
 GFAM: A Genetic Algorithm Optimization of Fuzzy ARTMAP

A. Al-Daraiseh, M. Georgiopoulos, G. Anagnostopoulos, A. S. Wu, M. Mollaghasemi

Abstract— Fuzzy ARTMAP (FAM) is currently considered

to be one of the premier neural network architectures in
solving classification problems. One of the limitations of Fuzzy
ARTMAP that has been extensively reported in the literature is
the category proliferation problem. That is Fuzzy ARTMAP
has the tendency of increasing its network size, as it is
confronted with more and more data, especially if the data is of
noisy and/or overlapping nature. To remedy this problem a
number of researchers have designed modifications to the
training phase of Fuzzy ARTMAP that had the beneficial effect
of reducing this phenomenon. In this paper we propose a new
approach to handle the category proliferation problem in
Fuzzy ARTMAP by evolving trained FAM architectures. We
refer to the resulting FAM architectures as GFAM. We
demonstrate through extensive experimentation that an evolved
FAM (GFAM) exhibits good generalization, small size, and
produces an optimal or a good sub-optimal network with a
reasonable computational effort. Furthermore, comparisons of
the GFAM with other approaches, proposed in the literature,
that address the FAM category proliferation problem, illustrate
that the GFAM has a number of advantages (i.e. produces
smaller or equal size architectures, of better or as good
generalization, with reduced computational complexity).

I.INTRODUCTION
HE Adaptive Resonance Theory (ART) was developed
by Grossberg (1976). One of the most celebrated ART

architectures is Fuzzy ARTMAP (Carpenter et al, 1992),
which has been successfully used in the literature for solving
a variety of classification problems. One of the limitations of
Fuzzy ARTMAP (FAM) that has been repeatedly reported in
the literature is the category proliferation problem, which is
tightly connected with the issue of overtraining.

Manuscript received January 31, 2006. This work was supported in part
by the National Science Foundation (NSF) under grants CRCD 0203446
and CCLI 0341601.

A. Al-Daraiseh is with the School of Electrical Engineering and
Computer Science, University of Central Florida, Orlando, FL 32816, USA
(e-mail: creepymaster@yahoo.com).

M. Georgiopoulos is with the School of Electrical Engineering and
Computer Science, Orlando, FL 32816, USA (phone: (407) 823-5338, fax:
(407) 823 5835; e-mail: michaelg@mail.ucf.edu).

G. Anagnostopoulos is with the Department of Electrical and Computer
Engineering, Florida Institute of Technology, Melbourne, FL 32901, USA
(e-mail: georgio@fit.edu).

A. S. Wu is with the School of Electrical Engineering and Computer
Science, University of Central Florida, Orlando, FL 32816, USA (e-mail:
aswu@cs.ucf.edu).

M. Mollaghasemi is with the Department of Industrial Engineering and
Management Systems, University of Central Florida, Orlando, FL 32816,
USA (e-mail: mollagha@mail.ucf.edu).

A number of authors have tried to address the category
proliferation/overtraining problem in Fuzzy ARTMAP.
Amongst them we refer to the work by Verzi, et al., 2001,
Anagnostopoulos, et al., 2003 and Gomez-Sanchez, et al.,
2001, where different methods were introduced and
evaluated, that allow Fuzzy ARTMAP categories to encode
patterns that are not necessarily mapped to the same label.

In this paper, we propose the use of genetic algorithms
(Goldberg, 1989) to solve the category proliferation problem
in Fuzzy ARTMAP. Genetic algorithms (GAs) are a class of
population-based stochastic search algorithms that are
developed from ideas and principles of natural evolution. An
important feature of these algorithms is their population
based search strategy. Individuals in a population compete,
modify and exchange information with each other in order to
perform certain tasks. Our approach starts with a population
of trained FAMs. GA operators are then utilized to
manipulate these trained FAM architectures in a way that
encourages better generalization and smaller size
architectures. The evolution of trained FAM architectures
allows these architectures to exchange and modify their
categories in a way that emphasizes smaller and more
accurate FAM architectures. Eventually, this process leads
us to a FAM architecture (referred to as GFAM) that has
good generalization performance and creates networks of
small size; all of these benefits come with the additional
advantage of reasonable computational complexity.

Genetic algorithms have been extensively used to evolve
artificial neural networks. For a thorough exposition of the
available research literature in evolving neural networks the
interested reader is advised to consult Yao, 1999. To the best
of our knowledge there is no work conducted in the literature
so far that has attempted to evolve FAM neural network
structures, and that is the main focus of our effort.

The organization of this paper is as follows: In section 2
we present GFAM. In Section 3, we describe the
experiments and the datasets used to assess the performance
of GFAM, and we also compare GFAM to four other ART
networks that attempted to resolve the category proliferation
problem in Fuzzy ARTMAP. Finally, in Section 4, we
summarize our work.

T

0-7803-9489-5/06/$20.00/©2006 IEEE

2006 IEEE International Conference on Fuzzy Systems
Sheraton Vancouver Wall Centre Hotel, Vancouver, BC, Canada
July 16-21, 2006

315

II.EVOLVING FAM NETWORKS (GFAM)
It is assumed throughout this paper that the reader is

familiar with the Fuzzy ARTMAP (FAM) neural network
architecture, its training phase, and its network parameters.
We also assume that the reader is familiar with the
geometrical interpretation of the weights in the FAM neural
network (i.e., every category in FAM is represented by the
lower and upper endpoints of a hyper-rectangle, that
contains within its boundaries all the encoded patterns).

GFAM (Genetic Fuzzy ARTMAP) is an evolved FAM
network that is produced by applying, repeatedly, genetic
operators on an initial population of trained FAM networks.
To evolve the initial population of the trained FAM
networks GFAM utilizes tournament selection with elitism,
as well as genetic operators such as crossover and mutation,
and it introduces two special operators, named addCat and

delCat . To better understand how GFAM is designed we
resort to a step-by-step description of this design. It is
instructive though to first introduce some terminology that is
included in Appendix A. The design of GFAM can be
articulated through a sequence of steps, defined succinctly
below. The assumption here is that we have available a
training set that is used to train the FAM architectures, a
validation set that is used to validate the performance of the
FAM architectures evolved by the GA, and a test set that
eventually assesses the performance of the best fitting FAM.
Step 1: The algorithm starts by initializing sizePop FAM
networks each one of them using a different value of the
vigilance parameter aρ . In particular, we first

define
1

minmax

−
−=
size

aainc
a Pop

ρρρ , and then the baseline vigilance

parameter of every network is determined by the
equation, inc

aa i ρρ +min where }1...,,2,1{ −∈ sizePopi .
Meanwhile, GFAM allows the user to change the order of
training pattern presentation automatically and randomly (as
it is known, the order in which the training patterns are
presented to a FAM network during its training phase affects
the size and the performance of that network).
Step 2: We train sizePop FAM networks with the baseline
vigilance parameter values and order of training pattern
presentation, as defined in Step 1. We assume that the reader
is familiar of how training a FAM network is accomplished,
and thus the details are omitted.
Step 3: Once the sizePop networks are trained they need to
be converted to chromosomes, so that they can be
manipulated by the genetic operators. GFAM uses a mix of
real and integer numbers representation to encode the
networks. Each FAM chromosome consists of two levels,
level 1 containing all the categories of the FAM network,
and level 2 containing the lower and upper endpoints of
every category in level 1, as well as the label of that category
(see Figure 1).
We denote the category of a trained FAM network by

)(pa
jw , where))((),(()(ca

j
a
j

a
j ppp vuw = and the label of

this category by)(pl j for)(1 pNj a≤≤ where the index p

is such that sizePopp ≤≤1 ,. In this step we also

)(1 paw)(2 paw)(pa
jw)(pa

N a
w

Chromosome p

)(pa
ju)(pa

jv)(pl j

Level 1

Level 2
Fig. 1. GFAM Chromosome Structure

eliminate all the categories that encoded only one pattern in
the training phase (single-point categories), referred to as
cropping the chromosomes. Since our ultimate objective is
to design a FAM network that reduces the network size and
improves generalization we are discouraging at this stage the
creation of single-point categories.
Step 4: In this step the GFAM evolves the chromosomes of
the current generation.
Sub-step 4a: Calculate the fitness of each chromosome
(trained FAM). This is accomplished by feeding into each
trained FAM the validation set and by calculating the
percentage of correct classification exhibited by each one of
these trained FAM networks. In particular, if

)(pPCC designates the percentage of correct classification,
exhibited by the p-th FAM, and this FAM network possesses

)(pNa nodes in its category representation layer, then its
fitness function value is defined by:

ε+−

⋅−=

)(
)(100

)())(()(

min

2
max

pN
pPCC

Cat

pPCCpNCatpFit

a

a

 The constant ε in the denominator of the above equation is
a small positive constant and it is needed to make sure that
the denominator would not be zero in the case when

min)(CatpNa = and .100)(=pPCC In the above equation,

maxmin , CatCat are user defined minimum and maximum
number of categories allowed to be created in an evolved
FAM. This function was chosen as a fitness function after
experimenting with other simple and complicated functions
that did not perform as well. The chosen fitness function
gave a good balance of optimizing both the size and the
accuracy of the neural network.
Sub-step 4b: Initialize an empty generation (referred to as
temporary generation).
Sub-step 4c: The algorithm searches for the best

bestNC chromosomes from the current generation and copies
them to the temporary generation.
Sub-step 4d: The remaining bestsize NCPop − chromosomes
in the temporary generation are created by crossing over two
parents from the current generation. The parents are chosen
using a deterministic tournament selection method, as
follows: Randomly select two groups of four chromosomes
each from the current generation, and use as a parent from
each group the chromosome with the best fitness value in the
group. If it happens that from both groups the same
chromosome is chosen then we choose from one of the
groups the chromosome with the second best fitness value. If

316

two parents with indices pp ′, are crossed over two random
numbers nn ′, are generated from the index sets

)}(...,,2,1{ pNa and)}(...,,2,1{ pNa ′ , respectively. Then, all
the categories with index greater than index n′ in
chromosome with index p′ and all the categories with index
less than index n in the category with index p are moved
into an empty chromosome within the temporary generation.
Notice that crossover is done on level 1 of the chromosome.
This operation is pictorially illustrated in the following
figure 2.

)(1 paw)(2 paw)(3 paw)(4 paw)(5 paw

)'(1 paw)'(2 paw)'(3 paw)'(4 paw)'(5 paw

n

n'

p′

p

)(1 paw)(2 paw)'(4 paw)'(5 paw

Fig. 2:. GFAM Crossover Implementation

Sub-step 4e: The operator addCat adds a new category to
every chromosome created in step 4d with
probability)(addCatP . The new category has lower and
upper endpoints vu, that are randomly generated as follows:
For every dimension of the input feature space
(aM dimensions total) we generate two random numbers
uniformly distributed in the interval [0, 1]; the smallest of
the two random numbers is associated with the u coordinate
along this dimension, while the largest of these numbers is
associated with the v coordinate along this dimension. The
label of this newly created category is chosen randomly
amongst the bN categories of the pattern classification task
under consideration. A chromosome does not add a category
if the addition of this category results in number of
categories for this chromosome that exceeds the designated
maximum number of categories maxCat .
Sub-step 4f: The operator delCat deletes one of the
categories of every chromosome created in step 4e with
probability)(delCatP . A chromosome does not delete a
category if the deletion of this category results in the number
of categories for this chromosome to fall below the
designated minimum number of categories, minCat
Sub-Step 4g: In GFAM, every chromosome created by step
4f gets mutated as follows: with probability)(mutP every
category is mutated. If a category is chosen, its u
or v endpoints is selected randomly (50% probability), and
then every component of this selected vector gets mutated by
adding to it a small number. This number is drawn from a
Gaussian distribution with mean 0 and standard deviation
0.01. If the component of the chosen vector becomes smaller
than 0 or greater than 1 (after mutation), it is set back to 0 or
1, respectively. Notice that mutation is applied on level 2 of
the chromosome structure, but the label of the chromosome
is not mutated (the reason being that our initial GA
population consists of trained FAMs, and consequently we

have a lot of confidence in the labels of the categories that
these trained FAMs have discovered through the FAM
training process).
Step 5: If evolution has reached the maximum number

maxGen of iterations, then calculate the performance of the
best-Fitness FAM network on the test set and report
classification accuracy and number of categories that this
Best-Fitness FAM network possesses. If the maximum
number of iterations has not been reached yet, go to step 4 to
evolve one more population of chromosomes.

III.GFAM EXPERIMENTS AND COMPARISONS WITH OTHER
ART NETWORKS

Databases
To examine the performance of GFAM we performed a

number of experiments on real and simulated datasets. Some
of the specifics of these databases are given In Table 1, and
more details about them are given below.

a) Gaussian Databases:

These are artificial databases, where we created 2-
dimensional data sets, Gaussianly distributed, belonging to
2-class, 4-class, and 6-class problems. In each one of these
databases, we varied the amount of overlap of data
belonging to different classes. In particular, we considered
5%, 15%, 25%, and 40% overlap. Note that 5% overlap
means the optimal Bayesian Classifier would have 5%
misclassification rate on the Gaussianly distributed data.
There are a total of 3×4=12 Gaussian databases. We name
the databases as “G#c-##” where the first number is the
number of classes and the second number is the class
overlap. For example, G2c-05 means the Gaussian database
is a 2-class and 5% overlap database.
b) Structures within a Structure databases:

These are artificial databases that were inspired by the
circle (structure) – in the – square (structure) problem This
problem has been extensively examined in the ART, and
other than ART neural network literature. Eight different
datasets were generated by changing the structures (type,
number and probability) that we were dealing with. The
data-points within each structure of these artificial datasets
are uniformly distributed within the structure. The number of
points within each structure is chosen in a way that the
probability of finding a point within this structure is equal to
a pre-specified number. Some of these artificial datasets
were also considered in the Parado-Hernandez, et al., 2003
paper where four different ART architectures were
compared, Fuzzy ARTMAP, FasART, distributed Fuzzy
ARTMAP, and distributed FasART. . In Table 1, Ci stands
for circle and Sq stands for square, while WN means with
noise and noise is taken to be at the level of 10%.

c) Real Databases:
 These were obtained from the UCI repository (see
Neuman, et al, 1998) and they are the well known IRIS,
PAGE and ABALONE databases. It is worth mentioning
that in the IRIS dataset we used only features 3 and 4, and

317

we expanded its size (number of points) by simply adding
noisy data into it.

TABLE I

Databases used in the GFAM experiments

Database Name # Numerical
 Attributes

Classes

(bN
)

% Major
Class

(0A
)

1 G2c-05 2 2 1/2
2 G2c-15 2 2 1/2
3 G2c-25 2 2 1/2
4 G2c-40 2 2 1/2
5 G4c-05 2 4 1/4
6 G4c-15 2 4 1/4
7 G4c-25 2 4 1/4
8 G4c-40 2 4 1/4
9 G6c-05 2 6 1/6

10 G6c-15 2 6 1/6
11 G6c-25 2 6 1/6
12 G6c-40 2 6 1/6
13 4Ci/Sq 2 5 0.2
14 4Sq/Sq 2 5 0.2
15 7Sq 2 7 1/7
16 1Ci/Sq 2 2 0.5
17 1Ci/Sq/0.3:0.7 2 2 0.7
18 5Ci/Sq 2 6 1/6
19 2Ci/Sq/5:25:70 2 3 0.7
20 2Ci/Sq/20:30:50 2 3 0.5
20 7SqWN 2 6 1/7
21 5Ci/SqWN 2 6 1//6
22 MOD-IRIS 2 2 1/2
23 ABALONE 7 3 1/3
24 PAGE 10 5 0.832

As we mentioned earlier, in all the experiments

conducted with the aforementioned databases we had at our
disposal a training set (used to design the trained ART
network), a validation set (used to optimize the trained ART
network), and a test set used to assess the performance of the
optimized trained ART network.

Parameter Settings
We have experimented extensively with GFAM to

identify a good set of parameters for the evolution of trained
FAMs. We experimented with different numbers for the

max, GenPopsize and different values for the)(addCatP ,
)(delCatP , and)(mutP . The details of this experimentation

are omitted due to lack of space. The GFAM results reported
in this paper correspond to a GFAM produced by first
initializing a population of 20 trained FAM networks (they
were trained with different values of the baseline vigilance
parameter and different orders of training pattern
presentations). The FAM evolution used the following
evolution parameters: min

aρ = 0.1, max
aρ = 0.95, aβ =0.1,

sizePop = 20, maxGen = 500, bestNC = 3, minCat = 1,

maxCat = 300,)(addCatP =0.1,)(delCatP =0.1,)(mutP =
5/Na.

Experimental Results
After running GFAM on the datasets included in Table 1,

we identified the FAM network that attained the highest
value of the fitness function at the last generation of the
evolutionary process. Table 2 lists the accuracy of this
GFAM network on the test set of the dataset under
consideration. Table 2 also shows the size of this GFAM
network. Furthermore, Table 2 reports the accuracy (on the
test set) and the size of other ART architectures for the
datasets included in Table 1.

TABLE II

Best Performance of All ART Algorithms (uAM: Safe uARTMAP; ssFAM:
ss Fuzzy ARTMAP; ssEAM: ss Ellipsoidal ARTMAP; ssGAM: ss Gaussian

ARTMAP; ss : semi-supervised version

 Database
Name

GFAM

Safe
uAM ssFAM ssEAM ssGAM

1 G2c-05 95.36 2 95.22 2 94.90 2 94.94 2 94.48 4
2 G2c-15 85.30 2 85.00 2 84.80 3 85.20 2 85.04 2
3 G2c-25 75.08 2 74.98 2 74.60 2 74.50 2 75.10 2
4 G2c-40 61.38 2 61.40 3 61.34 3 60.98 2 61.30 3
5 G4c-05 95.02 4 95.04 4 94.10 7 94.14 4 94.80 4
6 G4c-15 84.46 4 83.28 4 81.40 11 83.20 4 84.24 9
7 G4c-25 75.20 4 74.50 4 70.80 9 72.72 4 72.32 21
8 G4c-40 60.60 4 59.76 5 58.48 14 55.62 13 59.10 14
9 G6c-05 94.68 6 93.57 9 91.42 11 93.80 7 94.40 8

10 G6c-15 84.71 6 80.92 6 81.11 7 81.80 6 84.35 13
11 G6c-25 73.90 6 70.74 13 69.62 15 71.10 7 72.86 20
12 G6c-40 59.19 6 58.03 11 56.35 17 54.21 17 55.65 13
13 4Ci/Sq 96.32 8 95.42 8 87.23 18 94.68 5 93.4 12
14 4Sq/Sq 97.12 9 99.12 9 97.24 13 88.89 5 91.78 16
15 7Sq 97.2 7 97.22 16 97.26 16 88.5 19 95.83 93
16 1Ci/Sq 97.2 8 94.76 8 92.97 8 97.02 8 91.02 8

17 1Ci/Sq/
0.3:0.7 97.8 8 96.82 8 93.21 8 97.13 8 92.33 8

18 5Ci/Sq 92 50 83.83 52 81.95 52 78.68 87 90.02 111

19 2Ci/Sq/
20:30:50 97.87 3 97.22 6 90.24 12 97.01 3 95.6 9

20 7SqWN 87.3 7 86.67 20 80.15 24 75.23 32 83.11 123
21 5Ci/SqWN 81.97 50 71.72 52 68.39 57 69.2 136 81.3 145
22 MOD-IRIS 95.31 2 94.92 2 93.41 8 94.54 2 94.54 2
23 ABALONE 58.73 2 57.18 4 59.52 6 56.80 7 55.10 3
24 PAGE 95.59 3 88.82 6 90.63 3 89.54 3 89.34 5

In Table 2 above, we compare GFAM’s performance with

the performance of the following networks: ssFAM,
ssEAM, ssGAM (see Anagnostopoulos, et al., 2003, Verzi,
et al., 2001), and safe micro-ARTMAP (see Gomez, et al.,
2002). We chose these networks for a reason. Each one of
these ART networks at the time of their introduction into the
literature emphasized that they were addressing the category
proliferation problem in ART. More details about the
specifics of each one of these networks can be found in their
associated references. For the purposes of this paper it
suffices to know that ssEAM covers the space of the input
patterns with ellipsoids, while ssGAM covers the space of
the input patterns with bell-shaped curves. Furthermore
ssFAM, ssEAM, and ssGAM allow a category (hyper-
rectangle or ellipsoid or hyper-dimensional bell shaped
curve) to encode patterns of different labels provided that the
plurality label of a category exceeds a certain, user-specified,
threshold. Finally, safe micro-ARTMAP allows the

318

encoding of patterns of different labels by a single category,
provided that the entropy of the category does not exceed a
certain, user-defined threshold.

In Table 2, the first column is the name of the database
that we are experimenting with, while columns 2-6 of Table
2 contain the performance of the designated ART networks.
The GFAM performance reported corresponds to the
accuracy on the test set and the number of categories created
by the FAM network that attained the highest value of the
fitness function at the last generation of the evolutionary
process. For the other ART networks the reported
performance is the performance of the ART network that
achieves the highest value of the fitness function amongst
the trained ART networks with different network parameter
settings (e.g., in ssFAM the best network was determined
after training ssFAM networks with different values of the
choice parameter, vigilance parameter, order of pattern
presentation, and amount of mixture of labels allowed within
a category).

According to the results in Table 2, in all instances
(except minor exceptions) the accuracy of GFAM
(generalization performance) is higher than the accuracy of
the other ART network. According to the results in Table 2,
in all instances (with no exceptions) the size of GFAM is
smaller than the size of the other ART network (where ART
is ssFAM, ssEAM, ssGAM or safe micro-ARTMAP),
sometimes even by a factor of 15. For example, the
generalization performance of GFAM can be as 13% better
than the generalization performance of ssFAM, while its size
can be by a factor of 4 times smaller than the size of ssFAM.
Also, the generalization performance of GFAM can be as
13% better than the generalization performance of ssEAM,
while its size can be by a factor of 4.5 times smaller than the
size of ssEAM. Furthermore, the generalization
performance of GFAM can be as 6% better than the
generalization performance of ssGAM, while its size can be
by a factor of 15 times smaller than the size of ssGAM.
Finally, the generalization performance of GFAM can be as
10% better than the generalization performance of safe
micro-ARTMAP, while its size can be by a factor of 3 times
smaller than the size of safe micro-ARTMAP. Note that
Figures 3a-3d also depict the comparisons of GFAM with
other ART architectures in a pictorial fashion.

What is worth pointing out is that the better performance

of GFAM is attained with reduced computations compared
to the computations needed by the alternate methods
(ssFAM, ssEAM, ssGAM, safe micro-ARTMAP).
Specifically, the performance attained by GFAM requires
training of 20 FAM networks, and evolving them for 500
generations (quite often evolving them for 500 generations is
not needed). On the contrary, the performance attained by
ssFAM, ssEAM, ssGAM and the safe micro-ARTMAP
required training these networks for a large number of
network parameter settings (at least 20,000 experiments) and
then choosing the network that achieved the higher value for
the fitness function that we introduced earlier in the text. Of
course, one can argue that such an extensive experimentation

with these ART networks might not be needed, especially if
one is familiar with the functionality of these networks and
chooses to experiment only with a limited set of network
parameter values. However, the practitioner in the field
might lack the expertise to carefully choose the network
parameters to experiment with, and consequently might need
to experiment extensively to come up with a good ART
network.

Fig. 3a. Accuracy and Size comparison of GFAM vs ssFAM

Fig. 3b. Accuracy and size comparison of GFAM vs ssEAM

IV.TIME COMPLEXITY ANALYSIS
In this section we provide a fair comparison between the

number of operations needed by GFAM and the number of
operations needed by ssFAM. Similar considerations are
valid when comparing the number of operations needed by
GFAM versus the number of operations needed by ssEAM
and ssGAM. The comparisons between GFAM and safe
micro-ARTMAP are slightly different, and thus omitted, but
some observations regarding these comparisons are made at
the end of this section.

319

Fig. 3c. Accuracy and size comparison of GFAM vs ssGAM

Fig. 3d. Performance and Size comparison of GFAM vs microARTMAP

To begin let us remind ourselves that in both GFAM and
ssFAM an element contributing to their computationally
complexity is the training of a number of FAM networks.
So, obviously an estimate of the computational complexity
associated with the training of FAM is needed. Furthermore,
an additional element contributing to the computational
complexity of ssFAM is assessing the performance of the
produced trained FAMs (corresponding to different values of
FAM network parameter settings) to obtain the FAM that
achieved the highest value of fitness. Finally, for GFAM an
additional element contributing to its computational
complexity is the evolution of the trained FAMs (for a
number of generations) and their performance assessment in
order to produce the FAM (at the last generation) that
achieved the highest fitness value. In the following, we are
producing estimates for the computational complexity of
each one of these elements. Throughout this paper we have
assumed that the reader is familiar with the training phase of
a FAM network, and this assumption is necessary here, as
well, where the computational complexity calculation of a
trained FAM is carried through.

Element 1: Training of FAM networks (for ssFAM and
GFAM)

During FAM’s training for each one of the training
patterns in the training set (PT designates the number of
training patterns) we have to compute the match function
value of every category in the representation layer of FAM
(aN designates the number of categories in the
representation layer of FAM). Then for the categories that
pass the vigilance test (i.e., the value of their match function
exceeds the value of the vigilance parameter) we have to
compute the values of the choice function (at most

aN categories will pass the vigilance test). Eventually, once
a category is found that passes the vigilance test and attains
the maximum of the choice function values, its label is
compared with the label of the input pattern presented to
FAM. If the label matches, learning ensues, otherwise the
process is repeated until we find a category in FAM that
passes the vigilance, attains the maximum value of the
choice function values and leads us to the correct label (the
one that the input pattern should be mapped to). Note that in
FAM, the number of categories, aN , created is a portion of
the number of training patterns (designated as PT) presented
to FAM. The process of presenting all the input patterns in
the training set and proceeding, as described above, is
referred to as one list presentation of FAM’s training phase.
So, it is not difficult to see that the computational
complexity of one list presentation in FAM is equal to

)(2
aNO The entire training phase of FAM requires)(2

aNO
computations for every list presentation. Hence, the
computational complexity of FAM’s training phase is equal
to)(2

aNO with the understanding that the constant of

proportionality involved in the)(2
aNO expression is the

product of the number of list presentations needed by FAM
to converge to a solution, and the number representing the
ratio of training patterns in the training set over number of
categories created in the trained FAM (note that this number
could be one or two or even more orders of magnitude
large).

Element 2: Testing of FAM network (ssFAM)
In order to obtain the “best” ssFAM network (the

performance of this network has been reported in Table 2),
we have to train FAM for many parameter settings, and
examine the fitness of the produced trained networks on an
independent (than the training) set, referred to as validation
set. Assume, that the number of patterns in the validation set
is equal to .PV Assume also, that the number of parameter
settings used to identify the best ssFAM is equal to PS .

In testing a single ssFAM network we have (for every

pattern in the validation set) to go through the process of
calculating the value of the match function attained by each
category (node) in the trained FAM (this number was
designated as aN). For all those categories (nodes) that pass
the vigilance test (i.e., the value of their match function
exceeds the vigilance parameter) we also have to compute

320

the value of the choice function, attained by the category.
Hence, the testing of a single FAM network requires

)(aNPVO ⋅
calculations. To test PS of these trained FAM networks we
obviously require

)(aNPVPSO ⋅⋅
calculations.

Concluding, we can state that the total number of
calculations needed to produce the “best” ssFAM network is
equal to

)()(2
aa NPVPSONPSO ⋅⋅+⋅

Element 3: Evolution of trained FAMs, Testing of Evolved
FAMs (GFAM)

In the evolution of trained FAMs we start with
sizePop trained FAMs. The computational complexity of this

training is equal to
)(2

asize NOPop
The evolution of these trained FAMs involves (i)

encoding the trained FAMs as chromosomes, (ii) applying a
number of GA operators on the FAM-chromosomes, and
(iii) decoding the FAM-chromosomes to FAMs. The
computational complexity of this evolution from one
generation of FAMs to the next generation of FAMs is equal
to

)(aNO
The computational complexity of testing these evolved
FAMs in every generation is equal to

)(asize NPVPopO ⋅⋅
Obviously, this process (evolution of FAMs, testing of
evolved FAMs) needs to be repeated for as many times as
the number of generations, which was denoted as maxGen .
Hence the computational complexity required for the
evolution of FAMs to come up with best fitness FAM (in the
last generation) is equal to:

)(max asize NPVPopGenO ⋅⋅⋅

Concluding, we can now state that the total number of
calculations needed for the training, evolution and testing of
FAMs in the GFAM approach is equal to

)()(max
2

asizeasize NPVPopGenONPopO ⋅⋅⋅+⋅

In comparing the computational complexities required to
produce the best ssFAM network and the GFAM network
we notice that:

sizePopPS >> , and

sizePopGenPS ⋅> max
As a reminder, in most of the experiments that we conducted
with the other (than GFAM) ART networks 000,20>PS .
On the other hand, 20,500max == sizePopGen . Hence, the

above inequality statements are appropriately justified. The
above two observations assure us that GFAM is more
computationally efficient than the “best” ssFAM. Similar
observations are valid if we compare the computational
complexity of GFAM and the computational complexity
associated with discovering the “best” ssEAM and ssGAM.

The computational complexity of the “best” safe micro-
ARTMAP (whose results are reported in Table 2) is similar
with the computational complexity of the “best” ssFAM,
with one, worth mentioning, distinction. In the training
phase of safe micro-ARTMAP the input patterns are
presented to the ART architecture only in the first list
presentation. In subsequent list presentations only a portion
of these input patterns are presented to safe micro-
ARTMAP. However, safe micro-ARTMAP requires some
additional calculations during its training phase. So, for all
practical purposes, we can still assume that the
computational complexity of the training phase of safe
micro-ARTMAP can be represented by the same formulas
used to represent the computational complexity of the
training phase of FAM. Obviously, the computational
complexity of testing trained safe micro-ARTMAPs to
discover the best safe micro-ARTMAP is given by the same
formula used to discover the best trained FAM.

In our experiments, while it took a specific computer to

train and test a ssFAM network 20000 times around 6 to 18
hours, it took the same machine 3 to 30 minuets only to run
GFAM on the same problem.

V.CONCLUSIONS
We introduced a new ART neural network architecture,

named GFAM, produced by evolving a number of trained
Fuzzy ARTMAP neural networks. The primary reason for
introducing GFAM was to solve the category proliferation
problem in Fuzzy ARTMAP.

We examined the performance of GFAM on a number of
simulated and real datasets. The results illustrated that
GFAM achieves good generalization (sometimes optimal
generalization) while retaining a small network size.
Comparisons of GFAM with other ART networks that
addressed the category proliferation problem in Fuzzy
ARTMAP revealed that GFAM achieves almost always
better generalization and produces (all the time) a smaller
(quite often significantly smaller) network size. The method
used to create GFAM from trained ART networks can be
extended to the evolution of other ART network
architectures.

APPENDIX A – TERMINOLOGY
• aM : The dimensionality of the input patterns in the

training, validation and test sets provided to us by the
classification problem under consideration.

321

• Training Set: The collection of input/output pairs used
in the training of FAMs that constitute the initial FAM
population in GFAM (PT points).

• Validation Set: The collection of input/output pairs used
to validate the performance of the FAM networks
during the evolution of FAMs from generation to
generation (PV points).

• Test Set: The collection of input/output pairs used to
assess the performance of the chosen FAM network,
after the evolution of FAMs is completed (PTes points).

• :min
aρ This is the lower limit of the baseline vigilance

parameter used in the training of the FAM networks that
comprise the initial population of the FAM networks.

• :max
aρ This is the upper limit of the baseline vigilance

parameter used in the training of the FAM networks that
comprise the initial population of the FAM networks.

• aβ : The choice parameter used in the training of the
FAM networks that comprise the initial population of
the FAM networks. This parameter is fixed, and chosen
equal to 0.1.

• sizePop : The number of chromosomes (FAM trained
networks) in each generation.

•)(pNa : The number of categories in the thp FAM
network from the sizePop trained FAM networks in a
generation.

•)))((),(()(ca
j

a
j

a
j ppp vuw = : the weight vector

corresponding to category j of the thp FAM network
from the sizePop trained FAM networks in a generation;

a
ju corresponds to the lower endpoint of the hyperbox

that the weight vector a
jw defines and a

jv corresponds
to the upper endpoint of this hyperbox.

•)(pl j : The label of category j of the thp FAM network
from the sizePop trained FAM networks in a generation.

•)(pPCC : The percentage of correct classification on the
validation set exhibited by the thp FAM network from
the sizePop trained FAM networks in a generation

• maxGen : The maximum number of generations allowed
for the FAM networks to evolve. When this maximum
number is reached, evolution stops and the FAM with
the highest fitness value on the validation set is
reported.

• bestNC : Number of best chromosomes that the GFAM
transfers from the old generation to the new generation
(elitism).

• maxmin , CatCat : The minimum and the maximum number
of categories that a FAM chromosome is allowed to
have during the evolutionary process that GFAM
undergoes.

• deladd CatCat , : New genetic operators that add and delete
a category in a FAM chromosome.

•)(),(deladd CatPCatP ,)(MutP : The probabilities of adding,
deleting and mutating a category in a FAM
chromosome.

• PT : Number of points in the training set.
• PV : Number of data-points in the validation set.
• PTes : Number of points in the test set.
• PS : Number of network parameter settings to produce

the best ART network (ART is ssFAM, ssEAM, ssGAM
and safe micro-ARTMAP).

ACKNOWLEDGMENT
This work was supported in part by a National Science

Foundation (NSF) grant CRCD: 0203446. Georgios C.
Anagnostopoulos and Michael Georgiopoulos also
acknowledge the partial support from the NSF grant CCLI
0341601. Michael Georgiopoulos and Mansooreh
Mollaghasemi also acknowledge the partial support from the
NSF grant DUE: 0525429.

REFERENCES
[1] Anagnostopoulos, G.C., Bharadwaj, M., Georgiopoulos, M., Verzi,

S.J., & Heileman, G. L. (2003). Exemplar-based pattern recognition
via semi-supervised learning, in Proc. of the International Joint
Conference on Neural Networks, Vol. 4, pp. 2782-2787, Portland,
Oregon, July 20-24.

[2] Carpenter, G.A., Grossberg, S., Markuzon, N., & Reynolds, J.H.
(1992). Fuzzy ARTMAP: A neural network architecture for
incremental supervised learning of analog multi-dimensional maps,
IEEE Trans. Neural Networks, 3 (5), 698-713.

[3] Goldberg, D. E. (1989). Genetic Algorithms in search, optimization,
and Machine Learning. Addison-Wesley, Reading, MA.

[4] Gomez-Sanchez, E., Dimitriadis, Y.A., Cano-Izquierdo, J.M., &
Lopez-Coronado, J. (2001). Safe-µARTMAP: a new solution for
reducing category proliferation in Fuzzy ARTMAP, in Proc. of the
IEEE International Joint Conference on Neural Networks, Vol. 2, pp.
1197-1202, July 15-19.

[5] Grossberg, S. (1976). Adaptive pattern recognition and universal
recoding II: Feedback, expectation, olfaction, and illusions, Biological
Cybernetics, 23, 187-202.

[6] Neuman, D.J., Hettich, S., Blake, C.L., & Merz, C.J. (1998). UCI
Repository of machine learning databases
[http://www.ics.uci.edu/~mlearn/MLRepository.html]. Irvine, CA:
University of California, Department of Information and Computer
Science.

[7] Parrado-Hernandez E., Gomez-Sanchez, E., & Dimitriadis, Y.A.
(2003). Study of distributed learning as a solution to category
proliferation in Fuzzy ARTMAP-based neural systems, Neural
Networks, (16), 1039-1057.

[8] Verzi, S.J., Georgiopoulos, M., Heileman, G.L., & Healy, M. (2001).
Rademacher penalization applied to Fuzzy ARTMAP and Boosted
ARTMAP, in Proc. of the IEEE-INNS International Joint Conference
on Neural Network, pp. 1191-1196, Washington, DC, July 14-19.

[9] Yao, X. (1999). Evolving artificial neural networks. Proceedings of
the IEEE, Volume 87, Issue 9, Page(s):1423 - 1447

322

