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Abstract 
A novel adaptive resonance theory (ART) neural network architecture is being proposed. The new model, called 
Hypersphere ART (H-ART) is based on the same principals like Fuzzy-ART does and, thus, inherits most of its 
qualities for  unsupervised learning. Among these properties is fast, stable, incremental learning on the training set 
and good generalization on the testing set. While H-ART is intended for  clustering tasks, its extension, H-ARTMAP 
is playing the role of Fuzzy-ARTMAP’s counterpart for  the supervised learning of real-valued, multi-dimensional 
mappings. Also in this paper, some experimental results are presented involving the comparison of H-ARTMAP and 
Fuzzy-ARTMAP in simple, illustrative classification problems. The results are indicating comparable per$ormances 
in error rate but also a good potential for  substantial superiority of H-ARTMAP in terms of nodes (categories) 
utilized. The latter effect can be attributed to H-ART’S more eficient internal knowledge representation. 

I. Introduction 
Fuzzy-ART and Fuzzy-ARTMAP were first introduced in [ I ]  and [2] as a self-organizing, parallel clustering 

and a pattern classification machine respectively; they both originated from the pioneering work presented in [3] on 
adaptive resonance theory (ART) and extend the family of ART architectures by being capable of performing 
learning tasks with real-valued patterns. Properties of these architectures have been investigated in [I] ,  [4], [5] and 
[6]. Also, numerous applications based on the same networks have been reported in the literature. For the length of 
this paper it is assumed that the reader is already familiar with the basics of these networks. 

In brief, Fuzzy ART performs a clustering of its input feature space into Categories during its training 
phase. The category representation process takes place in the F2 layer of its attentional subsystem. This layer 
consists of committed nodes sensitized to each category. The internal representation of categories is materialized by 
means of templates, one associated to each node. Geometrically, each, template in Fuzzy-ART can be represented as 
a hyperrectangle in the input feature space. All input patterns contained in such a hyperrectangle are said to be 
encoded by the corresponding template. The number and size of these templates and, hence, the magnitude of input 
data summarization is determined during the training phase by Fuzzy-ART’S parameters: the vigilance parameter p, 
the choice parameter a and the uncommitted node choice parameter Mu. The formation of templates within the 
network is accomplished incrementally using off-line or on-line training. All the patterns of the training set are 
presented one by one to the network. Each pattern will either select an already existing category or initiate the 
creation of a new one, if no existing category can satisfactorily represent it. In the latter case, we say that the pattern 
chooses the uncommitted node. The selection process is based on the vigilance test, which assesses the proximity of 
the pattern to a category in terms of city block (L ,  norm) distance, and the size of the its related hyperrectangle. The 
smaller and closer a category’s hyperrectangle is in relation to the pattern, the more the potential for this category to 
be selected by the pattern. Once a category is selected, its associated committed node resonates. During resonance, 
update of its template occurs only if the pattern is not enclosed by the node’s hyperrectangle; otherwise, no learning 
occurs. In particular, when off-line training is being performed, eventually all patterns will select a committed node 
without causing a template update. This condition signifies the conclusion of the training phase. Once trained, the 
performance phase follows similar rules to associate a previously “unseen” pattern to one of the network’s clusters 
or to the uncommitted node, which would imply that the pattern most likely does not originate from the same 
population as the training patterns do. Up to this point, the sketching of Fuzzy-ART’S behavior has been attempted; 
some information about Fuzzy-ARTMAP will be provided in a later section. 

The rest of the paper is organized as follows. In the subsequent section the motivation behind H-ART and 
H-ARTMAP is being exposed along with their governing learning rules. Furthermore, a comparison is made 
between the geometrical representations of Fuzzy-ART and H-ART in a 2-dimensional setting to demonstrate their 
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analogies. Section 111 presents illustrative classification tasks that compare the performance of Fuzzy-ARTMAP and 
H-ARTMAP. A simple, 2-dimensional classification problem and an additional benchmark task example have been 
chosen to accommodate a comparison of the two architectures. The primary focus of the comparison lies in the 
classification error rate and the magnitude of node proliferation. Finally, Section IV summarizes the material 
presented and the experience accumulated during the investigation of the experimental results. 

11. Description of H-ART and H-ARTMAP 
As was pointed out in [7], in many clustering or classification problems the way input patterns are 

distributed in the feature space does not lend itself for accurate summarization using the ranges of values defined by 
Fuzzy-ART'S hyperrectangles. This effect is more intense in the presence of noise and leads to category 
proliferation in order to compensate for the lack of representation efficiency. In other words, excessive amounts of 
nodes may have to be employed in the F2 layer in some cases to achieve a reasonable accuracy when predicting 
categories. It seems that circles, spheres and, in general, hyperspheres are for many problems a more natural and 
efficient geometrical representation of boundaries between clusters in the feature space. Based on these facts as a 
motivating point, Gaussian-ART and Gaussian-ARTMAP were introduced in [7 ] ,  which addressed this issue 
successfully using hyperellipsoids for the geometric representation. However, one of the major disadvantages of 
these two architectures is the lack of finite, stable learning. With Fuzzy-ART and Fuzzy-ARTMAP fast learning 
completes in a finite number of list presentations. At the end of the training phase the network will predict the 
correct category for each one of the input patterns used for training. This is not the case with the two former 
architectures. Overtraining under fast learning causes the category representations to gradually reduce in size 
causing the encoding of patterns, that might have been already learned by the network, to deteriorate. 

The focus of the work presented in this paper was to capture an ART neural scheme combining the virtues 
of both approaches. The end product is Hypersphere-ART (H-ART) and its corresponding ARTMAP (H-ARTMAP) 
architecture. H-ART, as its name suggests, utilizes hyperspheres for the geometric representation of clusters. From 
that aspect, a hypersphere network should be able in general to employ fewer nodes for its learning tasks, as opposed 
to its fuzzy counterpart. Even though hyperspheres are potentially less efficient in comparison to hyperellipsoids 
with respect to category shape description, they indeed allow for a template update law that supports finite, stable 
fast learning. 

As we noted earlier, H-ART encodes and thus describes clusters of patterns in the input feature space as 
hyperspheres. Since hyperspheres embedded in an RM feature space are completely determined by their radius R and 
their centroid m, a template (bottom-up weight) of H-ART is of the form w = (R, m) E RM+'. It is worth noting that 
H-ART is using only M+l memory elements per node in contrast to Fuzzy-ART that needs 2M per node to 
characterize each of its hyperrectangles. This follows from the fact that Fuzzy-ART'S templates are of the form w = 
(U, v') E R2M, where U and v are the points defining Fuzzy-ART'S hyperrectangle. The notation v' denotes the 
vector 1-v, where 1~ RM is the all-ones vector. At this point it becomes apparent that another difference between the 
two architectures is that H-ART lacks a Fo layer; complementary encoding of input patterns is unnecessary under the 
new ART scheme. On the other hand though, a form of pre-processing still has to be performed on the input patterns 
to compute a lower bound on H-ART'S parameter, which is not shared by Fuzzy-ART and will be mentioned later 
in the text. However, both H-ART and Fuzzy-ART have exactly the same operation characteristics in common, that 
is, their training phase and performance phase are of identical fashion. Due to their functional similarity, H-ART 
inherits all of Fuzzy-ART'S parameters, namely the vigilance p, the committed node choice parameter a and the 
uncommitted node choice parameter RU . Moreover, the major role of these parameters is carried over to H-ART. 
The vigilance controls the maximum size of templates that can be formed and in conjunction with RU (denoted M, 
for Fuzzy-ART) regulates the number of categories created during learning. Finally, the choice parameter a mainly 
influences the competition among nodes for the encoding of a pattern to be learned by the network. 

When an input pattern x E RM is presented to the F,  layer, a bottom-up input T(xlw,), also called category 
choicefunction, is generated for each nodej  of the F2 layer. For H-ART the Weber Law form of the choice function 
for the j" committed node is 
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In the previous equation, 11.112 denotes the Lz vector norm. The choice parameter a takes values in the interval (0, 00). 

The H-ART specific pparameter is called radial extend of the network and takes values in the range [R,,, 00). Its 
primary role is to control the maximum size that categories can potentially reach during the training phase. The 
lower bound R,, is the feature space radius defined as 

The pre-processing required estimating R,, is of 0(P2/2) complexity, where P is the number of available patterns. 
The estimate is used to choose a practical value for the radial extend parameter before commencing training. In 
addition, we define the choice function of the uncommitted node as 

It will be assumed that RU = 2 E .  The node J eventually chosen by the pattern (the resonating node) will be the one 
with the highest choice function value that satisfies the vigilance criterion 

where p(xlwj) is the category match function for the j I h  node and is defined as 

As in the Fuzzy-ART case, the vigilance parameter p takes its values in the interval [0, 1 3 .  If the resonating node J is 
a committed one, then its template will be updated in the manner described below 

Here, y E (0, I ]  stands for the learning rate characterizing the network’s training mode. For y = 1 we have fast 
learning and any other value implies slow learning. If it happens that none ,of the committed nodes satisfy the 
vigilance constraint and the uncommitted node is chosen, then a new category is created. The node’s template will 
be initialized as follows 

RJ = 0 
mJ=x  

(7) 

Although not apparent at first glance, Eq. 6 implements a template update method for H-ART, which resembles the 
update mechanism of Fuzzy-ART. To be more specific, Eq. 6 allow a node to learn a pattern without forgetting 
patterns already encoded by the same node. This fact can be demonstrated with the simple example shown in Fig. 1. 
The left side of Fig. 1 depicts a geometrical illustration of an already committed node resonating upon presentation 
of pattern x in a 2-dimensional feature space setting. It is further assumed that this node with template wold satisfies 
the vigilance criterion and that fast learning is in effect ( y  = 1). Its geometrical representation, the circle Co/d, will 
expand enough to become C,,,, by adjusting its centroid and radius Rold to include x .  The adjustments obey the 
rules set in Eq. 6 and are a function of the euclidian distance dis(x, Col,) between the pattern to be encoded and the 
original circle Cold. For comparison reasons, the right side of Fig. 1 illustrates the same update procedure for a 
Fuzzy-ART template wold under the same assumptions. Instead of a circle, in the general case the geometrical 

61 



Figure 1 

representation of a Fuzzy-ART template would be a rectangle. Upon resonance, the template with representation 
REo/d will expand enough to include the pattern and form RE,,,,. Again, the modifications are a function of the L1 
distance dis(x, REold) between the pattern and the pre-resonance rectangle REo/d. Notice, that when ever a pattern 
belongs to the closure (interior or boundary) of a template representation, then dis(x, CO,) = 0 for H-ART and dis(x, 
REo/d) = 0 for Fuzzy-ART. Under these circumstances no template update is taking place for Fuzzy-ART. 
According to Eq 6, the same fact holds for H-ART as well, since in this case Rold 2 IIx-~ldllz. This learning behavior 
is of vital importance for both architectures, since it aids in equipping the networks with the self-stabilization 
property [ 11.  

The learning scheme presented so far via Eq. 1 through Eq. 7 attributes H-ART with the same properties as 
Fuzzy-ART: fast, stable, incremental clustering of the input space. Its performance phase is identical to the training 
scheme described so far with the exception that no updates are implemented to the network's templates. However, 
instead of choosing the category with the maximum value of bottom-up inputs in a winner-take-all (WTA) fashion, 
alternative approaches can be considered including the Q-max rule [ 8 ]  and others. In essence, WTA is a special case 
of the Q-max rule for Q = 1 .  

As mentioned before, H-ARTMAP is the counterpart of Fuzzy-ARTMAP and, thus, consists of two ART 
modules operating under the H-ART learning and performance rules presented. Each one of them is associated to a 
feature space; ART, clusters the input patterns and ARTb the output patterns. It has to be noted that the values of the 
learninghetwork parameters (the vigilance, the choice parameters and the radial extend) of each ART module might 
be chosen independently of each other. The modules interface with each other via an inter-ART module that maps 
categories of the input feature space with categories in the output feature space. In addition, the training phase 
behavior of ART, is augmented with match tracking. Without going into extensive detail, match tracking attempts to 
rectify erroneous association of an ART, category with an ART, category by suitably increasing the vigilance in the 
ART, module. Therefore, in the case ARTMAP networks the initial value of p is called baseline vigilance value. As 
a general comment, all similarities between H-ART ' and Fuzzy-ART induce corresponding similarities to their 
ARTMAP counterparts. When an ARTMAP architecture is used for pattern classification tasks, ARTb nodes encode 
the labels of each class to be learned by using a vigilance value equal to one. Therefore, ARTb templates and 
parameters are of no practical interest [6] .  In the sequel, ARTMAP parameters will imply parameters in ART,. In 
order to demonstrate the similarities but also some potential differences between H-ARTMAP and Fuzzy- 
ARTMAP, the next section exhibits some limited comparison results and attempts to reflect the experience gathered 
in the process. 
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111. Experimental Results 
Two experiments are being considered in this section. The first one is the “circle in a square” problem [7] 

and deals with artificially generated data from between two non-overlapping classes. More specifically, the classifier 
has to discriminate between the points inside (the “inside”-points) and outside of a circle (the “outside”-points) 
embedded inside the unit-area square. The second experiment conducted was to classify the PIMA Indian Diabetes 
Database (PID) [9]. Both the experiments were performed using some common settings and rules for both 
architectures. First, fast learning ( y  = 1) was used and training was performed to perfection, that is, until all training 
patterns were correctly classified. Secondly, the performance phases were conducted using the WTA rule and p = 0 
to force a choice among the given class labels. Finally, for both phases of operation it was assumed that Mu = 2M 
and RU = 2 R .  

For the “circle in a square” classification task, 200 uniformly distributed training patterns were generated. 
Approximately equal number of patterns was sampled from each class. Training was performed by experimenting 
with a variety of parameter values. For each set of values 100 different orders of pattern presentation were 
considered. The evaluation of Fuzzy-ARTMAP and H-ARTMAP was accomplished be using a testing set of 1000 
patterns to assess their classification error rates. The latter quantity is defined as being the fraction of testing patterns 
misclassified. Figure 2 reflects part of the results produced via a percent error rate vs. number of categories formed. 
An ideal classifier would achieve minimal classification error by employing minimal number of nodes. The plot 
indicates the performance of Fuzzy-ARTMAP with points and the one of H-ARTMAP with crosses. Evidently, H- 
ARTMAP achieves the lowest error with the lowest number of categories. Using only two nodes it exhibits 99.99% 
correct classification, since it misclassified only one test pattern. A single node represented the interior of the circle 
and a second one the exterior. Their corresponding circles were centered in the vicinity of point (0.5, 0.5) and the 
one encoding the ‘‘outside”-points enclosed the other one. Although the “inside”-patterns were enclosed by both 
circles, they would correctly chose the “inside”-node, since it was the one with the smallest size (radius). H- 
ARTMAP’s optimal performance was reached with E =  2, p = 0.4 and a = On the other hand, Fuzzy- 
ARTMAP exhibited a comparable performance of 96.6% utilizing 1 16 nodes. This result was achieved using p = 0.1 
and a = 10. 
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For the PID problem the available data was bisected into 576 training and 192 testing samples. The input feature 
space is of dimensionality 8 and the patterns belong to two classes. During experimentation only the case with p = 0 
was investigated. H-ARTMAP yielded optimal classification of 73.43% and employed 1 15 nodes. Fuzzy- 
ARTMAP’s best instance exhibited less correct classifications (only 66.30% with 62 nodes) using small values of 
the choice parameter. An interesting fact is that although H-ARTMAP in this example creates more categories 
(almost double the amount than Fuzzy-ARTMAP, both of them utilize about the same amount of memory. This is 
because H-ARTMAP uses 9 memory elements per node in comparison to the 16 that Fuzzy-ARTMAP requires. 

There are some general comments that can be made at this point. First, H-ARTMAP usually requires higher 
vigilance values to reach the same performance as Fuzzy-ARTMAP. The influence of H-ARTMAP’s choice 
parameter diminishes for high values of the radial extend, which is also implied by Eq. 6. Moreover, selecting a 
good value for is dependent on the problem at hand. The experience gained from the experimentation on the 
aforementioned problems suggests values much higher than the input feature space radius. This seems to allow for 
higher data summarization ability. Another interesting fact about H-ARTMAP is that, when p, a and Rare  chosen 
such that a single node is generated for each training pattern, then the network’s response is equivalent to the k- 
nearest neighbor (K”) classification method [ lo]  with k = 1 for WTA or k = Q for a Q-max performance rule. 
Finally, even when H-ARTMAP creates more nodes than Fuzzy-ARTMAP for a specific level of error rate, in the 
vast majority of cases it will utilize, in general, less memory. 

IV. Conclusions 
A new ART neural architecture for clustering was presented, namely H-ART, and its extension H- 

ARTMAP for classification tasks. A comparison was drawn between these architectures and the original Fuzzy- 
ART and Fuzzy-ARTMAP. Since H-ART is based on the underlying concepts of Fuzzy-ART, it inherits most of its 
properties, the most important one being the ability for incremental, finite and stable learning. Due to its more 
efficient internal representation of knowledge, H-ART suggests a potential for achieving similar performance to 
Fuzzy-ART with less categories created and less memory needed. The same properties carry over to H-ARTMAP 
for classification problems. Only limited insight was provided by two illustrative classification examples. Additional 
experiments, though, need to be conducted to validate some of the above claims regarding H-ART and H- 
ARTMAP. The authors are currently investigating different approaches to improve H-ART and H-ARTMAP, as 
well as hybrid hyperrectanglehypersphere network schemes for achieving highest data compression without 
compromising classification rates. 
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