, or grouping [14]. If we do not make any assumptions about the order, either a
Considering all possible model groups for a given size is npbssible orders must be considered during preprocessing or
practical since this would require too much space. Here, wwessible orders must be considered during recognition. Since tl
consider onlywell-conditionednodel groups. The definition of second approach will increase recognition time, we consider th
the condition of a model group is similar to the definition of thérst approach only. To avoid considering all possible orders dut
condition of a model view: itis the condition of tii&x k matrix ing preprocessing, we apply a canonical ordering to the point
(denoted a®y, ), formed by considering theandy coordinates of the model groups. During recognition, the same canonice
of the points in the group, across the reference views, plupalering is applied to the scene groups. Information about th
columnof 1's (see Eq. (5)). Assuming noise in the location of th@dering is stored in the hash table during preprocessing. Tt
image points, the solution of (5) will include some error whiclksanonical ordering procedure employed here is very simple: w
is related to the condition of the matriyy,, [29]. As a result, just sort thex coordinates of the points within a group in in-
even though a model group might have been correctly matchedasing order. During recognition, we sort both thandy
to an image group, it will be very difficult for the verificationcoordinates of the scene groups before we compute the indic
procedure to find additional matches to support this hypothedis.access the hash table. A different canonical ordering proce
This will waste recognition time and it is better to avoid suchure has been proposed in [12]; however, it is not applicabl
hypothetical matches from the beginning by disqualifying bathere because only the coordinates of the model groups are
conditioned model groups during preprocessing. used during preprocessing.
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9. ELIMINATING INVALID HYPOTHESES scene group with every hash entry retrieved usingytbeordi-
nates of the group. This will produce many hypotheses but not

By considering only well-conditioned groups during preprosf them need to be verified. In specific, let us consider a hypot
cessing, we have restricted ourselves to a much smaller seesis formed by combining the entrynbde, a,, nny, ordery)
model groups. This saves space during preprocessing but tdteieved using th& coordinates of the scene group with the en
probability of selecting a scene group which matches one of ttrg (modey, ay, nny, ordery) retrieved using thg coordinates
model groups is now much smaller. Hence, most of the hypothaf-the same group. This hypothesis will be considered for ver
ses that will be established during recognition will be incorretitcation, only if all of the following five conditions are satisfied:
and must be ruled out quickly. If the unknown scene contaifs) mode) = mode}, (2)ax = ay, (3)nny =nny, (4) the param-
more than one object, it will be very beneficial to apply someters predicted bgin, andnny are within the ranges computed
kind of grouping in order to identify groups of scene points thaturing preprocessing, and (5) the predicted model group is we
might belong to the same object. Then, we can select subgroopaditioned. Figure 7 illustrates the procedure.
of sizeG from these groups instead of selecting them randomly. The first two constraints are straightforward to understan
This approach will eliminate many matches, but there will bieoth thex andy coordinates of the scene group should predic
still many invalid matches left. To speed up recognition, it ithhe same model and aspect. The third constraintimplies that bc
important to keep the number of hypotheses low. Our approatie x andy coordinates of the scene group should predict th
is to reject as many invalid matches as possible without haviagme model group. The identity of a model group is implicitly
to verify them first. This is performed by evaluating each hymplied by the identity of the neural network associated witl
pothesis before verification, using a number of simple tests. Ifta The fourth constraint exploits the discriminating power of
hypothesis passes all the tests, then itis passed to the verificati@neural networks. If some points in the image group do n
step; otherwise, it is rejected. belong to the same object, it is expected that the paramets

The way hypotheses are formed during recognition is by compredicted by the neural network will not be within the range
bining every hash entry retrieved using theoordinates of the computed during preprocessing. Experimental results obtain
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Separation of the
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/
entries entries
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due to due to
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FIG. 7. Evaluation of hypotheses.
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here as well as in [31] have shown that the discriminating powef the space of transformed views will be very coarse. This
of the neural networks is very good. however, will affect recognition since the point coordinates of

The purpose of the last constraint is to rule out scene groupg transformed model groups will be very different from the
that have not been produced by well-conditioned model groupp®int coordinates of the actual image groups. As a result, it i
Assuming thatPy, is the matrix formed by the coordinates ofvery likely that the actual image groups will access wrong hasl|
the points in the model group ary, is the matrix formed by the bins during recognition. To investigate this issue more carefully
coordinates of the points in the image group, tignC = P,  we need to be more specific about the funciiwaex ) which
(see Eq. (13))Py, consists of four columns, the first two ofreturns the hash table address. In this paper, the index spa
which are thex andy coordinates of the scene group, and theonsidered is the space of image coordinates. This is differel
last one is just a column of 1's. The third column correspondi®m other approaches where the space of affine coordinates
to the transformea coordinates of the second reference vieveonsidered instead [4, 13, 14]. The main reason that the affir
Since objects are recognized from a single unknown image, $pace has been considered in other approaches is becaus
elements of this column are chosen to be the same ax thgields a minimal representation. Although this is indeed true
coordinates ofthe group inthe second reference view. The matix analysis of the effect of sensor noise is more complicate
C consists of four columns as well. The first two are set to the this case. Also, the affine space does not allow for accoun
parameters predicted by the neural networks, and the fourth amgfor sensor noise during preprocessing [32]. Representing tt
is just the vector [000T]. The third column must be set equal tanodel groups in the space of image coordinates does not yielo
the vector [0010] so that the third column d?y_is the same as minimal representation but the analysis for the effect of sensc
the third column oPy,,. Py, canbe computed by multiplying,, noise is easier and it allows to account for sensor noise du
by C~1. The last constraint simply checks whether the conditidng preprocessing. In our implementation, the dimensionality o
of Py, = C~1P, islessthan athreshold (the same threshold ustiee hash table is equal to the group s@&ethat is,index ) ac-
during preprocessing). cepts as input th& or y coordinates of a group and returns a
G-dimensional index.

To demonstrate the indexing procedure, let us assume th
G =1. In this caseindeX ) implies a quantization of the inter-
val [0,1] plus a linear scaling to ensure that the computed inde

In this section, we consider several important issues with J.t—s t.he dimensions of th? hash_ table (see Fig. 8). Specifically
gard to the performance of the method: space requirements,t £ interval [Q’l.] IS pgrtmoned into a number of subintervals,
fect of sampling of parameters, and noise tolerance. If we ﬁld_a hash b_|n IS aSSI_gned to each_ one of them. The numper
sumeN points per reference view and a group Sethere are subintervals is deter_mmed by the size of the hqsh table which
Ng = (g) possible model groups (without considering differenqenOtecj asl. Th.e width O_f each _submterval .W'" ble= 1/H’
orderings since we use canonical ordering). Let us denote d the knot pointsy;, which define the subintervals, will be

10. SPACE REQUIREMENTS, SAMPLING EFFECT,
AND NOISE TOLERANCE

g ~ N i=jxh, j=12,...,H—1.If x¢ is thex coordinate of a
number of well-conditioned groups a&$g (with Ng <« Ng). ;= J*N, o N 4
If the sampling step used to sample the range of parame?&mt’:her.mde)(xk).: Q(xi) = J if X € [a} —h/2, a7 +h/2],
aj is S, j=1,2,...,k (k=4), each parameter can assum¥/th g; being the middle point off;. g;4]. Ingeneral G # 1),

IndeX ) implies a quantization of a hypercube with sides equa
to [0,1]. Assuming that(y, ..., Xg) are thex coordinates of the

spond to the min and max values &f). Thus, the number of S| &-di ional indexi ted by foll
transformed views we need to be generate per aspéds is points in agroup, &-dimensionalindex s computed by Ioflow-
ing the previous procedure for eagltoordinate of the group,

k , . .
[j=1Na - Not all of these views have to be considered during> " = -
preprocessing since some of them correspond to “invalid” vie aLt lts,lnde>(x1, X2, . ’t)r;G?c EX(Q(X%’_ Q?(Z)’ 'f' - Q(),[(G))I'.

(i.e., they do not lie entirely within the unit square). Let us de- ' US NOWassume that txecoordinates ol an aciual image

note the number of valid views a$y (Nv <« Ny). Each time group are %y, Xz, ..., Xg) while the x coordinates of a pre-

a valid view is generated, a hash entry is made for each Wé”—Cted image group, corresponding to the above actual ima

conditioned group contained in the view. Thus, the total numb@foup. are %1, %2, ..., %s). The coordinates of the predicted

of entries that must be stored per modehisNy N whereAy, image group have been obtained by applying the transformatic
is the number of aspects associated with madeThis is the

Ny, = ((MaXy, —Ming;)/S,; +1) values (mig,, max, corre-

number of entries to be stored without accounting for noise. If j-th hash bin
we choose to account for noise during preprocessing, addition: /
entries must be stored as we discuss later in this section. Fc
each group, we also need to store the weights of the neural ne r —|

! > X 1 | eese | w2 | W2 | esee | |
work associated with the group. Each network kasputs and | 1 1 . Tq | x

ick? wei 0 9 qa i1 1

k outputs, that isk= weights must be stored. i

Let us now turn our attention to the sampling of the para-
meters. If the sampling stesp, is very large, then the sampling FIG.8. Demonstration of the index-generation process.
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K =&x + &y + - + &, wherex{, y/, ..., are the coordi- rect hash bin will not be missed during recognition, we mus
nates of the model group which has produced the image graagrount for the sampling error during preprocessing. In partic
anday, &, . . ., & are the predicted parameters of the algebraliar, each time an entry is stored in a hash bin, we must also stc
functions. Let us assume that the actual parameters of the alggointer to this entry in the hash bins located around a neig
braic functions aray, ..., ax. Then, thex coordinates of the ac- borhood of the indexed hash bin. The size of the neighborho«
tual image group are given by =a;x/ + axy + - - - +a. The can be computed using (28) and depends on the sampling st
question is whether the actual and predicted groups access(thgs) and the size of the hash table. Equation (27) allows t

same hash bin; thatis, whetliedexX1, %o, . .., Xc) =indexx;, to find the neighborhood for each of the dimensions of the ha:
X2, ..., Xg). Thiswill be true ifQ(X) = Q(x), k=1,2,...,G. table. Then, we need to consider the union of neighborhoo
Let us assume thd(x;) = j. In order forQ(X;) = j, we must over all the dimensions. It should be mentioned that our expe
have|X — qj| < h/2. Let us rewritd% — | as mental results have shown that the upper bound given by (28)

not tight and much smaller bounds (for example, 1/2 of it) hav
1% —af| = [(% — %)+ —a) < % —%|+|x —q]|. (26) worked wellin our experiments.
Let us now consider the effect of sensor noise. For this, w

Considering the first term only we have assume that there is an uncertainty in the location of the moc
points which is at moste pixels. This means that the true image
[Xi — Xi| point must lie withinne pixels of the actual (noisy) image point.

Taken into consideration that each image is mapped (scale
to the unit square before recognition, the maximum distanc
=& —a)x + (G2 —ay + - + (& — &)l corresponding to the scaled image will Be=ne/N;, assum-

ing images of sizeé\; x N;. The question is whether the noisy

= |(AaX + &2y + -+ &)) — (X +ay + - + &)l

5, — / 3, — /.. 1B, —
= |2 — &Pl + 182 — eIyl + - - + & — & coordinates will access the correct hash bin, that is, wheth
< ilx{l n ﬁwﬂ Gy S 27) |~nde>(x1, Xz, ..., Xe) =index%y. %, ... Xa), wherexi~= X +

2 2 2 &. In order for this to be true, we must ha@x;) =Q(X;). Let

_ . . ider the diff & — q7:
Taking into consideration thak, — afl = h/2, we have from us consider the differendg — oj|

26) and (27 o ~ ~ ~
(26) and (27) 1% —qfl=1(x —q))+8& <[x —qj| +&<h/2+&
%] < R4 ey = ih2 (28 - -
IXi —ajl < 5 Ixi |+ > il +---+ > T /2. (28) To account for noise, we need to follow a similar procedure
In particular, every time an entry is made in the table durin
The above inequality implies that in order to ensure that the cg@reprocessing, we must also store a pointer to this entry in t
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FIG. 9. Some artificial test views.
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TABLE 3
Actual and Predicted Parameters (Artificial Data)

Parameters

Actual parameters (Figure 9(a)) Predicted parameters (Figure 9(a))
ai, az, ag, a4 —0.08248 —0.15374 0.09463 0.55224 —0.08222 —0.15323 0.09412 0.55223
b1, by, bz, bg —0.05775 0.02241 0.13408 0.48342 —0.05732 0.02222 0.13413 0.48313

Actual parameters (Figure 9(b)) Predicted parameters (Figure 9(b))
ai, a, ag, a4 —0.01866 —0.14224 0.00280 0.46931 —0.01863 —0.14223 0.00280 0.46932
b1, by, bz, by 0.07291 0.04679 0.19096 0.44305 0.07288 0.04675 0.19093 0.44299

Actual parameters (Figure 9(c)) Predicted parameters (Figure 9(c))
ai, a, ag, a4 —0.06960 —0.13060 0.08588 0.53691 —0.07512 -0.13366 0.08039 0.53807
by, by, bz, bs —0.06665 0.02818 0.16177 0.49026 —0.06666 0.02814 0.16176 0.49025

Actual parameters (Figure 9(d)) Predicted parameters (Figure 9(d))
a1, ap, ag, a4 —0.14990 0.08872 0.14231 0.61792 —0.14990 0.08868 0.14231 0.61792
by, by, bz, bs —0.21708 —0.12707 0.01205 0.55004 —0.21713-0.12714 0.01200 0.54999

hash binslocated in a neighborhood around the indexed hash bied a particular aspect and we captured two different picture
It should be mentioned, however, that some of these pointefdhe object (reference views). Both reference views have mar
might have been already stored in the appropriate hash biaatures in common; however, the first view is different from the
during the previous step which accounts for sampling error. second in that the object has undergone translation and rotatic
Next, we applied a corner and junction detector [33] in order tc
extract the interest points of the views. Figures 10g—10I shou
11. RECOGNIZING 3D OBJECTS the common interest points considered in each case (the lin
connecting the corners have been added to enable visualizatio
In this section, we demonstrate the proposed approach usinghen, the reference views were preconditioned and the ranc
both artificial and real 3D objects. The group size used in th# values for the parameters of the algebraic functions wer
experiments reported here@= 5. A five-dimensional hash ta- computed. Table 5 shows the ranges computed for each obje
ble of size 10x 10 x 10 x 10 x 10 was utilized f =1/10). Table 6 shows the number of well-conditioned groups choser
The step size used to sample the ranges of the parameters tWasumber of points represented in the groups, and the numb
Sa; = 0.05. First, we performed a number of experiments using views Ny, considered during preprocessing.
the artificial objects shown in Fig. 2. For each object, we gener-Some of the scenes used in our recognition experiments a
ated a number of test views by choosing the parameters of #ywn in Fig. 11. First, the interest points were detected usin
algebraic functions randomly. The test views were normalize§e same corner detector [33]. Nonimportant interest points wel
so that theix andy coordinates were in the interval [0, 1]. Thisremoved manually. Then, scene groups are chosen and usec
was performed by choosing a random subsquare within the ugiéicess the hash table and establish hypotheses. In the curr
square and by mapping the square enclosing the view (defingghlementation, the scene groups are selected randomly dt
by its minimum and maximum andy coordinates) to the ran- ing recognition. This is of course very inefficient. However, our
domly chosen subsquare. We also added some random neiggn objective here is to demonstrate the usefulness of alg
in the location of the points to simulate sensor noise. Figurep@aic functions of views within indexing-based object recogni-

shows some of the test views considered (solid line). In all cas@gn. There is no doubt that some kind of grouping will be very
recognition was successful and the parameters of the algebraic

functions were recovered very accurately as Table 3 illustrates. TABLE 4
Figure 9 shows the predicted models (dashed line) back-projected Verified Hypotheses
onto the test views. The number of hypotheses verified in each
case is shown in Table 4. To demonstrate the significance of the Hypotheses
hypothesis evaluation procedure discussed in Section 9, Table 4 Without using (1)-(5) Using (1)—(5)
shows the number of hypotheses verified using (third column) :
and without using (second column) the five conditions men- Fig. 9(a) 12888 45
: ; : Fig. 9(b) 50907 65
tioned in Section 9. .
. . Fig. 9(c) 107603 186
Next, we performed a number of experiments using the real Fig. 9(d) 20257 61

3D objects shown in Figs. 10a—10f. For each object, we consid-
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TABLE 5
The Computed Ranges for 3D Objects (Preconditioned Views)

Ranges of values

range of al range of a2 range of a3 range of a4
modell [-0.41933 0.41933] $0.36234 0.36234] 40.42926 0.42926] [0.0 1.0]
model2 [-0.44177 0.44177] $0.45138 0.45138] $0.43368 0.43368] [0.0 1.0]
model3 [-0.42321 0.42321] $0.41114 0.41114] 40.37975 0.37975] [0.0 1.0]

crucial to the performance of our method or to the performancandidate models can now be back-projected onto the scene
of indexing-based approaches in general. In all cases, the magplying a linear combination on a small humber of referenc
els present in the scene were recognized correctly. Figurevidws of the models. Finally, the approach is more general at
shows the recognized models back-projected on the test scepgtendible. This is because algebraic functions of views exi
Also, Table 6 shows the actual and predicted parameters of ther a wide range of transformations and projections.

algebraic functions in each case. To understand more clearly the strengths and weaknesse:
the proposed approach, we discuss next a number of imp
12. CONCLUSIONS tant issues. The first issue has to do with the camera moc

being used in this work. From our discussion in Section 2, th

In this paper, we proposed a new approach for indexing-baseimera model being used here is based on the assumptior
object recognition using algebraic functions of views. The prerthographic projection which is only an approximation of per
posed approach has a number of advantages. First, it requirspective projection. Although we have not performed a cart
small number of reference views. Most importantly, recognitidiul analysis on the sensitivity of our method to the assumptio
does not depend on the similarity between novel and refereradfeorthographic projection, we believe that the performance ¢
views. Second, verification becomes simpler. This is becaube method will degrade gradually as soon as more and mc

@ ) ® S

SRy W,
s T

............

® (k) ®

FIG. 10. Real model objects.
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TABLE 6 in using algebraic functions of views is that correct recogni-

Well-Conditioned Groups and Valid Transformed Views tion can be established as long as there are scene groups wh
are contained in at least two reference views. In other word:

Example data recognition does not depend on the similarity between nove

points and reference views. As a result, a small number of referenc

NG Ne Ny Ny NyNg  represented views should be sufficient. In this paper, we have demonstrate

modell 11628 16 102060 3991 63856 16119 the p_r(_)posed approach using reference views associated witt
model2 11628 16 136458 3344 53504 17119 specific aspect of the modgl objects only. In.other worQs, Wi
model3 26334 14 102816 2851 39914 2022 have made sure that the views to be recognized contain cor
mon groups of points with the reference views. The question ¢
course is how to choose a smaller number of reference view
which allow viewpoint-independent recognition. One idea is tc
perspective distortions are introduced. In fact, some commen@pture a large number of reference views and then apply son
on the effect of perspectivity can be found in [16] (page 100&ind of an elimination procedure. This problem is by no mean:
Itis reported in [16] that the effect of perspectivity appears to sesimple one and more effort is required to deal with it.
quite limited. Specifically, the linear combination scheme was Finally, it is important to consider the issue of generating
tried to objects with ratio of distance-to-camera to object-sizealistic views both during preprocessing and recognition. B
down to 4 : 1 with only minor effects on the results. realistic view we mean a view that can be obtained using a pra
Another issue is the issue of self-occlusion. Indeed, the cotital camera-object setting. In the currentimplementation, ever
bination of views method assumes that the objects are transpeansformed view is considered during preprocessing as long
ent [17—19]. To deal with self-occlusion, the hash table must Bés valid, that is, as long as it lies within the unit square. Disre-
built using reference views from different viewpoints. Howevegarding views which are not realistic has two advantages: first c
it should be emphasized that this is not the same as using @f; space will be saved during preprocessing and, second, tin
erence view from every possible viewpoint [5]. The key issuwill be saved during recognition. Although we are not dealing

(a) (b)

(d)

FIG.11. Real scenes and recognition results.
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TABLE 7
Actual and Predicted Parameters (Real Data)

Parameters

Actual parameters (Figure 11(a)) Predicted parameters (Figure 11(a))
ai, ag, ag, 0.03704 0.19696 0.04488 0.63449 0.03700 0.19692 0.04485 0.63446
b1, by, bz, bg —0.12358 0.05752 0.01046 0.53638 —0.12353 0.05757 0.01051 0.53644

Actual parameters (Figure 11(b)) Predicted parameters (Figure 11(b))
a1, ag, ag, a4 —0.05899 0.25588 0.00348 0.60012 —0.05899 0.25586 0.00345 0.60009
by, by, b, by 0.11146 0.00472 0.00298 0.47189 0.11190 0.00550 0.00161 0.47198

Actual parameters (Figure 11(c)) Predicted parameters (Figure 11(c))
a1, ag, ag, a4 —0.05758 0.25394 0.00120 0.60300 —0.05636 0.25418-0.00063 0.60274
by, by, b, by 0.09407 0.00413 0.00021 0.38442 0.09410 0.00416 0.00025 0.38447

Actual parameters (Figure 11(c)) Predicted parameters (Figure 11(c))
a1, ag, ag, a1 0.01682 0.13225-0.00602 0.62491 0.01682 0.13228).00601 0.62492
by, by, b, ba —0.08168 0.03142 0.000150 0.68023 —0.08168 0.03146 0.00018 0.68026

Actual parameters (Figure 11(d)) Predicted parameters (Figure 11(d))
a1, ag, az, a4 —0.08481 0.06358-0.03732 0.61571 —0.08480 0.06357-0.03733 0.61572
by, by, bz, ba —0.05666 —0.04054 0.01670 0.52448 —0.05660 —0.04049 0.01673 0.52454

with this issue here, we believe that one way to deal with this APPENDIX A

problem is by imposing certain constraints on the parameters of

the algebraic functions. Note that since we assume general 30Ve have shown in Section 5 thelc = AW In this case,

linear transformations, these constraints might have to be objéchas the formiVe WV . It is important now to choose

specific. in a way such that the resulting transformation matixs
For future research, we plan to extend the proposed approacﬁa“d transformation matrix. Since the last columnfis

to the case of perspective projection. For this, we plan to use g@ual to p 0 0 1T, the following equation should be satisfied:

algebraic functions proposed in [20, 21]. In specific, ShashiaWc (v§)T =[0 0 0 1]7. We proceed by splitting the above

[20, 21] has shown that perspective views of an object can p&@blem into two subproblems:

expressed as a nonlinear combination of two orthographic views

of the object. The extension will be carried out along the lines of We (UkC)T =z (16)

the current approach. There are some important differences be-

tween the orthographic and perspective case. The mostimportgay

is that the algebraic functions of views involve eight parameters

in the case of perspective projection. This means that the space

of transformed views will contain many more views in this case.

In this case, it will be of fundamental importance to consider i , )

realistic views only. Another approach might be to find new al/? IS known from the SVD analysis (ﬂ+The idea is to solve for

gebraic functions involving more views but less parameters.zif'rSt (Eq. (17)) and then solve foof)T (Ed. (16)). In solving

might be also worth experimenting with the algebraic function(slﬁ)’ we need to consider an additional constraint: the magnitu

proposed in the case of paraperspective projection [13]. In tl%,the solution vectorc)" must be equal to 1:

case, the algebraic functions look essentialy the same as those ) )
in the orthographic case; however, the parameters must satisfy (va) + (v@) "+ + (%)
now certain contraints. Also, different neural network models

must be used for the prediction of the parameters of the algenisis a direct consequence of the orthonormality@fAssum-

braic functions. In the case of orthographic projection, one-layiglg that the elements &%/ arewi?, i=1,2, ...,k thesolutions
models were used since the combination of views is linear in this (16) are
case. However, in the case of perspective projection, two-layer

X . . K . Z1 Z Zx
models must be used since the combination of views is non- v = — v, = — G = — (19)
linear. W1 W2 Wik

Vpz=[0 0 0 1. (17)

-1 (18)
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Substituting these expressions into (18) we have

2 2 2
z z Z
(%) +<—fz> ++<—E) =1
Wy Wa) Wy
or

i1 i#2 ik
K 2
C
i=1

Thus, the singular values & must satisfy (20). From (15),
wS =xr/wf,i=12,...,k Substitutingw$ in (20) and solv-

>
ing for » we have

(20)

2 2 2
n[[r/wl) +(=]]r/wl) ++a]]r/wh 1
i1 i£2 ik
K 2 2.

l_[ wiliD

i=1

=|A
3.
or

R R
izl i2 ik
(21) 7

where only the positive values afhave been considered since &
the sign ofa affects the sign of the singular values which must
be positive.

Next, the rest elements & need to be determined. A sim-
ple way to determine them is by assuming tkigtis a matrix

from a class of matrices which are known to be orthogonal. Fgy.

example, we can assume théf is a Householder matrix [30].

A Householder matriH is defined as 11.
1-2d2 —2dyd 20, 12.
H=| 200 1- 2d2 ... —2dyd , (22)
—2dcd;  —2dcd, 1—2d?
whered is a unit vector andl;, j =1, 2, ..., Kk, are its compo-

nents. The elements &f are fully determined by the elements;
of d. The components ofl can be determined by setting the
elements of the last row dfl equal to the elements of the last

377

row of Vg, (i.e.,v5). In specific,d;’s can be determined as

2 c 1- vlgk
1 — 2dk = Ukk or dk = :l: I — (23)
Uhik-1)
_.,C — -
—2dkdk—1 = vk(k—l) or dk—l = - 2dk (24)
" .
—20d; = v or dp=—-K, (25)
20

Either the positive or negativé value can be used (the positive
value has been considered here). It can be easily verified that t
vectord, whose components are determined by (23)—(25), is
unit vector.
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