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Packet Error Probabilities in Frequency -Hopped 
Spread-Spectrum Packet Radio Networks- 

Memoryless Frequency-Hopping 
Patterns Considered 

Absfrucf-In this paper, we compute the packet error probability 
induced in a frequency-hopped spread-spectrum packet radio network. 
The frequency spectrum is divided into q frequency bins. Each packet is 
exactly one codeword from an (M, L )  Reed-Solomon code [ M  = number 
of codeword symbols (bytes); L = number of information symbols 
(bytes)]. Every user in the network sends each of the Mbytes of his packet 
at a frequency chosen among the q frequencies with equal probability, 
and independently of the frequencies chosen for other bytes (Le., 
memoryless frequency-hopping patterns). Furthermore, statistically inde- 
pendent frequency-hopping patterns correspond to different users in the 
network. Provided that K users have simultaneously transmitted their 
packets on the channel and a receiver has locked on to one of these K 
packets, we evaluate the probability that this packet is not decoded 
correctly. We also show that, although memoryless frequency-hopping 
patterns are utilized, the byte errors at the receiver are not statistically 
independent; instead they exhibit a Markovian structure. 

I. INTRODUCTION 
HE rapid growth of computer communication has T motivated an intense interest in packet switching radio 

techniques [l]. Furthermore, there is a growing need for 
computer communication and information distribution in 
tactical military applications where spread-spectrum wave- 
forms must be used in order to achieve reliable operation in the 
presence of intentional interference (jamming). As a result, a 
thorough investigation of spread-spectrum packet radio net- 
works becomes necessary. 

The bit error probability induced in frequency-hopped 
spread-spectrum systems has been examined before 121. In 
spread-spectrum packet radio networks, the computation of 
the packet error probability is more important than the bit 
error probability. Various authors [3], [4], [SI have examined 
the packet error probability in a frequency-hopped spread- 
spectrum system, which utilizes memoryless frequency-hop- 
ping patterns. 

In [3] and [5], a packet is divided into M bytes and the 
frequency spectrum consists of q frequency bins. Each byte of 
a packet is transmitted at a frequency chosen from the q 
frequencies with equal probability, independently of the 
frequencies chosen for other bytes (mernoryless hopping 
patterns). Furthermore, different packets have statistically 
independent frequency-hopping patterns. In [3] and [SI, it is 
stated that if K packet transmissions occur simultaneously over 
the channel and a receiver locks on to one of these packets, 
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then the byte errors of this packet, given K, are independent. 
As we show in Section 111, this statement is true only for K = 
2; for values of K greater than 2, the byte errors exhibit a 
Markovian structure. Then, in the same section, we describe a 
method to compute the packet error probability P,(K). 
Finally, we present some numerical results (P,(K) versus K) 
when Reed-Solomon codes are used for the encoding of 
packets. 

11. THE MODEL 
In our model of a frequency-hop packet radio network, each 

user employs a random frequency-hopping pattern. Every 
frequency-hopping pattern is a sequence of independent 
random variables, each of which is uniformly distributed over 
a set of q frequencies (memoryless frequency-hopping pat- 
terns). Different users in the network utilize statistically 
independent frequency-hopping patterns. The dwell interval 
and the hop interval are assumed to be the same. Furthermore, 
we assume the following: 

1) a packet is exactly one codeword from an (M,  L) Reed- 
Solomon code (RS) [M = total number of codeword symbols 
(bytes); L = number of information symbols (bytes)], 

2) each dwell (hop) interval contains only one codeword 
symbol (byte) of the Reed-Solomon code. 

The channel time is divided into slots and the users in the 
network initiate their packet transmissions at the beginning of 
some slot. Suppose that K ( K r 2 )  packets (i.e., packet 1, 
packet 2, -, packet K) are transmitted in a slot, and a 
receiver locks on to packet 1. We say that a byte of packet 1 is 
hit if, during its reception by the receiver, at least one of the 
other packets (i.e., packets 2, 3, . e ,  K) occupies the same 
frequency bin that packet 1 occupies. Let us denote by P,(K) 
the probability that packet 1 is incorrectly decoded, given that 
the RS code corrects at most e byte errors and K - 1 other 
packets are transmitted in the same slot. In the next section, we 
will present a method to compute P,(K), under the following 
assumptions : 

3) the only noise present is due to multiple access 
interference, 

4) a byte hit results in a byte error, and this is an upper 
bound for models where a hit results in an increased symbol 
(byte) error probability. 

It is worth noting that assumption 4 is also adopted in [3] 
and [4]. 

111. THE MARKOVIAN STRUCTURE OF BYTE ERRORS-A METHOD 
TO COMPUTE THE PACKET ERROR PROBABILITY 

We assume that K ( K r  2) packets (i.e., packet 1, packet 2, 
* * ,  packet K) are transmitted in the same slot and a receiver 

locks on to packet 1. These packets correspond to K differ- 
ent users in the network. We denote by [f;’],”, the frequency- 
hopping pattern corresponding t o  user i. In Fig. 1, we show a 
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Fig. 1. A realization of K packet arrivals at the receiver site. 

realization of the K packets at the receiver site. The dj’s (2 5 i 
5 K )  in Fig. 1 depend on the difference between the arrival 
times of packet i and packet 1 (Le., the packet on which the 
receiver is locked) at the receiver; the dj’s (2 I i I K) take 
integer values. 

Let us now denote by Hi, (1 5 j I M), random variables 
such that Hj = 1 if thejth byte of packet 1 is hit and Hj = 0 
otherwise. We observe from Fig. 1 that H, depends on fy), fz+,, f $+,+ 1, . . * , f g+,, f($+,+ 1. Hence, we conclude that 
H, (1 5 j I M) is independent of Hi-2, Hj-3, H I ,  but 
depends on Hj-l. Furthermore, in Appendix A we show that 

Pr (Hj=O)=(l -q-1)2(K-’);  11jsM. (1) 

Pr ( H j =  I ) =  1 - ( 1  -q - l )2 (K-1 ) ;  1sjsM. (2)  

Pr (Hj=O n Hi-l=0)=(1-q-’)2(K-1) - [q - ’  
* (1 - q - l ) K - l + ( l - q - l )  

* (1 - 2 q - ’ ) K - 1 ] ;  2 s j s M .  

(3) 
Pr (Hj=O n Hi-1=1)=(1-q-’)2(K-1) - [1-q-1 

. ( l - q - l ) K - l - ( 1 - q - l )  

(1 - 2 q - ’ ) K - 1 ] ;  2 s j s M  

(4) 

Pr (H,=l fl H,-l=O)=Pr (H,=O n Hj-]=1); 

2 s j s M  ( 5 )  

and 

Pr (Hj=l n H,-l=l)=l-(l-q-1)2(K-L) . [ 2 - q - I  

. ( l - q - l ) K - I - ( l - q - l )  

(1 - 2 q - ’ ) K - 1 ] ;  2 s j s M .  

(6) 

Formulas (1)-(6) show that “byte hits” are independent 

depends solely on whether this byte is hit or not (see model in 
Section 11). 

We will now compute the probability P,(K) (P,(K) was 
defined in Section 11). We denote by S(m, n), 1 I n I M ,  m 
I n, the number of bytes from byte m to byte n of packet 1 
which are in error. We also define 

p(i)=Pr ( H j = i ) ;  i = O ,  1 ,  1 r j sM (7)  

and 

p(i/k)=Pr (Hj=i/H,-I=k); i, k=O, 1 ,  2 5 j ~ M .  

(8) 

Then, it is easy to verify the following expressions 
(formulas (10)-(13) are verified in Appendix B). 

Pr (S(1, l)=i)=p(i); i = O ,  1 .  (104 

Pr (S(1, n)=i)=Pr ( S ( 2 ,  n)=i/H,=O)p(O) 

+Pr ( S ( 2 ,  n)=i-l/Hl=l)p(l); 

2 1 n 5 M ,  O r i s n .  (lob) 

Pr ( S ( 2 ,  2 ) = i / H 1 = k ) = p ( i / k ) ;  i, k=O, 1 .  (11)  

Pr (S(2,  n)  = i/H1 = 0) 

= Pr (S(2 ,  n - 1) = i/Hl = 0) * p(O/O) 

+Pr (S(2 ,  n -  l ) = i -  l/Hl= 1) p(l/O); 

3snsM, O s i s n - 1 .  (12) 

Pr (S(2,  n )  = i/Hl = 1) 

= Pr (S(2 ,  n - 1)  = i/Hl = 0) . p(O/1) 

+Pr (S(2 ,  n- l)=i-  l/Hl = 1)  * p(l/l); 

35nsM, O s i s n - 1 .  (13) 

In formulas (lob), (12), and (13) we make the convention 
that Pr(S(m, n) = i / H l  = k) = 0 if i < 0 or i > n - m for 
everyn ,m,ksuchtha t l  ~ n ~ M , m ~ n , a n d k = O o r l .  
We can easily compute Pe(K) based on expressions (lo)-( 13). 
We start from n = 3, and we evaluate the probabilities 
Pr(S(2, n) = i / H l  = 0)  and Pr(S(2, n) = i / H l  = 1) for i = 
0, 1, . . . , n - 1 based on expressions (1 1)-(13); then we 
perform similar computations for n = 4, 5, . * up to n = M. 
Finally, we end up having computed Pr(S(2, M) = i/HI = 0)  
and Pr(S(2, M) = i /HI  = 1) f o r i  = e + 1, e + 2, . * * M. 
So, we can evaluate the probabilities Pr(S(1, M) = i )  for i = 
e + 1, e + 2, * * A4 through expression (lob). As a result, 
we can find P,(K) via formula (9). 

For the numerical results both the (31, 15) and the (127, 63) 
Reed-Solomon (RS) codes are considered. In Table I, we have 
tabulated Pe(K) versus K for the (3 1, 15) and the (127, 63) RS 
codes, when q = 50 and q = 100. 

IV . COMMENTS AND CONCLUSIONS 

only when K = 2; for other values of K, “byte hits” e-xhibit a 
Markovian structure. The same structure is also exhibited by 
byte errors, since whether a byte is received in error or not 

The consideration of a slotted channel (see model in Section 
11) is not so restrictive. The packet error probability, P,(K), 
computed in the previous section for the slotted channel is an 
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T A B L E  I 
EXACT PACKET ERROR PROBABILITIES 

RS-(31,15), e=8, qr50 

K . . . .  Pe(K)., _ _ .  

2 0.21799508D-05 
3 0.42633287D-03 
4 0.63364012D-02 
5 0.33138681D-01 
6 0.98737437D-01 
7 0.20804580 
8 0.34838999 
9 0.49774973 
10 0.63577182 

RS-(31,15), e-8, q:100 

K . . . .P,(K) 

2 0.6635001)-08 
3 0.20954807D-05 
4 0.49792305D-04 
5 0.41111387D-03 
6 0.19052785D-02 
7 0.61372921D-02 
8 0.15402369D-0i 
9 0.32242764D-01 
10 0.58841087D-01 
11 0.96487248D-01 
12 0.14528345 
13 0.20413414 
14 0.27097077 
15 0.34311226 
16 0.41765775 
17 0.49183217 
18 0.56323945 
19 0.63000987 
20 0.69085063 

RS-(127,63), e=32, q=50 

K . . _ .  P (K) . . . . .  
3 0.49235D-09 
4 0.43842440D-05 
5 0,833494350-03 
6 0.19909335D-01 
7 0.13361788 
8 0.39520434 
9 0.69143285 

10 0.88569988 

RS-(127,63), e=32, q.100 

K . . . .  Pe(K) 

5 0.43445D-09 
6 0.8088586D-07 
7 0.39495779D-05 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

0.76887814D-04 
0.76684915D-03 
0.46105686D-02 
0.18693216D-01 
0.55431988D-01 
0.12783094 
0.24057638 
0.36429430 
0.53850531 
0.68097367 
0.79641081 
0.87971080 
0.93393379 

T A B L E  I1 

TIES 
COMPARISON OF EXACT AND APPROXIMATE PACKET ERROR PROBABILI- 

K 

2 
3 
4 
5 
6 
7 
8 
9 
10 

K 

3 
4 
5 
6 
7 
8 
9 
10 

RS-(31,15), e=8, q=50 

.P,(K)..... IP,(K)-P,(K)I 
/Pe(K)xlOO% 

0.21799508D-05 
0.42558507D-03 
0.6325707OD-02 
0.33095979D-01 
0.98653594D-01 
0.20794990 
0.34833579 
0.49777976 
0.63589453 

0.0% 
0.2% 
0.2% 
0.1% 
0.08% 
0.05% 
0.02% 
0.006% 
0.02% 

RS-(127,63), e-32, q=50 

. . . .  Pe(K) . . . . .  IPe(K)-Pe(K)l 

0.48950D-09 0.6% 
0.43615241D-05 0.5% 
0.83050917D-03 0.4% 
0.19869135D-01 0.2% 
0.13350705 0.06% 
0.39516112 0.01% 
0.69155920 0.02% 
0.88587198 0.02% 

/Pe(K)xlOO% 

upper bound on the packet error probability induced in the 
unslotted channel, provided that K - 1 corresponds to the 
maximum number of interfering packets during the reception 
of packet 1 (for more details see [4, Sect. IV-B]. Further- 
more, the pessimistic assumption (assumption 4) in Section 11) 
that a byte hit results in a byte error need not be made either. 
More optimistic assumptions described in [5, Sect. IV] where 
thermal noise is also present can be incorporated in our model, 

too. They will simply make the presentation of Section I11 
more complicated. 

In Table 11, we have computed the packet error probability 
P,(K)  induced by our system (see the model in Section 11) if 
the byte errors are treated as independent for all values of K .  
In doing so, we took the byte error probability equal to p(1) 
[p(l) is defined in formulas (2) and (7) of Section 1111. Once 
more the (31, 15) and (127, 63) RS codes are considered, and 
q is taken equal to 50. Tables 1-and I1 show that there is good 
agreement between P,(K) and P,(K), at least for the examples 
considered. 

Concluding, we remark that in this paper, we have 
described a method of computing the packet error probability 
P,(K) induced in the spread-spectrum system of Section 11, 
which utilizes memoryless frequency-hopping patterns. We 
have also shown (in Section 111) that a very simple computer 
program can be written to compute P,(K) via formulas (10)- 
( 1 3 ) .  

APPENDIX A 
A. Sketchy Proof of Formulas ( I )  and (2) 

Pr (H, = 0) = Pr (no hit) 

= 2 Pr (no hit/fj’)= t )  
1 = 1  

* Pr ( f j ’ )=t )  [see Fig. 11 

From (A.l) we get that 

B. Sketchy Proof of Formulas (3), (4), (5), and (6) 

Pr (H,=O fl H j - l = O )  

+ Pr (no hit/f;” #fj! I )  

Pr (f:”f fj! [see Fig. 11 

-(l-q-I)XK-I) - q - l + ( l  -q-l)2(K-l) 

(1-2q-1)K-l - (1-q-I) .  (A.3) 

Formulas (4), (3, and (6) can be verified if we observe that 

Pr (Hj=O r l  1)=Pr  (Hj=O) 

Pr (H,= 1 n Hj 

and 

Pr (H,=l  fl Hj 

Hence, using (A. 

-Pr (H,=O n Hj-l=O). (A.4) 

l=O)=Pr  (Hj-l=O) 

-Pr (Hj=O n =O). (AS) 

1 = 1 ) = 1 - 2  - Pr(H,=O n H j - l = l )  

-Pr  (H,=O n H j - l  =O). (A.6) 

), (A.3), and ( A . 4 ) - ( A . 6 ) ,  we get (4)-(6). 
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APPENDIX B 
Formula (loa) is obvious from the definition of S(1, 1). 

A .  Proof of Formula (lob) 

Pr (S(1, n ) = i ) = P r  (S(1, n)=i /Hl=O)  

* Pr (Hl=O)+Pr  (S(1, n)=i/Hl=l)  

* Pr (HI  = 1) = Pr ( S ( 2 ,  n) = i /Hl  = 0) 

- p(O)+Pr ( S ( 2 ,  n ) = i - l / H l = l )  

* PU). (B. 1) 
(€3.1) is formula (lob); note that the second term of the 

right-hand side (RHS) of (B. 1) is zero if i = 0, while if i = n 
the first term of the RHS of (B.l) is zero. 

Formula (1 1) is also a direct consequence of the definition 
of S(2, 2). 

B. Proof of Formula (12) 

Pr (S(2, n)= i /Hl=O)  

=Pr ( S ( 2 ,  n ) = i / H l = O ,  H2=0)  

Pr (Hz=O/Hl=O)+Pr  ( S ( 2 ,  n )= i /Hl=O,  H2=1) 

Pr (Hz = l/Hl = 0). (B.2) 
From (B.2), due to the Markovian structure of byte errors 

(see [6, formula (3), p. 51 for more details), we take 

Pr ( S ( 2 ,  n)=i/Hl=O) 

=Pr  (S(2, n ) = i / H 2 = 0 )  - p(O/O) 

+Pr  ( S ( 2 ,  n )= i /H2=1)  - p(1/0) 

=Pr ( S ( 3 ,  n )= i /H2=0)  - p(O/O) 

+Pr ( S ( 3 ,  n)= i - l /Hz=l )  - ~(110) .  

(B.3) 

From (B.3) and the stationarity of the Markov chain under 
consideration [see formulas (1)-(6)], we conclude that 

Pr (S (2, n) = i /Hl  = 0) 

= P r  ( S ( 2 ,  n- l)=i/Hl=O) - p(O/O) 

+Pr ( S ( 2 ,  n- l ) = i -  l/Hl=l) * ~(110). (B.4) 
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(B.4) is formula (12); once more, note that if i = 0 the 
second term of the RHS of (€3.4) is zero, while if i = n - 1 
the first term of the RHS of (B.4) is zero. 

Formula (1 3) can be proven following arguments similar to 
those used for the proof of formula (12). 
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