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Abstract— Fuzzy ARTMAP (FAM) is currently considered 

to be one of the premier neural network architectures in 
solving classification problems. One of the limitations of Fuzzy 
ARTMAP that has been extensively reported in the literature is 
the category proliferation problem. That is Fuzzy ARTMAP 
has the tendency of increasing its network size, as it is 
confronted with more and more data, especially if the data is of 
noisy and/or overlapping nature. To remedy this problem a 
number of researchers have designed modifications to the 
training phase of Fuzzy ARTMAP that had the beneficial effect 
of reducing this phenomenon. In this paper we propose a new 
approach to handle the category proliferation problem in 
Fuzzy ARTMAP by evolving trained FAM architectures. We 
refer to the resulting FAM architectures as GFAM. We 
demonstrate through extensive experimentation that an evolved 
FAM (GFAM) exhibits good generalization, small size, and 
produces an optimal or a good sub-optimal network with a 
reasonable computational effort. Furthermore, comparisons of 
the GFAM with other approaches, proposed in the literature, 
that address the FAM category proliferation problem, illustrate 
that the GFAM has a number of advantages (i.e. produces 
smaller or equal size architectures, of better or as good 
generalization, with reduced computational complexity). 

I.INTRODUCTION 
HE  Adaptive Resonance Theory (ART) was developed 
by Grossberg (1976). One of the most celebrated ART 

architectures is Fuzzy ARTMAP (Carpenter et al, 1992), 
which has been successfully used in the literature for solving 
a variety of classification problems. One of the limitations of 
Fuzzy ARTMAP (FAM) that has been repeatedly reported in 
the literature is the category proliferation problem, which is 
tightly connected with the issue of overtraining.  
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A number of authors have tried to address the category 
proliferation/overtraining problem in Fuzzy ARTMAP. 
Amongst them we refer to the work by Verzi, et al., 2001, 
Anagnostopoulos, et al., 2003 and Gomez-Sanchez, et al., 
2001, where different methods were introduced and 
evaluated, that allow Fuzzy ARTMAP categories to encode 
patterns that are not necessarily mapped to the same label. 

In this paper, we propose the use of genetic algorithms 
(Goldberg, 1989) to solve the category proliferation problem 
in Fuzzy ARTMAP. Genetic algorithms (GAs) are a class of 
population-based stochastic search algorithms that are 
developed from ideas and principles of natural evolution. An 
important feature of these algorithms is their population 
based search strategy. Individuals in a population compete, 
modify and exchange information with each other in order to 
perform certain tasks. Our approach starts with a population 
of trained FAMs. GA operators are then utilized to 
manipulate these trained FAM architectures in a way that 
encourages better generalization and smaller size 
architectures. The evolution of trained FAM architectures 
allows these architectures to exchange and modify their 
categories in a way that emphasizes smaller and more 
accurate FAM architectures. Eventually, this process leads 
us to a FAM architecture (referred to as GFAM) that has 
good generalization performance and creates networks of 
small size; all of these benefits come with the additional 
advantage of reasonable computational complexity.  
 

Genetic algorithms have been extensively used to evolve 
artificial neural networks. For a thorough exposition of the 
available research literature in evolving neural networks the 
interested reader is advised to consult Yao, 1999. To the best 
of our knowledge there is no work conducted in the literature 
so far that has attempted to evolve FAM neural network 
structures, and that is the main focus of our effort.  
 

The organization of this paper is as follows: In section 2 
we present GFAM. In Section 3, we describe the 
experiments and the datasets used to assess the performance 
of GFAM, and we also compare GFAM to four other ART 
networks that attempted to resolve the category proliferation 
problem in Fuzzy ARTMAP. Finally, in Section 4, we 
summarize our work.  
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II.EVOLVING FAM NETWORKS (GFAM) 
It is assumed throughout this paper that the reader is 

familiar with the Fuzzy ARTMAP (FAM) neural network 
architecture, its training phase, and its network parameters. 
We also assume that the reader is familiar with the 
geometrical interpretation of the weights in the FAM neural 
network (i.e., every category in FAM is represented by the 
lower and upper endpoints of a hyper-rectangle, that 
contains within its boundaries all the encoded patterns).  
 

GFAM (Genetic Fuzzy ARTMAP) is an evolved FAM 
network that is produced by applying, repeatedly, genetic 
operators on an initial population of trained FAM networks. 
To evolve the initial population of the trained FAM 
networks GFAM utilizes tournament selection with elitism, 
as well as genetic operators such as crossover and mutation, 
and it introduces two special operators, named addCat  and 

delCat . To better understand how GFAM is designed we 
resort to a step-by-step description of this design. It is 
instructive though to first introduce some terminology that is 
included in Appendix A. The design of GFAM can be 
articulated through a sequence of steps, defined succinctly 
below. The assumption here is that we have available a 
training set that is used to train the FAM architectures, a 
validation set that is used to validate the performance of the 
FAM architectures evolved by the GA, and a test set that 
eventually assesses the performance of the best fitting FAM. 
Step 1: The algorithm starts by initializing sizePop  FAM 
networks each one of them using a different value of the 
vigilance parameter aρ . In particular, we first 

define
1
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−
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parameter of every network is determined by the 
equation, inc

aa i ρρ +min  where }1...,,2,1{ −∈ sizePopi . 
Meanwhile,  GFAM allows the user to change the order of 
training pattern presentation automatically and randomly (as 
it is known, the order in which the training patterns are 
presented to a FAM network during its training phase affects 
the size and the performance of that network). 
Step 2: We train sizePop FAM networks with the baseline 
vigilance parameter values and order of training pattern 
presentation, as defined in Step 1. We assume that the reader 
is familiar of how training a FAM network is accomplished, 
and thus the details are omitted. 
Step 3: Once the sizePop  networks are trained they need to 
be converted to chromosomes, so that they can be 
manipulated by the genetic operators. GFAM uses a mix of 
real and integer numbers representation to encode the 
networks. Each FAM chromosome consists of two levels, 
level 1 containing all the categories of the FAM network, 
and level 2 containing the lower and upper endpoints of 
every category in level 1, as well as the label of that category 
(see Figure 1).  
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Fig. 1. GFAM Chromosome Structure 

eliminate all the categories that encoded only one pattern in 
the training phase (single-point categories), referred to as 
cropping the chromosomes. Since our ultimate objective is 
to design a FAM network that reduces the network size and 
improves generalization we are discouraging at this stage the 
creation of single-point categories.  
Step 4: In this step the GFAM evolves the chromosomes of 
the current generation.  
Sub-step 4a: Calculate the fitness of each chromosome 
(trained FAM). This is accomplished by feeding into each 
trained FAM the validation set and by calculating the 
percentage of correct classification exhibited by each one of 
these trained FAM networks. In particular, if 

)( pPCC designates the percentage of correct classification, 
exhibited by the p-th FAM, and this FAM network possesses 

)( pNa nodes in its category representation layer, then its 
fitness function value is defined by:  
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 The constant ε  in the denominator of the above equation is 
a small positive constant and it is needed to make sure that 
the denominator would not be zero in the case when 

min)( CatpNa =  and .100)( =pPCC  In the above equation, 

maxmin , CatCat are user defined minimum and maximum 
number of categories allowed to be created in an evolved 
FAM.  This function was chosen as a fitness function after 
experimenting with other simple and complicated functions 
that did not perform as well. The chosen fitness function 
gave a good balance of optimizing both the size and the 
accuracy of the neural network. 
Sub-step 4b: Initialize an empty generation (referred to as 
temporary generation). 
Sub-step 4c: The algorithm searches for the best 

bestNC chromosomes from the current generation and copies 
them to the temporary generation. 
Sub-step 4d: The remaining bestsize NCPop −  chromosomes 
in the temporary generation are created by crossing over two 
parents from the current generation. The parents are chosen 
using a deterministic tournament selection method, as 
follows: Randomly select two groups of four chromosomes 
each from the current generation, and use as a parent from 
each group the chromosome with the best fitness value in the 
group. If it happens that from both groups the same 
chromosome is chosen then we choose from one of the 
groups the chromosome with the second best fitness value. If 
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two parents with indices pp ′,  are crossed over two random 
numbers nn ′, are generated from the index sets 

)}(...,,2,1{ pNa and )}(...,,2,1{ pNa ′ , respectively. Then, all 
the categories with index greater than index n′ in 
chromosome with index p′ and all the categories with index 
less than index n in the category with index p are moved 
into an empty chromosome within the temporary generation. 
Notice that crossover is done on level 1 of the chromosome. 
This operation is pictorially illustrated in the following 
figure 2. 
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Fig. 2:. GFAM Crossover Implementation 

Sub-step 4e: The operator addCat adds a new category to 
every chromosome created in step 4d with 
probability )( addCatP . The new category has lower and 
upper endpoints vu, that are randomly generated as follows: 
For every dimension of the input feature space 
( aM dimensions total) we generate two random numbers 
uniformly distributed in the interval [0, 1]; the smallest of 
the two random numbers is associated with the u  coordinate 
along this dimension, while the largest of these numbers is 
associated with the v  coordinate along this dimension. The 
label of this newly created category is chosen randomly 
amongst the bN categories of the pattern classification task 
under consideration. A chromosome does not add a category 
if the addition of this category results in number of 
categories for this chromosome that exceeds the designated 
maximum number of categories maxCat .  
Sub-step 4f: The operator delCat  deletes one of the 
categories of every chromosome created in step 4e with 
probability )( delCatP . A chromosome does not delete a 
category if the deletion of this category results in the number 
of categories for this chromosome to fall below the 
designated minimum number of categories, minCat  
Sub-Step 4g: In GFAM, every chromosome created by step 
4f gets mutated as follows: with probability )(mutP  every 
category is mutated. If a category is chosen, its u  
or v endpoints is selected randomly (50% probability), and 
then every component of this selected vector gets mutated by 
adding to it a small number. This number is drawn from a 
Gaussian distribution with mean 0 and standard deviation 
0.01. If the component of the chosen vector becomes smaller 
than 0 or greater than 1 (after mutation), it is set back to 0 or 
1, respectively. Notice that mutation is applied on level 2 of 
the chromosome structure, but the label of the chromosome 
is not mutated (the reason being that our initial GA 
population consists of trained FAMs, and consequently we 

have a lot of confidence in the labels of the categories that 
these trained FAMs have discovered through the FAM 
training process).  
Step 5: If evolution has reached the maximum number 

maxGen of iterations, then calculate the performance of the 
best-Fitness FAM network on the test set and report 
classification accuracy and number of categories that this 
Best-Fitness FAM network possesses. If the maximum 
number of iterations has not been reached yet, go to step 4 to 
evolve one more population of chromosomes.  
 

III.GFAM EXPERIMENTS AND COMPARISONS WITH OTHER 
ART NETWORKS 

Databases 
To examine the performance of GFAM we performed a 

number of experiments on real and simulated datasets. Some 
of the specifics of these databases are given In Table 1, and 
more details about them are given below. 

 
a) Gaussian Databases:  

These are artificial databases, where we created 2-
dimensional data sets, Gaussianly distributed, belonging to 
2-class, 4-class, and 6-class problems. In each one of these 
databases, we varied the amount of overlap of data 
belonging to different classes. In particular, we considered 
5%, 15%, 25%, and 40% overlap. Note that 5% overlap 
means the optimal Bayesian Classifier would have 5% 
misclassification rate on the Gaussianly distributed data. 
There are a total of 3×4=12 Gaussian databases. We name 
the databases as “G#c-##” where the first number is the 
number of classes and the second number is the class 
overlap. For example, G2c-05 means the Gaussian database 
is a 2-class and 5% overlap database.  
b) Structures within a Structure databases: 

These are artificial databases that were inspired by the 
circle (structure) – in the – square (structure) problem This 
problem has been extensively examined in the ART, and 
other than ART neural network literature. Eight different 
datasets were generated by changing the structures (type, 
number and probability) that we were dealing with. The 
data-points within each structure of these artificial datasets 
are uniformly distributed within the structure. The number of 
points within each structure is chosen in a way that the 
probability of finding a point within this structure is equal to 
a pre-specified number. Some of these artificial datasets 
were also considered in the Parado-Hernandez, et al., 2003 
paper where four different ART architectures were 
compared, Fuzzy ARTMAP, FasART, distributed Fuzzy 
ARTMAP, and distributed FasART. . In Table 1, Ci stands 
for circle and Sq stands for square, while WN means with 
noise and noise is taken to be at the level of 10%.  

 
c)  Real Databases: 
   These were obtained from the UCI repository (see 
Neuman, et al, 1998) and they are the well known IRIS, 
PAGE and ABALONE databases. It is worth mentioning 
that in the IRIS dataset we used only features 3 and 4, and 
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we expanded its size (number of points) by simply adding 
noisy data into it.  

TABLE I 

Databases used in the GFAM experiments 
 

Database Name # Numerical 
 Attributes 

# Classes  

( bN
) 

% Major 
Class 

( 0A
) 

1 G2c-05 2 2 1/2 
2 G2c-15 2 2 1/2 
3 G2c-25 2 2 1/2 
4 G2c-40 2 2 1/2 
5 G4c-05 2 4 1/4 
6 G4c-15 2 4 1/4 
7 G4c-25 2 4 1/4 
8 G4c-40 2 4 1/4 
9 G6c-05 2 6 1/6 

10 G6c-15 2 6 1/6 
11 G6c-25 2 6 1/6 
12 G6c-40 2 6 1/6 
13 4Ci/Sq 2 5 0.2 
14 4Sq/Sq 2 5 0.2 
15 7Sq 2 7 1/7 
16 1Ci/Sq 2 2 0.5 
17 1Ci/Sq/0.3:0.7 2 2 0.7 
18 5Ci/Sq 2 6 1/6 
19 2Ci/Sq/5:25:70 2 3 0.7 
20 2Ci/Sq/20:30:50 2 3 0.5 
20 7SqWN 2 6 1/7 
21 5Ci/SqWN 2 6 1//6 
22 MOD-IRIS 2 2 1/2 
23 ABALONE 7 3 1/3 
24 PAGE 10 5 0.832 

 
As we mentioned earlier, in all the experiments 

conducted with the aforementioned databases we had at our 
disposal a training set (used to design the trained ART 
network), a validation set (used to optimize the trained ART 
network), and a test set used to assess the performance of the 
optimized trained ART network.  

Parameter Settings 
We have experimented extensively with GFAM to 

identify a good set of parameters for the evolution of trained 
FAMs. We experimented with different numbers for the 

max, GenPopsize and different values for the )( addCatP , 
)( delCatP , and )(mutP . The details of this experimentation 

are omitted due to lack of space. The GFAM results reported 
in this paper correspond to a GFAM produced by first 
initializing a population of 20 trained FAM networks (they 
were trained with different values of the baseline vigilance 
parameter and different orders of training pattern 
presentations). The FAM evolution used the following 
evolution parameters: min

aρ = 0.1, max
aρ = 0.95, aβ =0.1, 

sizePop = 20, maxGen = 500, bestNC  = 3, minCat = 1, 

maxCat = 300, )( addCatP  =0.1, )( delCatP =0.1, )(mutP = 
5/Na. 

Experimental Results 
After running GFAM on the datasets included in Table 1, 

we identified the FAM network that attained the highest 
value of the fitness function at the last generation of the 
evolutionary process. Table 2 lists the accuracy of this 
GFAM network on the test set of the dataset under 
consideration. Table 2 also shows the size of this GFAM 
network. Furthermore, Table 2 reports the accuracy (on the 
test set) and the size of other ART architectures for the 
datasets included in Table 1. 

TABLE II 

Best Performance of All ART Algorithms (uAM: Safe uARTMAP; ssFAM: 
ss Fuzzy ARTMAP; ssEAM: ss Ellipsoidal ARTMAP; ssGAM: ss Gaussian 

ARTMAP; ss : semi-supervised version 

 Database 
Name 

 
GFAM 

 

Safe  
uAM ssFAM ssEAM ssGAM 

1 G2c-05 95.36 2 95.22 2 94.90 2 94.94 2 94.48 4 
2 G2c-15 85.30 2 85.00 2 84.80 3 85.20 2 85.04 2 
3 G2c-25 75.08 2 74.98 2 74.60 2 74.50 2 75.10 2 
4 G2c-40 61.38 2 61.40 3 61.34 3 60.98 2 61.30 3 
5 G4c-05 95.02 4 95.04 4 94.10 7 94.14 4 94.80 4 
6 G4c-15 84.46 4 83.28 4 81.40 11 83.20 4 84.24 9 
7 G4c-25 75.20 4 74.50 4 70.80 9 72.72 4 72.32 21
8 G4c-40 60.60 4 59.76 5 58.48 14 55.62 13 59.10 14
9 G6c-05 94.68 6 93.57 9 91.42 11 93.80 7 94.40 8 

10 G6c-15 84.71 6 80.92 6 81.11 7 81.80 6 84.35 13
11 G6c-25 73.90 6 70.74 13 69.62 15 71.10 7 72.86 20
12 G6c-40 59.19 6 58.03 11 56.35 17 54.21 17 55.65 13
13 4Ci/Sq 96.32 8 95.42 8 87.23 18 94.68 5 93.4 12
14 4Sq/Sq 97.12 9 99.12 9 97.24 13 88.89 5 91.78 16
15 7Sq 97.2 7 97.22 16 97.26 16 88.5 19 95.83 93
16 1Ci/Sq 97.2 8 94.76 8 92.97 8 97.02 8 91.02 8 

17 1Ci/Sq/ 
0.3:0.7 97.8 8 96.82 8 93.21 8 97.13 8 92.33 8 

18 5Ci/Sq 92 50 83.83 52 81.95 52 78.68 87 90.02 111

19 2Ci/Sq/ 
20:30:50 97.87 3 97.22 6 90.24 12 97.01 3 95.6 9 

20 7SqWN 87.3 7 86.67 20 80.15 24 75.23 32 83.11 123
21 5Ci/SqWN 81.97 50 71.72 52 68.39 57 69.2 136 81.3 145
22 MOD-IRIS 95.31 2 94.92 2 93.41 8 94.54 2 94.54 2 
23 ABALONE 58.73 2 57.18 4 59.52 6 56.80 7 55.10 3 
24 PAGE 95.59 3 88.82 6 90.63 3 89.54 3 89.34 5 

 
In Table 2 above, we compare GFAM’s performance with 

the performance of the following networks: ssFAM,  
ssEAM, ssGAM (see Anagnostopoulos, et al., 2003, Verzi, 
et al., 2001), and safe micro-ARTMAP (see Gomez, et al., 
2002). We chose these networks for a reason. Each one of 
these ART networks at the time of their introduction into the 
literature emphasized that they were addressing the category 
proliferation problem in ART. More details about the 
specifics of each one of these networks can be found in their 
associated references. For the purposes of this paper it 
suffices to know that ssEAM covers the space of the input 
patterns with ellipsoids, while ssGAM covers the space of 
the input patterns with bell-shaped curves. Furthermore 
ssFAM, ssEAM, and ssGAM allow a category (hyper-
rectangle or ellipsoid or hyper-dimensional bell shaped 
curve) to encode patterns of different labels provided that the 
plurality label of a category exceeds a certain, user-specified, 
threshold. Finally, safe micro-ARTMAP allows the 
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encoding of patterns of different labels by a single category, 
provided that the entropy of the category does not exceed a 
certain, user-defined threshold.   
 

In Table 2, the first column is the name of the database 
that we are experimenting with, while columns 2-6 of Table 
2 contain the performance of the designated ART networks. 
The GFAM performance reported corresponds to the 
accuracy on the test set and the number of categories created 
by the FAM network that attained the highest value of the 
fitness function at the last generation of the evolutionary 
process. For the other ART networks the reported 
performance is the performance of the ART network that 
achieves the highest value of the fitness function amongst 
the trained ART networks with different network parameter 
settings (e.g., in ssFAM the best network was determined 
after training ssFAM networks with different values of the 
choice parameter, vigilance parameter, order of pattern 
presentation, and amount of mixture of labels allowed within 
a category).  
 

According to the results in Table 2, in all instances 
(except minor exceptions) the accuracy of GFAM 
(generalization performance) is higher than the accuracy of 
the other ART network. According to the results in Table 2, 
in all instances (with no exceptions) the size of GFAM is 
smaller than the size of the other ART network (where ART 
is ssFAM, ssEAM, ssGAM or safe micro-ARTMAP), 
sometimes even by a factor of 15. For example, the 
generalization performance of GFAM can be as 13% better 
than the generalization performance of ssFAM, while its size 
can be by a factor of 4 times smaller than the size of ssFAM.  
Also, the generalization performance of GFAM can be as 
13% better than the generalization performance of ssEAM, 
while its size can be by a factor of 4.5 times smaller than the 
size of ssEAM.  Furthermore, the generalization 
performance of GFAM can be as 6% better than the 
generalization performance of ssGAM, while its size can be 
by a factor of 15 times smaller than the size of ssGAM. 
Finally, the generalization performance of GFAM can be as 
10% better than the generalization performance of safe 
micro-ARTMAP, while its size can be by a factor of 3 times 
smaller than the size of safe micro-ARTMAP.  Note that 
Figures 3a-3d also depict the comparisons of GFAM with 
other ART architectures in a pictorial fashion. 

 
What is worth pointing out is that the better performance 

of GFAM is attained with reduced computations compared 
to the computations needed by the alternate methods 
(ssFAM, ssEAM, ssGAM, safe micro-ARTMAP). 
Specifically, the performance attained by GFAM requires 
training of 20 FAM networks, and evolving them for 500 
generations (quite often evolving them for 500 generations is 
not needed). On the contrary, the performance attained by 
ssFAM, ssEAM, ssGAM and the safe micro-ARTMAP 
required training these networks for a large number of 
network parameter settings (at least 20,000 experiments) and 
then choosing the network that achieved the higher value for 
the fitness function that we introduced earlier in the text. Of 
course, one can argue that such an extensive experimentation 

with these ART networks might not be needed, especially if 
one is familiar with the functionality of these networks and 
chooses to experiment only with a limited set of network 
parameter values. However, the practitioner in the field 
might lack the expertise to carefully choose the network 
parameters to experiment with, and consequently might need 
to experiment extensively to come up with a good ART 
network.  
 

 
Fig. 3a. Accuracy and Size comparison of GFAM vs ssFAM 

 

 
Fig. 3b. Accuracy and size comparison of GFAM vs ssEAM 

IV.TIME COMPLEXITY ANALYSIS 
In this section we provide a fair comparison between the 

number of operations needed by GFAM and the number of 
operations needed by ssFAM. Similar considerations are 
valid when comparing the number of operations needed by 
GFAM versus the number of operations needed by ssEAM 
and ssGAM. The comparisons between GFAM and safe 
micro-ARTMAP are slightly different, and thus omitted, but 
some observations regarding these comparisons are made at 
the end of this section.  
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Fig. 3c. Accuracy and size comparison of GFAM vs ssGAM 

 
Fig. 3d. Performance and Size comparison of GFAM vs microARTMAP 

To begin let us remind ourselves that in both GFAM and 
ssFAM an element contributing to their computationally 
complexity is the training of a number of FAM networks. 
So, obviously an estimate of the computational complexity 
associated with the training of FAM is needed. Furthermore, 
an additional element contributing to the computational 
complexity of ssFAM is assessing the performance of the 
produced trained FAMs (corresponding to different values of 
FAM network parameter settings) to obtain the FAM that 
achieved the highest value of fitness. Finally, for GFAM an 
additional element contributing to its computational 
complexity is the evolution of the trained FAMs (for a 
number of generations) and their performance assessment in 
order to produce the FAM (at the last generation) that 
achieved the highest fitness value. In the following, we are 
producing estimates for the computational complexity of 
each one of these elements. Throughout this paper we have 
assumed that the reader is familiar with the training phase of 
a FAM network, and this assumption is necessary here, as 
well, where the computational complexity calculation of a 
trained FAM is carried through.    

Element 1: Training of FAM networks (for ssFAM and 
GFAM) 

During FAM’s training for each one of the training 
patterns in the training set ( PT designates the number of 
training patterns) we have to compute the match function 
value of every category in the representation layer of FAM 
( aN  designates the number of categories in the 
representation layer of FAM). Then for the categories that 
pass the vigilance test (i.e., the value of their match function 
exceeds the value of the vigilance parameter) we have to 
compute the values of the choice function (at most 

aN categories will pass the vigilance test). Eventually, once 
a category is found that passes the vigilance test and attains 
the maximum of the choice function values, its label is 
compared with the label of the input pattern presented to 
FAM. If the label matches, learning ensues, otherwise the 
process is repeated until we find a category in FAM that 
passes the vigilance, attains the maximum value of the 
choice function values and leads us to the correct label (the 
one that the input pattern should be mapped to). Note that in 
FAM, the number of categories, aN , created is a portion of 
the number of training patterns (designated as PT ) presented 
to FAM. The process of presenting all the input patterns in 
the training set and proceeding, as described above, is 
referred to as one list presentation of FAM’s training phase. 
So, it is not difficult to see that the computational 
complexity of one list presentation in FAM is equal to 

)( 2
aNO  The entire training phase of FAM requires )( 2

aNO  
computations for every list presentation. Hence, the 
computational complexity of FAM’s training phase is equal 
to )( 2

aNO with the understanding that the constant of 

proportionality involved in the )( 2
aNO  expression is the 

product of the number of list presentations needed by FAM 
to converge to a solution, and the number representing the 
ratio of training patterns in the training set over number of 
categories created in the trained FAM (note that this number 
could be one or two or even more orders of magnitude 
large).  

Element 2: Testing of FAM network (ssFAM) 
In order to obtain the “best” ssFAM network (the 

performance of this network has been reported in Table 2), 
we have to train FAM for many parameter settings, and 
examine the fitness of the produced trained networks on an 
independent (than the training) set, referred to as validation 
set. Assume, that the number of patterns in the validation set 
is equal to .PV  Assume also, that the number of parameter 
settings used to identify the best ssFAM is equal to PS .  

 
In testing a single ssFAM network we have (for every 

pattern in the validation set) to go through the process of 
calculating the value of the match function attained by each 
category (node) in the trained FAM (this number was 
designated as aN ). For all those categories (nodes) that pass 
the vigilance test (i.e., the value of their match function 
exceeds the vigilance parameter) we also have to compute 
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the value of the choice function, attained by the category. 
Hence, the testing of a single FAM network requires  

)( aNPVO ⋅  
calculations. To test PS  of these trained FAM networks we 
obviously require  

)( aNPVPSO ⋅⋅  
calculations.  

 
Concluding, we can state that the total number of 
calculations needed to produce the “best” ssFAM network is 
equal to  

)()( 2
aa NPVPSONPSO ⋅⋅+⋅  

 
Element 3: Evolution of trained FAMs, Testing of Evolved 
FAMs (GFAM) 

In the evolution of trained FAMs we start with 
sizePop trained FAMs. The computational complexity of this 

training is equal to   
)( 2

asize NOPop  
The evolution of these trained FAMs involves (i) 

encoding the trained FAMs as chromosomes, (ii) applying a 
number of GA operators on the FAM-chromosomes, and 
(iii) decoding the FAM-chromosomes to FAMs. The 
computational complexity of this evolution from one 
generation of FAMs to the next generation of FAMs is equal 
to 

)( aNO  
The computational complexity of testing these evolved 
FAMs in every generation is equal to  

)( asize NPVPopO ⋅⋅  
Obviously, this process (evolution of FAMs, testing of 
evolved FAMs) needs to be repeated for as many times as 
the number of generations, which was denoted as maxGen . 
Hence the computational complexity required for the 
evolution of FAMs to come up with best fitness FAM (in the 
last generation) is equal to: 

)( max asize NPVPopGenO ⋅⋅⋅  
 
Concluding, we can now state that the total number of 
calculations needed for the training, evolution and testing of 
FAMs in the GFAM approach is equal to  
 

)()( max
2

asizeasize NPVPopGenONPopO ⋅⋅⋅+⋅          
 

In comparing the computational complexities required to 
produce the best ssFAM network and the GFAM network 
we notice that: 
 

sizePopPS >> , and 

sizePopGenPS ⋅> max  
As a reminder, in most of the experiments that we conducted 
with the other (than GFAM) ART networks 000,20>PS . 
On the other hand, 20,500max == sizePopGen . Hence, the 

above inequality statements are appropriately justified. The 
above two observations assure us that GFAM is more 
computationally efficient than the “best” ssFAM. Similar 
observations are valid if we compare the computational 
complexity of GFAM and the computational complexity 
associated with discovering the “best” ssEAM and ssGAM.  
 

The computational complexity of the “best” safe micro-
ARTMAP (whose results are reported in Table 2) is similar 
with the computational complexity of the “best” ssFAM, 
with one, worth mentioning, distinction. In the training 
phase of safe micro-ARTMAP the input patterns are 
presented to the ART architecture only in the first list 
presentation. In subsequent list presentations only a portion 
of these input patterns are presented to safe micro-
ARTMAP. However, safe micro-ARTMAP requires some 
additional calculations during its training phase. So, for all 
practical purposes, we can still assume that the 
computational complexity of the training phase of safe 
micro-ARTMAP can be represented by the same formulas 
used to represent the computational complexity of the 
training phase of FAM. Obviously, the computational 
complexity of testing trained safe micro-ARTMAPs to 
discover the best safe micro-ARTMAP is given by the same 
formula used to discover the best trained FAM.  

 
In our experiments, while it took a specific computer to 

train and test a ssFAM network 20000 times around 6 to 18 
hours, it took the same machine 3 to 30 minuets only to run 
GFAM on the same problem.  

V.CONCLUSIONS 
We introduced a new ART neural network architecture, 

named GFAM, produced by evolving a number of trained 
Fuzzy ARTMAP neural networks. The primary reason for 
introducing GFAM was to solve the category proliferation 
problem in Fuzzy ARTMAP.  
 

We examined the performance of GFAM on a number of 
simulated and real datasets. The results illustrated that 
GFAM achieves good generalization (sometimes optimal 
generalization) while retaining a small network size. 
Comparisons of GFAM with other ART networks that 
addressed the category proliferation problem in Fuzzy 
ARTMAP revealed that GFAM achieves almost always 
better generalization and produces (all the time) a smaller 
(quite often significantly smaller) network size. The method 
used to create GFAM from trained ART networks can be 
extended to the evolution of other ART network 
architectures.  

 
 

APPENDIX A – TERMINOLOGY 
• aM : The dimensionality of the input patterns in the 

training, validation and test sets provided to us by the 
classification problem under consideration.  
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• Training Set: The collection of input/output pairs used 
in the training of FAMs that constitute the initial FAM 
population in GFAM (PT points).  

• Validation Set: The collection of input/output pairs used 
to validate the performance of the FAM networks 
during the evolution of FAMs from generation to 
generation (PV points).  

• Test Set: The collection of input/output pairs used to 
assess the performance of the chosen FAM network, 
after the evolution of FAMs is completed (PTes points). 

• :min
aρ  This is the lower limit of the baseline vigilance 

parameter used in the training of the FAM networks that 
comprise the initial population of the FAM networks.  

• :max
aρ  This is the upper limit of the baseline vigilance 

parameter used in the training of the FAM networks that 
comprise the initial population of the FAM networks.  

• aβ : The choice parameter used in the training of the 
FAM networks that comprise the initial population of 
the FAM networks. This parameter is fixed, and chosen 
equal to 0.1.  

• sizePop : The number of chromosomes (FAM trained 
networks) in each generation. 

• )( pNa  : The number of categories in the thp FAM 
network from the sizePop  trained FAM networks in a 
generation. 

• )))((),(()( ca
j

a
j

a
j ppp vuw = : the weight vector 

corresponding to category j of the thp FAM network 
from the sizePop  trained FAM networks in a generation; 

a
ju corresponds to the lower endpoint of the hyperbox 

that the weight vector a
jw  defines and a

jv  corresponds 
to the upper endpoint of this hyperbox.  

• )( pl j : The label of category j of the thp FAM network 
from the sizePop  trained FAM networks in a generation. 

• )( pPCC : The percentage of correct classification on the 
validation set exhibited by the thp FAM network from 
the sizePop  trained FAM networks in a generation 

• maxGen : The maximum number of generations allowed 
for the FAM networks to evolve. When this maximum 
number is reached, evolution stops and the FAM with 
the highest fitness value on the validation set is 
reported.  

• bestNC : Number of best chromosomes that the GFAM 
transfers from the old generation to the new generation 
(elitism). 

• maxmin , CatCat : The minimum and the maximum number 
of categories that a FAM chromosome is allowed to 
have during the evolutionary process that GFAM 
undergoes.   

• deladd CatCat , : New genetic operators that add and delete 
a category in a FAM chromosome. 

• )(),( deladd CatPCatP , )(MutP : The probabilities of adding, 
deleting and mutating a category in a FAM 
chromosome. 

• PT : Number of points in the training set. 
• PV : Number of data-points in the validation set.  
• PTes : Number of points in the test set.  
• PS : Number of network parameter settings to produce 

the best ART network (ART is ssFAM, ssEAM, ssGAM 
and safe micro-ARTMAP). 
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