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Abstract—This paper describes an approach to classification of the FAMNN since these algorithms can be used for both nearest
noisy signals using a technique based on the fuzzy ARTMAP neural neighbor techniques and the FAMNN.

network (FAMNN). The proposed method is a modification of the - appjications of NN include classification of one—, two—, or
testing phase of the fuzzy ARTMAP that exhibits superior general- th di . | (1-D. 2-D 3-D) si Is. In thi K

ization performance compared to the generalization performance | ree— |men5|(.)n<’.;1 (1-D, 2-D, or 3-D) 5'9”? S.in ,'S work, we
of the standard fuzzy ARTMAP in the presence of noise. An ap- introduce a variation of FAMNN that exhibits superior general-

plication to textured grayscale image segmentation is presented. ization performance compared to that of the standard FAMNN
The superiority of the proposed modification over the standard when the signals are corrupted by additive noise. The varia-
Various texiUe ses, featire vestors and noise ypes. The texture L0 OF FAMNN, which is named PAMINN-m, adjusts the re-
sets include various’aerial photos and also samp)llgs obtained from 9'°"S of dominance (?f each qlass to Improve the gengrallzgthn
the Brodatz album. Furthermore, the classification performance Performance, assuming that information about the noise distri-
of the standard and the modified fuzzy ARTMAP is compared bution is not available. To demonstrate the generalization im-
for different network sizes. Classification results that illustrate the  provement of the FAMNN-m over FAMNN, we consider as an
performance of the modified algorithm and the FAMNN are pre-  example the classification of textured images, which are a case
sented. of 2-D signals. However, our approach can be easily extended
Index Terms—Classification, energy, fractal dimension, fuzzy to 1-D or 3-D signals. Texture is a main characteristic of the

ARTMAP, noise, segmentation, texture. surface of an object. In the case of an image, it defines the spa-
tial relationship between the grayscale values of the pixels in
I. INTRODUCTION a region of the image. For the purpose of classification, tex-

tures must be described by parameters, usually denoted as fea-

D URING the past few years, neural networks (NNs) havgres. The features that are selected must be sufficient to charac-
been extensively used for classification and pattetgrize the texture. Examples of features that have been used in

recognition tasks. Examples of such neural network modglf past include Gabor energy [8]-[10], Fourier transform en-
include the backpropagation NN [1], radial basis function NNyqy[11], second-order statistical features [12], wavelet features
[2] and the agiaptlve resonance theory (ART) NN. The fam|IM3]' [14], and fractal dimension (FD) [15]-[17].
of ART NN includes the fuzzy ART mapping (ARTMAP) " The proposed modification of FAMNN is especially suited
NN (FAMNN) [3], the Fuzzy min—max NN [4], the laterally for applications where it is required that the feature set captures
primed adaptive resonance theory (LAPART) [5], the evidengg,y the shape characteristics of the signal and not the actual
integration for dynamic predictive mapping (ART-EMAP)ympiitude or average value. Case examples may include en-
[6], and the Gaussian ARTMAP [7]. Like other members ofephalographs and electrocardiographs used for medical diag-
the ARTMAP family, FAMNN has certain advantages oveposis, classification and recognition of speech signals, as well as
many other NN models and is especially suited to classifijassification and segmentation of textured images and satellite
cation problems. One advantage is that FAMNN is faster Khotos. In such examples, correct classification independent of
train than other neural networks due to the small number @fmination and volume level (signal amplitude) is important.
training epochs required by the network to “learn” the inputor instance, if the signal is transmitted through a communica-
data. FAMNN is considered fast even among members of thgn channel, different attenuation may be introduced at different
ARTMAP family due to the computationally “cheap” mappingimes. In the case of textures, the images may have been ob-
between inputs and outputs. Also, the classification results @fned using a camera in a badly iluminated environment. This
FAMNN are easily interpretable. Furthermore, compared {gne of distortion is sometimes termed as multiplicative noise.
standard nearest neighbor techniques which are also commqgiytyre sets that are fairly insensitive to linear transformations
used, FAMNN requires less memory since it uses a compresgg multiplicative noise are desired. Two such feature sets that
representation of the data, and for the same reason FAMNR yse in this work are based on fractal characteristics and nor-
requires less (_:Ia53|f|cat|on time. The_gxster_lce of memokyjized energy (NE) measures. In [18]—[20] the independence
reduction algorithms [27] does not diminish this advantage gf fractal dimension (FD) to linear transformations of the signal

and to multiplicative noise isillustrated. The energy features that

we also use maintain similar independence through proper nor-
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instance, one of the two texture sets used for classification | Inter-ART module

a natural set obtained from University of Berkeley’s Kite aerial ART, ART,
photography, and itis not a noise free set. Some examples Whe ppodqule Module
the assumption “relatively good quality data is available” holds - ecemdesiminn e meoe For ja 1 L

are F; i : H B

—  Communication systemBeatures are extracted from .
source signals in order to train the NN. Then, the clas \iese
sifier is placed at the receiver of a classification systerr w, | |We wi|| W,
and the arriving signals are tested. Therefore, the sig \
nals that are available at the receiver site will be more Match
degraded than the signals used for training. Fj Tracking F) .

—  Character recognitionThe network is trained using
handwritten samples carefully obtained. On the othe
hand, the test characters may exist on copies, fax, ¢

mail letters, for example, where the quality is not as @ p @

good as the quality of the training data. F,
—  Speech recognitionrHuman voice is recorded using 4+
good-quality recorders, while the test data may have
been obtained using worse quality means.
— Aerial photo classificationAerial photos are obtained a
on a relatively clear day. These photos are used fo.

tralnlng_the neural network. Testlng nEEdS_ .tO be pelléi'g. 1. Ablock diagram of the fuzzy ARTMAP architecture.
formed independently of the weather conditions.

In order to illustrate the improved performance of FAMNN'mshown in Fig. 1. The inputs are presented at the ARDdule
over FAMNN, in the presence of noise, we focus ourattentioa{hd the cor.res.ponding outputs at the ARModule. The

on the texture classification problem. For that reason, we Use. . \nt module determines whether the mapping between
features that are rotation invariant in order to classify simil

e inputs and the outputs is the correct one. In the case where
textures that are viewed from different angles. Also, the featur&s P P

) . . ... the mapping between inputs and outputs is many to one, the
are extracted from small image windows so that identificati ; . :
: ) : . . AMNN operations can be completely described by referring
of different textural regions in an image is more accurate. There .
. . . .. ofly to the ART, module. For this reason only the ART
is a vast literature on texture segmentation and classification, . .
module is described here.

Among the various feature extraction techniques, Gabor filter . .
Some preprocessing of the input patterns takes place before
banks and energy has been used [8]-[10]. These features are ) .
L . . ; . they are presented to the ARModule. The first preprocessing
not rotation invariant since they are extracted using direction . . . :
\ . . . stage takes as an input an,Mimensional input pattern and
filters. In Murino et al. [21], third-order statistical features are ansforms it into an vectas — ( ), whose ever
used where it is demonstrated that they exhibit a significant g ALy - AMa), y

erance to white noise. Chaundetial. [15] use FD-based fea- component lies in the interval [0,1]. The second preprocessing

tures. Feature invariance to image transformations is a desirast%%etﬁ;fepts the veciems an input and produces a vecior
property and it is often overlooked in the literature. u

The modification that is proposed in this paper can be applied I=(a, a) = (a1, .., arna, a5, .-, aSa) (1)
to a larger family of classification techniques, including other '
members of the ART family and k-nearest neighbor techniqueghere
Itis easy to show that if the FAMNN has “point” nodes as many )
as the number of training patterns, it is a 1-nearest neighbor a; = 1—aj, 1<i< M. 2

C|aSS|Ier;’1In tehrms Ef thﬁ Ldls':ja.l?ce.l In tr}'slzzapﬁlilwe pﬁresgnt‘-he above transformation is called complement coding and it is
results that show that the modification o is effective o tormed in ART, at the preprocessor fielH.

for different sizes of the network including the case where t eEvery node j inf¢ field is connected via a top-down weight

FAMNN behaves as a 1-nearest neighbor classifier. with every node: in the F{ field. This weight is denoted

The paper is organized as follows. In Section II, we presentwgu The vector whose components are equal to the top-down
i . i i
overview of the Fuzzy ARTMAP architecture. In Section I, w eights emanating from nodgin the F¢ field is designated

Section IV 16 reviow the expenmental esuls hat compare tok ¥ = ("1 Wiy and tis called ART template.
performance of FAMNN-m and FAMNN in classifying textures MNN operates in two distinct phases: training phase and

Finally, in Section V we provide some closing remarks test phase.
Y. P 9 ' For the training phase, given a list of MP

training  input/label  pairs, such as {I*, O},

{12, 0%}, ..., {IMP OMP} we want to train the FAMNN to
The FAMNN [3] consists of two fuzzy ART modules desig-map every input pattern of the training list to its corresponding

nated as ARJ and ART,, as well as an inter-ART module aslabel. In order to achieve this goal, the training set is presented

II. Fuzzy ARTMAP NEURAL NETWORK
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repeatedly to the FAMNN until the desired mapping is 1
established for all pairs.

Consider therth input/label pair (for example{I”, O"})
from the training list. The bottom-up inputs to all the nodes at ve
the Fy field of the ART, module due to the presentation of the
rth input pattern are calculated. These bottom-up inputs to a
nodej in £ are calculated according to the following:
M () Y Encoded
Ba + W] input
patterns

THI") =

whereg, is called the ART, choice parameter, and takes values

in the interval (0,00). From the set of nodes iRy that satisfy 1

the vigilance criterion, we choose the one that receives the max-

imum bottom-up input fronfy". A node; satisfies the vigilance EEMIZ\IN 'Tfféf:g”é?ﬁﬂg ?;Cttg‘agtleem\z:ﬁ ngpél‘:ﬁ é;’nd)v)a'”mFt ;J'ﬁ'gdu?;

criterion if M, = 2.

1" A ws| .
T < Pa (4) (] - |) operator. The size of a vecter is defined to be equal to

the sum of its components.

wherep, is called the vigilance parameter, and takes values inFor thetest phasein fuzzy ARTMAP, the values of the

the interval [0, 1]. Each time that an input pair is presented,t@p-down weights and the fuzzy ARTMAP parameter values

is initialized to a value called the baseline vigilance parametg®,, 7,) are set to the values that they had at the end of the

7.- If no node satisfies the vigilance criterion, an uncommittedaining phase. For each input pattdrfrom the test list, we

node is selected. A node is called uncommitted if it was nogalculate the bottom-up inputs as they were defined in (3)

selected before by any input pattern. Assume that ngdein considering all committed nodes and an uncommitted node.

¢ has the maximum bottom-up input from (3) and satisfies thgom the set of nodes ifiy* that satisfy the vigilance criterion,

vigilance criterion in (4). If nodé,,., is an uncommitted node, the one that receives maximum bottom-up input is chosen and

the mapping of the Nod&... is designated to b®*. Note, that  the label of the input pattern is designatedisvhereO is the

O is the label corresponding to the input patté&frpresented |abel that the node has been mapped to, in the training phase. If

in FY*. Also the top-down weights are modified according to an uncommitted node is chosen, the label of the input pattern is
designated as “unknown.”

wi =I'Awj . ()  The templatesv that are formed at thé’ field of fuzzy

ARTMAP during training are compressed representations of

If jmax is & committed node and due to prior learning ngdg:  the training input patterns. Template! = {u¢, (v)°} in

is mapped to a label equal @", then the mapping is correct, o has an interesting geometrical mterpretatlon It can be

and the top-down weights in ARTare modified according to represented by a hyper-box in the, Mimensional space. This

(5). If jmax is @ committed node and due to prior learning nodgyper-box includes within its boundaries all the training input

Jmax IS mapped to a label different thad” then the mapping patterns that were coded by the template. A hyper-box can be

is incorrect. In order to disqualify this node, we increase thesfined by its endpoints. These are the points of the boundary

vigilance parametes, in ART,, to a level described by the fol- of the hyper-box with the smallest and largest coordinates of

lowing: the hyper-box points, respectively. The first,Mlements of
" A we the templatew? define a vectoru} which is the lower left

| Wj,m| +e (6) endpoint of the hyper-box and the last,Mlements define

17 the complemen¢v$)© of a vectorv? which is the upper right

endpoint of the hyper-box. The representatlon of a template
w$ as a hyper-box is illustrated in Fig. 2.
he maximum allowable size of the hyper-box is controlled
the baseline vigilance parameter vajgg The larger this

wheree is taken to be a very small positive constant. Then, w
choose another nodg.,,.x ) that maximizes the bottom-up mput
of (3) and satisfies the vigilance criterion of (4). This procedurg

Eortfgga;edol;r}gl)asn;?grgg mffnIS||;Onucr1ed(;[::?etr$ﬁx(l):‘néiizr—]hde vigilance parameter the smaller will be the sizes of the hyper-
P g oxes created in the training phase of FAMNN.

mapped to the correct output. If during a particular presentation
of all the input—output pairs (called epoch) no weight changes
occur, the learning process is considered complete. Otherwise, lll. THE FAMNN MODIFICATION
the patterns are presented again. In this section, we present a modification of the FAMNN,
In the previous steps we used the “fuzzy-m{®’) operator. named FAMNN-m, that performs well in the presence of noise.
The fuzzy min operator of two vectoss; andw- is a vector Prior to classification, features are extracted from textures. The
whose components are equal to the minimum of the corrmeet of feature vectors extracted is divided into training and test
sponding components &¥; andw,. We also used the “size” sets. The training phase of FAMNN-m is exactly the same as



1026 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 12, NO. 5, SEPTEMBER 2001

the training phase of FAMNN. The test phase is a modificatiddased on (9)—(11)

of the test phase of FAMNN that exhibits superior generaliza-

tion performance than the standard FAMNN if the textures are o~
. . I . {Z+ N} =(1—-3{Z S{N

affected by more noise. The training phase is implemented in HZ+ N} = (1= 9)3{Z} +73{N)

way so that the modification does not introduce any extra over- wherey = ox/(oz +on).  (12)

head to the test phase. ) o )
Equivalently, ifI* is the pattern extracted from imageandI®

A. The Noise Model is the pattern extracted frodd + N, then
Consider the mapping between the ima&and the feature y N
vector F*Z: x (1 -y 49T (13)
FZ =3{z}. (7) Forinstance, if the SNR approaches zero, noise becomes dom-

inant and the value of is almost equal to one so thEt ~ IN.
As we mentioned earlier, in many applications it is required thain the other hand, if the signal-to-noise ratio (SNR) approaches
the features capture only the shape characteristics and not thewfinity, the signal becomes dominant and the valuey i al-
tual amplitude or average value of the signal. Thus, the featurasst equal to zero so th&t ~ I”. For intermediate values of

are insensitive to linear transformations of the image: SNR the signal looks like a linear combination of pure signal
and noise.
S3{Z} = S{az + b} (8)  In practice, the parameteris not known since information

] ] about the noise that has affected the images is not available. As
wherea andb are cons}t\gnts. According to the previous notay resylt, our approach works as follows. We generate ni¥ise
tloj\r), the(\feature vectaF™" extracted from a noise surfadéis ot smal standard deviation following a known distribution (for
£ = 3{N}. In order to change the mean and variance of &ample, Gaussian). This noise may or may not be similar to

random variable such ¥, we appl)gg_linear transformation of ihe nojse that actually degrades our good quality images. We
the formaN +b. According to (8) F*" is independent of linear e the aforementioned generated noise to extract the pattern
transformations of the noise surface, which implies #at is N from noise only, and the patteild from the noisy version

independent of the mean and standard deviation of the mﬁise(z + N) of the good quality imagéZ). Also, the patteri®

In order to be consistent with the usual terminology of FAMNNg axtracted from the good quality image Finally, the pat-
we will refer to complementary encoded feature vectonsas iarnste. 1¢. IN are used to estimate the valuexaiiccording to
terns and to the complementary enc}eded feature vektbrof (13). The estimated value gfcan now be used in the test phase
the noise surfacesthenoise patterrl™ . of FAMNN-m with data that are either excited by the original

We now find an approximate relation between the featufgerng« or by patterns extracted from noisier version<Zof
vector extracted from an imagg and the feature vector ex-¢,, example,Z + N'. Note thatN’ can be different thaiV.

tracted from the same image corrupted by nd¥séf Z, andN, e entire approach is pictorially illustrated in Fig. 6. The pre-
are normalized images (zero mean and standard deviation 1)jj,sly mentioned approach resembles the well-known method
corresponding images ae= 0%, +myz, N = onNo+10N  of adding noise to the training data to improve the generaliza-
respectively. Then, if the imagé = 0%, + my is corrupted o performance of an NN. In this case too, addition of a small
by noiseN' = on N, 4 my the feature vector extracted will bepgise tg the training data does not imply knowledge of the ac-
tual noise affecting the data.

o
S{lozZo + mz] + [onNo + m]} Since a pattern consists of many featureis estimated sep-

=S {ozZo +onlNo} arately for each feature of the feature vector. Since patterns
(features independent of mean are extracted from many images, the value/dér featurei is
=S {[02Z0 + oxNJ| /(a7 + ox)} estimated as; = [1—the slope] of the line that best fits the

. points{(I¥ — IYY), (I¢ — IY)} and~ is the average of all these
(features independent of contrist ~;S. N(E'Ee that (23)( can be)gquivalently written(@s — IV) =
=S{{1 —7)Zo +¥No} 9 Q-ya -1,

. . Two feature sets are used in this work, namely energy-based
wherey = on/(oz + ox). The Taylor series expansion aroundynq fractal-based features. A detailed description of these fea-
an arbitrary vectod (linear approximation, assuming that th§ e sets can be found in [25]. We must note that the valug of
transformation3{-} is differentiable atA) is depends on the feature type used and the standard deviation of
noise. Two examples of estimation of thearameter are shown
in Fig. 3(a) and (b), respectively, for one FD feature and one NE
feature. In Fig. 3(a) and (b) the lige® — 1) = (1—+;) (1P —1N)
is fitted, and [1—the slope] of the line gives an estimation of
-~ -~ e ~ T ~;. Our experimental results demonstrate that the FAMNN-m
S{4} =3{0zZo + my} & S{A} + VS{A}Z, — 4] exhibits a better classification accuracy than FAMNN even for
S{N} =S{onNo +mn} = S{A} + VS{A}[N, — A]".  textures corrupted with different noise distributions than the one
(11) assumed to estimate

${Z+ N} =~ S{A} + VS{A}[(1 — 7)Zo + YN, — A]".
(10)
Similarly for 3{Z} and3{N}
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Feature from the FD set and in some region around it. The latter, depends on the size
of the hyperbox, on the parametgf as it can be seen from
(3), and on its proximity to other hyper-boxes (for more details
see Georgiopoulost al., [22]). According to (13), patterns that
are extracted from a noisy texture will move, at least in most
of the cases, toward the direction of the pattern that is extracted
from a pure noise surface. Therefore, if in the test phase of the
FAMNN we modify the region of influence of each hyperbox so
that it gives more emphasis to coordinates that are further away
from the noise pattern than the ones that are closer, we have
a better chance of correctly classifying patterns extracted from
noisy signals. Furthermore, the modification of the test phase of

o..-_._
o
N

©%e -0.4 -0.2 0.4 the FAMNN needs to be such that it allows the correct classifica-
PN tion of textures used for training as well. We have implemented
Feature from the NE set a variation of the test phase of FAMNN (called, FAMNN-m) to
0.16 achieve the previously mentioned objectives. In the sequel, we
0.14 present a simplified analysis that gives some intuition of how
0.12 we came up with this modification and what is its effect on the
zZ_ 0.1 classification performance.
'T_ 0.08 First, we define the distance between a tempiatend a pat-
= - ternI as
0.06
0.04 dist(w, I) = |[w| — |[w A T (16)
0.02
o In the special case where the templateis a patternl’, the
o.02 distance betweehandI’ as it is defined in (16) is equal to
-0.05 [o] 0.05 0.1 0.15 0.2

M,
dist(T', I) = |T-T[|y = > L - L. 17)
Fig. 3. Linear fit ofl? —I¥ onI” — ¥ used for estimation of the parameter. i=1
I¥ andI¢ are theith elements of the patterns (feature vectors) before and after
noise is added on the textures. (a) A FD feature is used. (b) A NE feature is useify. 4 presents some examples of the distance as it is defined by

(16) and (17).
B. Training Phase and Test Phase For a patternI at the boundary between the regions of
gominance of two nodes with templateg; and ws, the

The training of the FAMNN-m is exactly the same as th ding bott — 4TI |
training phase of the standard FAMNN. As a reminder, tHe’'"€SPONdING bottom-up inpu 5() and T,(I) are equa

bottom-up input of nodg in £ for a patternl”, denoted as

T]‘.I(I”), can be expressed as a ratio of two numbgramdl D. Ty (I) =To(I) = |wi AT _ |wa A
In particular Wi + 8. |wa| + 3.
a |wi| — dist(wy, I)  |wo| — dist(ws, I)
Dj = fa + W] (14) Wil = ol 1/ (18)
N; =" Aw?l. (15)

In the case where the textures are affected by more noise,

We notice that after training is over,; Demains unchanged. the patterns extracted from the textures, move toward the
Even if the training is on-line, this quantity remains unchangetise patterrl™. Assume that the hyper-box defined loy
when the test phase takes place. The quantitjési@very node is closer to the noise pattern than the one defineavpythat
Jj, are stored in memory along with the templatgsso thatthey is, dis{wy, IV) > dist(ws, IV). Then, node 2 benefits from
are not recalculated in the test phase. the movement of patterns due to noise over node 1 because

If the size of the patterns after complementary encodingitstends to “capture” patterns that belong to node 1 and move
2M,, then, we are dealing with an Mdimensional hyperspace.towardIN. In our approach we modify the boundary between
Each node in théy layer can then be represented as apxdit  the regions of dominance according to our previous discussion,
mensional hyperbox. The training patterns that are associabgddividing the bottom-up input of a node with a term that
with this node are included inside the boundaries of this hgepends on the corresponding tempiaté/Ne denote this term
perbox. When a pattern is tested, a hyperbox competes wat$iN(w). Assume thal’ is a pattern on the new boundary that
other hyper-boxes to associate this pattern with the class thatresponds to the patteinon the old boundary. We wait
it represents. Basically, only the hyperboxes that are closettobe further away from node 1 and closer to node 2, so that
the pattern have some chance to be associated with it. Gerlee-boundary between the regions of dominance moves toward
ally, each hyperbox is dominant in the region that it occupiesde 2. The boundary movement due to this modification helps
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Node 1 ! ! Node
! 1
—] | s | s
1
o kS :d
3 i ! "Ng__spPattern I
| : dy
= !
dist(w;,wy)=d,+d, _i dist(w;,w,)=d, U dist(w,D)=d,+d,
------------------------------------------------- e et
! |
Hode E Moce ! 4 patternT
] d, Pattern I !
Pattbrn I i W em E 4, l
dist(w,I)=0 i dist(w,I)=d, E Pattern I

dist(II’)=d,+d,
Fig. 4. Some examples of the distance as it is defined in (16) and (17).

node 1 to “recapture” the misclassified patterns. Then, for thige same: digtv,, IN) = dist(w», IN) we do not want to favor
patternI’ on the new boundaries one node versus the other.
We select Nw) = M,, — v dist(w, IY), wherey is a smalll

! ! !

Ty(I) _ To(I) = [wi AT constant associated with the amount of noise that has affected

N(wi)  N(wz) — N(wi) (lwi] +fa) the textures [see (13)]. Next, we show that this choice foxN

|wo AT |w| — dist(wy, ') satisfies the aforementioned desired property:

" N(wa) (|wa| + Ba) = N(w1) ([wi| + Bo) Letusfirstillustrate the effect of the termg; ) and Nw).

) X For example, ify = 0.1, distw, IN) = 0.5 M, , and disfw,

_ [wa| = dist(ws, I') (19) IV) = 0.4 M,. Then, Nw1) = 0.95 M, and N'wy) = 0.96

N(wa) (Jwa| + fa) M, and Nw;)— N(w;) = 0.01 M,. On the other hand, if

We consider only the region between the closest boundarieslft(wz, I') = 0.3 M, then Nw) = 0.97 M, and N'w)—
the two hyperboxes, to illustrate the effect of this modificatiod(W1) = 0.02 M,. Consequently, what significantly affects the
If a patternl that resides in this region moves to patt&rthat  dist(L, ') is not the actual values of (W) and N'w) which
resides also in the same region théis further away from node @re very similar and close to Mbut the difference of the two.
1 thanI by a distance equal to d{dt T') and closer to node 2 We can thus rewrite (25) as follows:

by the same distance. Equation (19) becomes

dist(T, T')
|W1| - diSt(Wb I) - dlSt(L I/) [N(WQ) _ N(Wl)] [(|W1| + /30) (|W2| + ﬁa)]
N(w1) (|wi] + fa) ~ ML [ | & [wal & 23] T (I).
_ |W2| - diSt(WQ, I) + dlST}(I7 I/) (22)

(20)

N(w>) (jwal + ) | B
By selecting Nw) = M, — v dist{w, I'), we have [Nw2)—
Solving for distI, I'), we find that it is equal to N(wy)] = ~ [dist(w;, IN)— distw,, IN)]. Therefore,
dist(L T) dist(I, I’} is proportional to [digtw:, IN)— dist(w», IV)] and
’ the desired property is satisfied. The other factor in (22) being

_[IN(wa2) — N(wp)] [[wi| + Ba] [|[wa| + fa] equal to
= Niw) (Wil + ) + Newa) (fwal +7,) 0 @Y
o = Wil +Ba) (| + 5a)]

We want to select the term (M) in a way that satisfies the Mg Wil + [wal +26.)]
following property: 1

« dist(T, I') should be proportional to digky, IN)— T(I) = 7 I T1(T)

i N
dist(wy, I'). a{|W1| s + ol +/3a}

Motivation: In the case where the textures are affected by
more noise, the patterns extracted from the textures, move does not depend on the factoréwi ) and Nw»). Term G is
ward the noise patter®". If dist(w,, IV) > distw,, IN) then not a direct result of our modification. It is a result of the char-
we want to move the boundary between the regions of doraieteristics of the bottom-up input as it is defined in the FAMNN
nance toward node 2 which is closer to the noise paft€fin  architecture.
order to increase the probability of recapturing the patterns thatt was mentioned earlier that the bottom-up input is not only a
moved toward™ and belonged to node 1. It is reasonable theneasure of proximity, but it also depends on the template sizes
to move the boundary toward node 2 by an amount which is praad on the3, parameter. Ternt? reflects the effect of these
portional to the difference in distance of the two noslesw, bottom-up input characteristics to diEtI’). Some intuition
from IN. For instance, if the distance of two nodes fréithis about the effect of this term is shown in Fig. 5. In Fig. 5(a) and
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5 Iwil ﬂa =0
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A o o
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Fig. 5. Bottom-up inputs as a function of the input pattern and boundaries between regions of dominance for (@)(karge 3.), 1/ (w2 + 3.), (b) small
/(w1 + 8a), 1/(wz + 5a).

(b) we depict the bottom-up inputs of two neighboring 1-D tencomputed in the training phase (see Fig. 6 for a pictorial illus-
plates with respect to the input pattdrniNe have assumed thattration) and used in the test phase. Also, the denominator of the
the templates in Fig. 5(a) are larger than the ones in Fig. 5(bpttom-up inputZ’m$(I") of the FAMNN-m is D = (M, — v

In both cases, the input pattefrfor which the two bottom-up dist(w, TV))(5., + |w{|) which is stored in the training phase
inputs T, (T) and T2(T) are equal, defines the boundary betweeand it is not recalculated in the test phase.

the regions of dominance of the two nodes. The bottom-up inputA two-dimensional example that gives some insight about the
is constant inside the region defined by a template as it is shoeffect of the modification is shown in Fig. 7. The input patterns

in Fig. 5. The bottom-up input of a node decreases linearly withthis example belong to two classes denoted as class 1 and class
the distance of the pattern from it. The slope of the linear d@- They are represented by-" and “x,” respectively. These
crease is, for node 1 for example, equalfd|w.| + 3,). As- patterns are NE-based feature vectors that are actually extracted
sume that the value of the bottom-up input on the boundary esm two aerial textures, respectively. Half of the patterns were
tween nodes is the same for both examples in Fig. 5(a) and @jtracted from best quality textures available, and half from the
Then, the larger the slopdg(|w1| + 5,) and1/(|w2| + 8,) two textures when noise is present. A part of the patterns that
the closer the boxes defined by the templates are. The @&rnwere extracted from the best quality textures available is used for
is inversely proportional to the sum of the two slopes, which igaining [Fig. 7(a)]. The rest of the patterns that were extracted
desired; the further away the nodes are, the larger thddB) from the best quality textures available [Fig. 7(c)] and all the
is. For instance, for the nodes in Fig. 5(a) which are cl@se patterns that were extracted from the noisy textures [Fig. 7(b)
0.32, and for the nodes in Fig. 5(b) which are further awasind (d)] are used for testing. The “light gray” area represents the
G = 0.38. region of dominance of the hyperboxes that belong to class 2,

According to our previous discussion, we define thandthe “white” area the region of dominance of the hyper-boxes
bottom-up input for node j of the FAMNN-m in the test phaséhat belong to class 1. The “dark gray” area belongs to class 2
to be equal to for the standard FAMNN and to class 1 for the FAMNN-m.

We can see that the boundary between the regions of domi-
nance of the two classes has been shifted toward class 2, which
is the one closer to the noise pattern. In Fig. 7(a), we depict
the patterns that are used for training and the boxes that have
encoded these patterns. Both FAMNN and FAMNN-m classify
whereI” is the rth input pattern from the list of test patternscorrectly all patterns (th& s are in the “light gray” area and the
The value ofy is computed according to the method describeds in the “white” area). In Fig. 7(b), we depict the patterns that
in Section Ill-A. The parametey and the noise patte®’ are are extracted from the textures that were used for training, but

1 T A we|

Tme(T') = :
m;(T) M, — 'ydist(wj”', V) B+ |WJ”|

(23)
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Fig. 7. A comparison of FAMNN and FAMNN-m in two-dimensions. The “light gray” area and the “white” area represent the regions of dominance of class 2
and class 1, respectively. The “dark gray” area is included in the region of dominance of class 2, if FAMNN is used, and in the region of dominante of class
if FAMNN-m is used. (a) Patterns extracted from the best quality textures that were used for training. (b) Patterns extracted from the textueeashétfare

training when noise is added. (c) Patterns extracted from best quality test textures. (d) Patterns extracted from the test textures when aoise is adde

now the textures are affected by additive noise. We notice a dis-“capture” the patterns that belong to class 1. For Fig. 7(b)
placement of the patterns with respect to the corresponding omessee that ten patterns are misclassified for FAMNN, but only
in Fig. 7(a). The patterns have moved toward the noise vectone for FAMNN-m. Similarly, Fig. 7(c) depicts the regions of
As a result class 2, which is closer to the noise vector, tendesminance for FAMNN and FAMNN-m and the test patterns
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that have been extracted from the aerial textures. In this cagectors and 640 test feature vectors when no extra noise is added
FAMNN misclassifies two patterns and FAMNN-m four patwere extracted. The size of the windows was selected to be rela-
terns. On the other hand, in Fig. 7(d) we see that the moveméwnely small (16x 16) so that segmentation of more that one tex-
of patterns toward noise leads FAMNN to misclassify seven paitie in the same image is possible if desired. A similar window
terns, but FAMNN-m misclassifies only one. For this examplgize of 17x 17 was selected in [15].
the value ofy was selected equal to 0.45. We must note, thatWe considered three different types of additive noise:
the noise distribution that affects the textures can have an afBaussian noise, uniform noise and exponential noise. For each
trary mean. On the other hand, the displacement of patterngype of noise we considered different values of standard devi-
the feature space is the result of the noise addition to the sigratlon. Approximately 82 000 NE-based and 82 000 FD-based
From this example we notice the effect of the modificafeature vectors were extracted from the 20 Brodatz textures for
tion. For textures that have not been affected by extra noisachtype of noise and foeachvalue of standard deviation.
FAMNN may have slightly better classification performancépproximately 20 000 NE-based and 20 000 FD-based feature
than FAMNN-m. For the textures though, that are affected lwectors were extracted from the 20 aerial texturesfmhtype
extra noise FAMNN-m gives significantly better classificatiomf noise and foeachvalue of standard deviation.
results. The scope of this paper is to illustrate the superior perfor-
mance of FAMNN-m over FAMNN in the presence of noise
independently of the size of the network. For this reason, we
compared the FAMNN and the FAMNN-m for different net-
We performed a large number of experiments in order to ivork sizes. In order to achieve different network sizes, we used
lustrate the effectiveness of the proposed FAMNN-m for classlifferent values of baseline vigilangg. The value of3, was
fication of signals affected by additive noise. We considered tBelected to be equal to one for all FAMNNs and FAMNN-ms.
application of texture classification. We compared FAMNN-m All combinations of the parameters described above were
with 1) the original FAMNN and 2) with the original FAMNN considered. More specifically, the classification performance of
when it is trained with both noisy and best quality data avaiFAMNN and FAMNN-m was examined on the two texture sets,
able. Although the 2) results may be a fairer comparison, tfe the two feature sets, for three different types of noise, for
1) results are significant because they convey a more compldifferent values of the standard deviation of noise, and for dif-
picture of the FAMNN-m advantages over FAMNN. ferent sizes of the networks. The classification results are shown
We used two different texture sets. The first texture set com-Figs. 8—11 and Tables | and II.
sisted of 20 textures obtained from the Brodatz album [23]. TheThe distance between the noise pattern extracted from
second texture set consisted of 20 textures obtained from aesigbure noise texture and the patterns extracted from other
images [24]. The training and testing on these two texture séstures is relatively large, independently of the type of noise.
were performed separately. We extracted a large number of gabnsequently, the noise pattern could have been extracted from
terns from both texture sets, as we will describe later. We caamy type of white noise. For our experiments the noise pattern
sidered these two texture sets because we wanted to examindtheas extracted from a pure Gaussian noise texture for both
classification performance of FAMNN-m on a set, such as Br&-D-based and NE-based feature sets. The noise pattern was
datz textures, obtained in ideal environmental conditions, an@stimated as it was described in Section IlI-A. More specifi-
set, such as aerial textures, that represent a more realistic sitialy, feature vectors were extracted from 2616 samples of
tion. the noise texture. The noise feature vedidf was estimated
Two feature sets with different characteristics were extractad the average of all these feature vectors (each element of
from each texture set. The first one consisted of 12 NE-bast@ noise feature vector was estimated as the average of the
features [25], and the second one consisted of six FD-based fearesponding elements of all feature vectors extracted from
tures [25]. The NE-based feature set is more robust to noise tlihe noise texture). The noise pattdfh is the complementary
the FD-based feature set, but the classification results that wereoded noise feature vectbr'.
obtained with the FD-based feature set are better when extr&he value ofy was estimated following the approach that
noise is not present. The training and testing were performeds described in Section IlI-C. The value pfwas estimated
separately for each feature set. for standard deviation of noise equal to 14.2, but it was kept
Let us consider the NE-based feature set. For Brodatz t@onstant in the test phase, since it is assumed that information
tures, a total of 2560 feature vectors (or equivalently patterre)out the noise that has corrupted the textures is not available.
that were extracted from nonoverlapping windows of size<16 Nevertheless, the classification performance of FAMNN-m over
16 were used for training. A total of 1280 feature vectors weFAMNN is improved independently of the standard deviation or
used for testing in the case where extra noise is not present. &stribution of noise that has affected the textures. The value of
aerial textures, a total of 1280 feature vectors that were extractedias found to be approximately equal to 0.1 for the NE-feature
from nonoverlapping windows of size 16 16 were used for set, and approximately equal to 0.2 for the FD-feature set.
training. A total of 640 feature vectors were used for testing In summary, all experiments show that the PCC is always
in the case where no extra noise is added. Similarly, for therger for FAMNN-m when the standard deviation of noise
FD-based feature set, 2560 training feature vectors and 1380®arger than 7.2, independently of the type of the noise, the
test feature vectors when no extra noise is added were extradtedure set and the feature set. The difference is larger for larger
from Brodatz textures. For aerial textures, 1280 training featwalues of the standard deviation. When no extra noise is added

IV. EXPERIMENTAL RESULTS
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Fig. 8. Comparison of FAMNN and FAMNN-m in terms of percentage of19- 11. Comparison of FAMNN and FAMNN-m in terms of percentage of
correct classification on the aerial textures, for different number of nodes wh&Tect classification on the Brodatz textures, for different number of nodes
the NE-based feature set is used and when (a) Gaussian noise is added"’lgﬁfe, the FD-based feature set is used and when (a) Gaussian noise is added;
uniform noise is added, and (c) exponential noise is added. (b) Uniform noise is added; (c) exponential noise is added.

is slightly better for FAMNN when extra noise is not present,
which is the tradeoff for the significantly improved perfor-
mance of FAMNN-m over FAMNN when noise is present.
More specifically, when extra noise is not present, the aerial
textures average PCC of the FAMNN-m networks is 84.5% and
88.5% for NE and FD, respectively, and the average Brodatz
B 169 Nodes textures PCC is 89.4% and 94% for NE and FD, respectively.
00431 Nodes The average PCC of the FAMNN networks is 85.7% and
@ 1454 Nodes  87.8% for NE and FD, respectively, and for aerial textures, and
02560 Nodes  89.9% and 94.7% for NE and FD, respectively, and the Brodatz
textures. When the standard deviation of additive noise is 7.2,
the average PCC of the FAMNN-m networks and for all three
types of noise is 84.9% and 85.8% for NE and FD, respectively,
and for aerial textures, and 89.6% and 91.7% for NE and FD,
respectively, and the Brodatz textures. The average PCC of
Fig. 9. Comparison of FAMNN and FAMNN-m in terms of percentage othe FAMNN networks is 85.4% and 84.5% for NE and FD,

correct classification on the Brot_jatz textures, for different nymber' of 'nod(!e sdoectively, and for aerial textures, and 89.8% and 91.2% for
where the NE-based feature set is used and when (a) Gaussian noise is adde

Brodatz Textures, Energy
Gaussian Noise Uniform Noise Exponential Noise

14.4 21.6 28.8 14.4 21.6 28.8 14.4 21.6 28.8

Classification Improvement (%) of
FAMNN-m over FAMNN

Standard Deviation of Noise

(b) uniform noise is added, and (c) exponential noise is added. NE and FD, respectively, and the Brodatz textures.
The results for higher values of the standard deviation of
Aerial Textures, Fractals noise are shown in Tables | and Il for the FD-based feature

set and the NE-based feature, respectively. We notice that when
noise is present and for a specified number of nodes the PCC
7 of FAMNN-m is alwayslarger than the PCC of FAMNN for
the same number of nodes. The difference in PCC varies be-
tween 1% and 12.1%. For instance, the improvement in PCC of
m357 Nodes  FAMNN-mover FAMNN is 11.9% for 127 nodes and when ex-
0657 Nodes ponential noise of standard deviation 24.4 has affected the aerial
textures and when the NE-vector is used. Also, the improvement
in PCC of FAMNN-m over FAMNN is 9.7% for 268 nodes and
when Gaussian noise of standard deviation 18.2 has affected the
Brodatz textures and the FD-vector is used.
Fig. 8 presents the classification improvement of FAMNN-m
Standard Deviation of Noise over FAMNN when the NE-based feature set is used, when the
Fi . _ ffierial texture set is corrupted by Gaussian, uniform, and expo-
g. 10. Comparison of FAMNN and FAMNN-m in terms of percentage o . . L .
correct classification on the aerial textures, for different number of nodes WhQ@n“al noise. The values for standard deviation of noise were
the FD-based feature set is used and when (a) Gaussian noise is addedeqwal to 14.2, 21.6, and 24.4 and they correspond to SNRs of
uniform noise is added, and (c) exponential noise is added. 17 dB, 9 dB, and 8 dB, respectively. Three sizes of FAMNN
and FAMNN-m were examined: networks with 127 nodes, net-
and when the standard deviation of noise is equal to 7.2, twerks with 440 nodes, and networks with 1231 nodes. Fig. 9
PCC is similar for the FAMNN and the FAMNN-m. The PCCillustrates the classification improvement of FAMNN-m over

Gaussian Noise Uniform Noise Exponential Noise

1280 Nodes

Classification Improvement (%) of
FAMNN-m over FAMNN
H

142 182 142 182 142 182
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TABLE |
PERCENTAGE OFCORRECTCLASSIFICATION OF THE FD-BASED FEATURE VECTORS (&) EXTRACTED FROM THE 20 AERIAL TEXTURES AND (b) EXTRACTED
FROM THE 20 BRODATZ TEXTURES

FD —Vector Aerial Textures

Type of Noise : Gaussian Uniform Exponential
Standard Deviation s 142 18.2 14.2 18.2 14.2 18.2
FAMNN 357 Nodes 69.3 55.4 66.2 544 73.3 65.4
FAMNN-m 357 Nodes | 72.6 62.3 694 [ 581 73.8 68.5
FAMNN 657 Nodes 69.6 55.6 714 57.0 74.0 64.7

FAMNN-m 657 Nodes | 73.3 62.5 72.8 60.1 75.3 68.8
FAMNN 1280 Nodes 70.2 56.7 71.3 56.7 76.2 674

FAMNN-m 1280 Nodes [ 73.0 61.3 724 .2 77.2 69.6

(@)

Brodatz Textures

Type of Noise : Gaussian Uniform Exponential
Standard Deviation : 142 18.2 14.2 18.2 14.2 18.2
FAMNN 268 Nodes 724 55.7 63.6 47.1 81.0 66.2
FAMNN-m 268 Nodes 81.7 654 724 55.5 86.8 74.3
FAMNNS77 Nodes 73.5 56.0 63.7 49.2 80.0 67.0
FAMNN-m 577 Nodes 79.9 66.0 704 55.2 86.7 74.8
FAM NN1348 Nodes 74.2 56.6 66.3 50.9 81.3 66.7
FAMNN-m 1348 Nodes 79.8 63.4 729 56.4 87.1 74.3
FAMNN2560 Nodes 74.2 57.1 66.3 50.3 81.0 67.5
FAMNN-m 2560 Nodes 79.5 63.3 71.2 55.1 87.0 75.3

®

TABLE I

PERCENTAGE OFCORRECT CLASSIFICATION OF THE NE-BASED FEATURE VECTORS (&) EXTRACTED FROM THE 20 AERIAL TEXTURES (b) EXTRACTED
FROM THE 20 BRODATZ TEXTURES

NE —Vector Aerial Textures

Type of Noise : Gaussian Uniform Exponential
Standard Deviation : 144 216 244 144 216 244 144 216 244
FAMNN-127 Nodes 778 (684 1627 179.1 673 |64.1 80.8 [727 1645
FAMNN-m 127 Nod. 820 (733 [70.1 30 [738 (700 829 [779 |764
FAMNN-440 Nodes 84.0 [74.1 694 1836 [723 [70.1 852 179.1 74.0

FAMNN-m 440 Nod. 84.6_[78.0 [ 741 0 (763 |747 849 (822 |792
FAMNN-1231 Nodes 824 [70.6 |66.2 820 [69.6 |[669 83.5 75.5 70.6

FAMNN-m 1231 N. 845 |728 | 686 |825 |710 |688 |89 [77.9 |73.6
@
Brodatz Textures

Type of Noise : Gaussian Uniform Exponential

Standard Deviation : 144 216 288 144 216 2838 144 216 288
FAMNN-169 Nodes 879 [776 1696 872 762 |67.3 88.4 84.5 80.1
FAMNN-m 169 Nodes | 88.6 | 83.7 |757 |88.5 |82.1 72.5 89.0 [865 |84.0
FAMNN-431 Nodes 884 [815 747 88.3 80.5 74.1 88.4 84.7 82.3
FAMNN-m-431 Nodes [ 894 [(84.6 [789 1892 (835 [771 894 [865 | 84.6
FAM-1454 Nodes 90.0 184 |804 |89.7 85.1 76.0 89.7 88.2 86.3
FAMNN-m-1454 Nodes | 90.3 | 88.3 | 84.1 90.0 (876 |79.1 90.3 |89.3 [88.1
FAMNN-2560 Nodes 894 (848 [787 88.8 82.8 74.6 89.7 87.1 83.8
FAMNN-m-2560 Nodes | 900 [866 [824 [89.6 [856 [77.6 |[89.9 |887 |[868

®)

FAMNN when the NE-based feature set is used, when the Broere equal to 14.4 and 18.8, and they correspond to SNR
datz texture set is corrupted by Gaussian, uniform and expd-17 dB and 10 dB, respectively. Three sizes of FAMNN
nential noise. The values for standard deviation of noise weaad FAMNN-m were examined: networks with 357 nodes,
equal to 14.2, 21.6, and 24.4 and the correspond to SNR6&7 nodes, and 1280 nodes. Fig. 11 shows the classification
18 dB, 10 dB, and 8 dB, respectively. Four sizes of FAMNNnprovement of FAMNN-m over FAMNN for the FD-based
and FAMNN-m were examined: networks with 169 nodes, 43Fg¢ature set, when the Brodatz texture set is corrupted by
nodes, 1454 nodes, and 2560 nodes. Gaussian, uniform, and exponential noise. The values for
Fig. 10 shows the classification improvement of FAMNN-nstandard deviation of noise were equal to 14.4 and 18.8 and
over FAMNN when the FD-based feature set is used, whémey correspond to SNR of 17 dB and 10 dB respectively. Four
the aerial texture set is corrupted by Gaussian, uniform, asides of FAMNN and FAMNN-m were examined: networks
exponential noise. The values for standard deviation of noigéth 268 nodes, 577 nodes, 1348 nodes, and 2560 nodes.
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Fig. 12. Samples from the Brodatz textures (named ihand the aerial textures (nameckir).

In Fig. 12 we present samples of the textures used for class [,
cation. The images with name im are textures from the Bro- }:
datz texture set, while the images with name.fnare textures
from the aerial texture set. In Fig. 13(a), we present a sample
the original texture, and in Fig. 13(b) the same texture corrupt
by additive uniform noise of standard deviation 28.8. :

Generally, in applications where the data are noisy, it is
common practice to train NNs with the noisy data. We have e[,
amined the effect of this approach in our application by trainir
the NN with patterns extracted from the best quality texture
available, and with patterns extracted from textures affected
noise with standard deviation 7.2. We used the energy feat (a) (b)
vector. The resulting training set consisted of 2560 patterns.

We have compared the PCC obtained from this approa?ﬁ-_ 13. (a) Best quality texture (b) texture where white noise with standard
(training the NN with noisy data) with the PCC obtained from " 21" 24.4 has been added to the best quality texture.
our modification. In order to make the comparison as fair as
possible, we obtained in both cases the “optimum” networkhen the test set is extracted from the original textures. The
size. We made sure the PCC for the best quality test set availprovement of our modification in terms of PCC over the NN
able was the highest one. Furthermore, the valug wfs set trained with noisy data is not as much as in the case where the
equal to the average value of alk that are estimated from theNN is trained with the best quality data available. Nevertheless,
best fit of the linegI¢ — IV) = (1 — )(I® — I) for standard the improvement is in some cases more than 2%. This result
deviation of noise equal to 7.2. We used a test set consistingsbbws that training the NNs with noisy data improves the PCC
2560 patterns, which is a small sample of the test set used in tg not as much as our method does.
previous experiments. The comparison results are presented iRurthermore, the number of nodes created after training with
Table IIl. We notice that the PCC for both cases is almost equmith best quality data available and noisy data is larger (368
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PERCENTAGE OFCORRECTCLASSIFICATION FORFAMNN-m TRAINED WITH THE BEST QUALITY TEXTURES AND FAMNN WHEN IT IS TRAINED WITH BEST
QUALITY TEXTURESAFFECTED BY NOISE

NE —Vector Aerial Textures

Standard Deviation of noise: nonoise 14.4 21.6 24.4
Gaussian FAMNN (trained with noisy data) | 78.1 74.5 66.7 60.2
Noise FAMNN-m 78.0 74.9 68.0 60.9
Uniform FAMNN (trained with noisy data) | 78.1 75.2 65.5 59.6
Noise FAMNN-m 78.0 76.3 66.7 61.6
Exponential | FAMNN (trained with noisy data) | 78.1 75.5 68.9 64.1
Noise FAMNN-m 78.0 76.9 71.2 66.7

nodes) compared to the number of nodes when the networks]
is trained with only the best quality data (200 nodes). An
immediate consequence of creating more nodes is that th
training phase is more time consuming. Another advantage o?ﬁ
our method is flexibility, since only one parameteyneeds to
be estimated in order to obtain the “highest possible” PCC forl”l
the noisy textures. Therefore, the networks do not have to be
retrained. If we train the network with patterns extracted from [8]
noisy textures, we require a new training process each time
we need to obtain the “highest possible” PCC for the noisy (g
textures.

[10]

V. SUMMARY AND CONCLUDING REMARKS

In this paper we introduced a variation of the testing phase dtll
the FAMNN that we named FAMNN-m. We demonstrated thatj; 2]
FAMNN-m exhibits superior generalization performance com-
pared to the generalization performance of FAMNN in the clas-
sification of noisy signals. These results are valid independent!
of the type of noise affecting the signals. Moreover, the results
are valid independently of the size of the ART architectures crel4]
ated. The introduced modification of FAMNN was based on the
fact that values of signal features which are distant from feagis)
ture values that correspond to a pure noise signal, are affected
more severely than values of signal features that are close. Trﬂﬁ.’]
proposed modification of FAMNN is especially suited for ap-
plications where it is required that the feature set captures only
the shape characteristics of the signal and not its actual amp '1-7]
tude or average value. If the variance of the noise that contam-
inates the signals is estimated, then the classification results of
FAMNN-m could be further improved by producing a more ac-[18]
curate estimate of the parameterThe application used in this [19]
paper, to illustrate the points above, is classification of noisy
textured images. [20]

13]
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