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Abstract

In modern cellular, satellite mobile communications systems, and in GPS systems, a fast
tracking system is needed to constantly locate the users, and then adapt the radiation
pattern of the antenna to direct multiple narrow beams to desired users and nulls to

sources of interference. In this paper, the computation of the optimum weight vector of
the array is approached as a mapping problem which can be modeled using a suitable
artificial neural network trained with input output pairs, A three-layer radial basis
function neural network (RBFNN) is used in the design of one and two-dimensional array
antennas to perform beamforming and nulling. RBFNN's are used due to their ability to
interpolate data in higher dimensions. Simulations results performed under different
scenarios of angular separations, and SNR are in excellent agreement with the Wiener
solution. It was found that networks implementing these functions are successful in

tracking mobile users as they move across the antenna’s field ofview.

1. Introduction

Multiple access techniques are often used to maximize the number of users a wireless
communications system can accommodate. With frequency reuse, where the same frequency is
used in two different cells separated far enough so that users in one cell do not interfere with the

users in the other cell. Further improvements in the system capacity can be achieved. Moreover,



adaptive arrays implemented in base stations allow for closer proximity of cofrequency cells or
beams providing additional frequency reuse by rejecting or minimizing cochannel and adjacent

channel interference[l]. Motivated by the inherent advantages of neural networks([2]-[7]), this

paper presents the development of a radial basis function neural network-based algorithm to

compute the weights of an adaptive array antenna [8]. In this new approach, the adaptive array
can detect and locate mobile users, track these mobiles as they move within or between cells, and
allocate narrow beams in the directions of the desired users while simultaneously nulling
unwanted sources of interference. This paper is organized as follows: In sections 2 an 3 a brief
derivation of the optimum array weights in 1-D and 2-D adaptive beamforming is presented. In
Section 4 the RBFNN approach for the computation of the adaptive array weights is introduced.

Finally, Section 4 presents the simulation results and Section 6 offers some conclusive remarks.

2. Adaptive beamforming using 1-Dimensional linear arrays

Consider a linear array composed of M elements. Let K (K<M) be the number of narrowband

plane waves, centered at frequency ®p impinging on the array from directions
{61 6, -+ 0 K}. Using complex signal representation, the received signal at the i® element

can be written as,
K
x,(t) =D 5, (O)e” ™ +n,(2) i=12,M M
m=1
where sg(t) is the signal ofthe m™ wave, ni(t) is the noise signal received at the i sensor and

k=290 ) @)
[

where d is the spacing between the elements of the array, and c is the speed of light in free space.
Using vector notation we can write the array output on the matrix forms:

X (t)=AS(t)+ N(t) 3)
Where, X (t), S(t) and N(t) are M-dimensional vectors. Also in (3) A is the MxK steering matrix

ofthe array towards the direction ofthe incoming signals defined as:

A=[e) 20,) - a®y)]. 0
where a(8;) is defined as
3(9;)=[1 et e L e'j(”"”"] )]
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Classical Approach

Assuming that the noise signals {m(t), 1 =1:M), received at the different sensors are
statistically independent, white noise signals, of zero mean and variance o and also independent
of S(t) , then the received spatial correlation matrix, R, of the received noisy signals can be

expressed as:
R = EXO)X()" }= A E[s@)s” ()] + EN@ON” )]

M
= APA" +6*I=) ), eef

i=l

(6)

In the above equation, P = F {S(t)S(t)” } designates the signal covariance matrix and I is the
identity matrix. Also, in the above equation “H” denotes the conjugate transpose. Finally, A; (1< i
<M) and ¢; (1< i £M) stand for the eigenvalues and eigenvectors of the matrix R, respectively.
With the weights of the array element outputs represented as an M-dimensional vector W the
array output becomes

y(t)= iwi‘xi(t) = WIX(t) @)
The mean output power is thus given by:

P(W) = E[y(0)y" ()] = W*RW ®)
where * denotes the conjugate. To derive the optimal weight vector, the array output is minimized
so that the desired signals are received with specific gain, while the contributions due to noise and
interference are minimized. In other words:

minW*RW  subjectto W#S, =r ©)
In the above equation, ris the V x 1 constraint vector, where V is the number of desired signals,
and Sy is the steering vector associated with the look direction as defined in (5). The method of
Lagrange multipliers is used to solve the constrained minimization problem in (9). It can be

shown that the optimum weight vector is given by the following equation:
W, =Rs,[s,"Rs, |r (10)

Since the above equation is not practical for real time implementation, an adaptive algorithm

must be used to adapt the weights of the array in order to track the desired signal and to place
nulls in the direction of the interfering signals. In this work, neural networks are utilized to

achieve this adaptive response in real-time, the details of which appear in section 4.
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3. Adaptive beamforming using 2-D rectangular arrays

Consider a general M x N rectangular array receiving K signals and let the received signal data

matrix be given by [9]:

X (8) = 35, (0) A (A (1) + 1, () (an

where
A(m)= exp{j(m -1 Zﬂxd" sin 8, cos d),.} (12)
A,(n) = exp{ j(n=1) 2’; 4, sind, gt ¢,} (13)

In the above equation , d, and d, are the spacings between the elements along the column and row
directions, respectively, while 6; and ¢; are the elevation and azimuth angles of the i source,
respectively, and m=1,2,...,.M; n=12, ...N; and i=1,2, ...K.The received signal data can be

arranged in a 1x MN vector given by

X)) = isi (HA, +N(1) (14)

i=1
The {" signal direction vector A, = A, ® A;is defined in terms ofthe Kronecker product of
A,iand Ay, which are given by
Ay =40 4,@ - 4,00]  ad
A, =[4,0 4,2 - 4,00] (15)
It can be shown that in this case, the vector of optimum weights is given by
W, =R"Sd[S,,"R"Sd]"r (16)
where Ris defined as E {X(t) X"(t)} and Suis the steering vector associated with the desired
signals givenby S, =8,, ®8,, where 84, and Sg,are vectors defined as
Sa=[Su) 8. - S.0D )
S0 =540 Sa@ - S, ()

whose elements are given as in (12) and (13).
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4. Neural Network -based interference cancellation:

This section describes a new implementation for the problem of beamforming using neural
networks. Since, optimum weight vector is a nonlinear function of the correlation matrix and the
constraint matrix (see equations (10) and (16)). Then it can be approximated using a suitable
neural net architecture such as the Radial Basis Function Neural Network [11]. A Radial Basis
Function Neural Network can approximate an arbitrary function from an input space of arbitrary
dimensionality to an output space of arbitrary dimensionality [10]. The block diagram of the
RBFNN based array is shown in Figure 1. As it can be seen from Figure 2, the RBFNN consists
of three layers ofnodes, the input layer, the output layer and the hidden layer. In our application
the input to the network is the correlation matrix R while the output layer consists of 2M nodes
(1-D case) or 2MNnodes (2-D case) to accommodate the output vector (i.e., Wgy). The RBFNN
is designed to perform an input-output mapping trained with examples. There are a lot of learning
strategies that have appeared in the literature to train an RBFNN. The one used in this paper was
introduced in ([10],[11]), where an unsupervised learning algorithm (such as the K-Means [12]) is
initially used to identify the centers of the Gaussian functions used in the hidden layer. Then, an
ad-hoc procedure is used to determine the widths (standard deviations) of these Gaussian
functions. According to this procedure the standard deviation of a Gaussian function of a certain
mean is the average distance to the first few nearest neighbors of the means of the other Gaussian
functions. The aforementioned unsupervised learning procedure allows you to identify the
weights (means and standard deviations of the Gaussian functions) from the input layer to the
hidden layer. The weights from the hidden layer to the output layer are identified by following a
supervised learning procedure, applied to a single layer network (the network from hidden to
output layer). This supervised rule is referred to as the delta rule. The delta rule is essentially a
gradient decent procedure applied to an appropriately defined optimization problem. Once
training of the RBFNN is accomplished, the training phase is complete, and the trained neural
network can operate in the performance mode (phase). In the performance phase, the neural
network is supposed to generalize, that is respond to inputs that it has never seen before, but
drawn from the same distribution as the inputs used in the training set. One way of explaining the
generalization exhibited by the network during the performance phase is by remembering that
after the training phase is complete the RBFNN has established an approximation of the desired
input/output mapping. Hence, during the performance phase the RBFNN produces outputs to

previously unseen inputs by interpolating between the inputs used (seen) in the training phase.
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Input Preprocessing

First, the array output vectors are generated then transformed into appropriate input vectors to
be presented to the network. The estimation phase consists of transforming the sensor output
vector into an input vector and producing the DOA estimate. The correlation matrix R can be

rearranged into a new input vector , b , given as

b:[Rm"’:RMpRlz’”"RMzaRlM"'sRMM]T (19)

It was found that by only taking the upper triangular part of R as the input, the number of input
units is significantly reduced without affecting the interpolation capability of the network. Note
that we still need twice as many input nodes for the neural network to accommodate the complex

inputs.

5. Simulations

The pattern of an array of 8 elements receiving 1 desired signal and 3 interfering is shown in

Figure 2.The SNR of'the sources is 10 dB.The input to the network consisted of all the elements
of the correlation matrix R. Hence the dimension of the input layer is 128 nodes. In Figure 3,an
array of 10 elements is simulated under the same conditions with 110 Input nodes where only the
upper triangular part of R was used as the input. The results show that it is possible to reduce the
dimension of the input layer significantly without affecting the interpolation capabilities of the

network. In Figure 4,an array of 20 elements is shown tracking 7 signals 4 of which are
interference. The SNR of the desired signals were set to 10 dB while those of the interfering
signals were set to 20 dB and A8 = 5°. Finally, Figure 5 shows a 4 x 4 planar array is trained to
track 7 signals 3 of which are desired with A8 = 12° and $=60°.

6. Conclusion

A new approach to the problem of adaptive beamforming was developed. The weights were
computed using an RBFNN that approximates the Wiener solution. The network was successful

in tracking multiple desired users while simultaneously nulling interference caused by cochannel
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users or other sources of interference. Both linear and planar arrays were simulated and the results
have been very good in every case. Comparison of the adapted pattern obtained by the RBFNN

and the optimum solution proved the high degree of accuracy of this approach.
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Figure 1  Radial Basis Function Neural Network Architecture
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Desired signal at -40, Interference at -50,-30,-15

Array Pattern in dB

Array Pattern in dB
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Figure 2 The Pattern of an 8 element array receiving 1 desired signal and 3 interfering signals,

SNR is 10 dB, Solid: Wiener, Dotted: rbfnn
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Desired signal at -40, interference at -52,-33,-20
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Figure 3 The Pattern of a 10 element array receiving 1 desired signal and 3 interfering signals,
SNR is 10 dB, Solid: Wiener, Dotted: rbfnn
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Array Pattern in dB

Array Pattern in dB

Desired signal at -61,-51,41, Interference at -66,-56,46
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Figure 4 An array of 20 elements tracking 7 signals 4 of which are interference. SNR of desired
signals were (10 dB),SNR of interference(20 dB) , and A8 = 5°. Solid: Wiener, Dotted: rbfin

257



Desired signal at -34,-10,15, Interference at -46,-22,3,27
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Figure 5 4 x 4 planar array tracking 7 signals 3 of which are desired with AB = 12° and ¢=60°.
SNR of desired signals were (10 dB),SNR of interference(20 dB), Solid: Wiener, Dotted: rbfian
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